

-Factory

M. Biagini, LNF-INFN on behalf of the SuperB Team CARE-HHH Frascati, Nov. 7th, 2007

Why a SuperB-Factory?

- B-factories (PEP-II and KEKB) have exceeded their design goals, both in peak and integrated luminosity
- High operation reliability and performances represent a success for all factories (at lower energy too: DAΦNE)
- Upgrade of an order of magnitude and more in Luminosity is highly desirable for investigation on Physics beyond the Standard Model

Goal is $L \ge 1 \times 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$

Extraordinary success of B-Factories

The SuperB Process

- International SuperB Study Group on:
 - Physics case, Machine, Detector
- International steering committee established with members from:
 - □ Canada, France, Germany, Italy, Russia, Spain, UK, USA
 - □ Close collaboration with Japan, although not formalized
- Regular workshops
 - □ Five workshops held at SLAC, Paris, Frascati
 - SuperB Meeting at Daresbury
 - □ 2 accelerator "retreats" at SLAC (2006, 2007)
- Conceptual Design Report
 - Published in March 2007
 - Describes Physics case, Accelerator, Detector, including costs
 - International Review Committee: 12-13 November 2007 at LNF
- More informations: www.pi.infn.it/SuperB

The SuperB Effort

A new idea for L increase

P. Raimondi's: to focus more the beams at IP and have a "large" crossing angle \rightarrow large Piwinski angle

- Ultra-low emittance (ILC-DR like)
- Very small β* at IP
- Large crossing angle
- "Crab Waist" scheme

- Small collision area
- Lower β is possible
- NO parasitic crossings
- NO synchro-betatron resonances due to crossing angle

Large crossing angle, small x-size

y waist can be moved along z with a sextupole on both sides of IP at proper phase

"Crab Waist"

Crab Waist Advantages

1. Large Piwinski's angle

 $\Phi = tg(\theta)\sigma_z/\sigma_x$

2. Vertical beta comparable with overlap area

$$\beta_y \approx \sigma_x / \theta$$

3. Crabbed waist transformation

 $y = xy'/(2\theta)$

a) Geometric luminosity gain

b) Very low horizontal tune shift

- a) Geometric luminosity gain
- b) Lower vertical tune shift
- c) Vertical tune shift decreases with oscillation amplitude
- d) Suppression of vertical synchro-betatron resonances
- a) Geometric luminosity gain
- b) Suppression of X-Y betatron and synchro-betatron resonances

... and ...

- Higher luminosity with same currents and bunch length:
 - Beam instabilities are less severe
 - Manageable HOM heating
 - No coherent
 synchrotron radiation
 of short bunches
 - No excessive power consumption

- Lower beam-beam tune shifts
- Relatively easier to make small σ_x w.r.t. short σ_z
- Parasitic collisions
 becomes negligible
 due to higher crossing
 angle and smaller σ_x

Crossing angle = 2*25mrad Relative Emittance growth per collision about 1.5*10⁻³, $\varepsilon_{yout}/\varepsilon_{yin}$ =1.0015

Simulation with GuineaPig by D. Schulte

Vertical

Beams are focused in the vertical plane 100 times more than in the present factories, thanks to:

- small emittances
- small beta functions
- large crossing angle
- "crab waist"
 - Tune shifts and longitudinal overlap are greatly reduced

	KEKB	SuperB
I (A)	1.7	2.
β _y * (mm)	6	0.2
β _x * (mm)	300	39
σ _y * (μm)	3	0.039
σ _x * (μm)	80	6
σ _z (mm)	6	5
L (cm ⁻² s ⁻¹)	1.7x10 ³⁴	1.x10 ³⁶

Here is Luminosity gain

Transparency condition

- Due to the large crossing angle, new conditions are possible, different from asymmetric currents, for having equal tune shifts with asymmetric energies
- LER and HER beams can have different emittances and β* and equal currents

$$\xi^{+} = \xi^{-} \Leftrightarrow \frac{N^{+}}{N^{-}} = \frac{E^{-}}{E^{+}} \Leftrightarrow \xi^{+} = \xi^{-} \Leftrightarrow \frac{\beta_{y}^{+}}{\beta_{y}^{-}} = \frac{E^{+}}{E^{-}}$$
Present B-factories SuperB

$$\xi^{+} = \xi^{-} \Leftrightarrow \frac{\beta_{y}^{+}}{\beta_{y}^{-}} = \frac{E^{+}}{E^{-}}$$

LER beam:

- sees a shorter interaction region, (4/7 of the HER one)
- has a smaller β_y^* , easier to achieve

in the FF w.r.t. HER

 has larger emittance: better for Touschek lifetime, and tolerance for LER instabilities

 $\sigma_{y}^{+} = \sigma_{y}^{-} \Leftrightarrow \beta_{y}^{+} = \frac{E^{+}}{E^{-}} \beta_{y}^{-}$ $\mathcal{E}_{y}^{+} = \frac{E}{F^{+}} \mathcal{E}_{y}^{-}, \quad \mathcal{E}_{x}^{+} = \frac{E}{F^{+}} \mathcal{E}_{x}^{-}$ $\overline{F^+}\sigma_r$

SuperB Parameters

Circumference (m)	1800.
Energy (GeV) (LER/HER)	4/7
Current (A)/beam	2.
No. bunches	1342
No. part/bunches	5.5x10 ¹⁰
θ (rad)	2x24
ε _x (nm-rad) (LER/HER)	2.8/1.6
ε _y (pm-rad) (LER/HER)	7/4
β _y * (mm) (LER/HER)	0.22/ <mark>0.39</mark>
β _x * (mm) (LER/HER)	35/ <mark>20</mark>
σ _y * (μm) (LER/HER)	0.039
σ _x * (μm) (LER/HER)	10/ <mark>6</mark>
σ _z (mm)	5
RF Power (MW)	17
L (cm ⁻² s ⁻¹)	1.x10 ³⁶

Luminosity vs tunes scan

P. Raimondi, D. Shatilov, M. Zobov

(horizontal axis - v_x from 0.5 to 0.65; vertical axis - v_y from 0.5 to 0.65)

Beam-beam blow up (weak-strong simulations)

The Rings

- Two rings @ 4 and 7 GeV with one Interaction Region where Super-BaBar detector will be installed
- Ring characteristics similar to ILC Damping Rings → synergy
- Polarization of electrons is desirable

- "Final Focus" section FFTB/ILC-like
- Design based on recycling all PEP-II hardware, magnets, and RF system
- Total power: 17 MW, lower than PEP-II
- No wigglers for Phase I
- Circumference ~1800 m (with polarization section)

Layout (1)

Layout (2)

- HER: $\varepsilon_x = 1.6$ nm, $\tau_s = 20$ msec
- LER: $\varepsilon_x = 2.8 \text{ nm}, \tau_s = 20 \text{ msec}$
- HER cells host 2 x 5.4 m long PEP-II dipoles
- LER cells host 4 x 0.45 m long PEP-II dipoles
- Final Focus sections have 18 HER-type bends
- 2 straights between cells can host wigglers if needed
- 2 new sections, about 200 m long, will be added for the polarization scheme (not included in present lattice)
- Total length ~ 1800 m

Arcs Lattice

- Alternating sequence of two different cells: $\mu_x = \pi$ cell, that provides the best dynamic aperture, and $\mu_x = 0.72$ cell with much smaller intrinsic emittance which provides phase slippage for sextupoles pairs, so that one arc corrects all phases of chromaticity. Then:
 - chromatic function $W_x < 20$ everywhere
 - β and α variation with particle momentum are close to zero
 - larger dynamic aperture
- Cell #1: L=20 m, $\mu_x = 0.72$, $\mu_y = 0.27$
- Cell #2: L=21 m, $\mu_x = 0.5$, $\mu_y = 0.2$
- New cell layout (double-cell wrt CDR lattice): QF/2-QD-B-B-QF-B-B-QD-QF/2

Final Focus

- Crossing angle to 2*25 mrad, L*=0.4 m
- Local chromaticity correction
- Horizontal beam separation at QD0: 2 cm, about 180 σ_x
- A possible solution with a septum QD0 is being studied:

a Super Conducting array of wires placed in the middle of QD0 to shift the magnetic center, opposite for the 2 beams, to get no net steering from QD0 (Bettoni, Paoloni design). Overall thickness ~ 8mm, leaving about 60 σ_x of beam stay-clear

Example of QD0 design

Final Focus

PEP-II: Magnets and RF system are re-usable for SuperB and will be provided by SLAC (negotiations in progress)

Conclusions (1)

New large Piwinski angle scheme will allow for peak luminosity \geq **10**³⁶ cm⁻² s⁻¹ well beyond the current state-of-the-art without a significant increase in beam currents or shorter bunch lengths

- Use of "crab waist" sextupoles will add a bonus for suppression of dangerous resonances
- Test at DAΦNE will help in discovering possible issues

Conclusions (2)

- There is a growing international interest and participation
- R&D is proceeding on various items

- A CDR is ready for review by the International Review Committee
- A TDR will be ready by 2010
- Next issues are: site, money