

Scenarios for the LHC Upgrade

Walter Scandale & Frank Zimmermann

IR'2007 Frascati, LNF-INFN

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395)

outline

two scenarios for the beam/IR parameters

- merits and challenges
- impact of β^*
- luminosity evolution
- luminosity leveling
- bunch structures

Injector upgrade

Context, goals and perspectives

Issues for this workshop

LHC challenges

> LHC baseline luminosity pushed in competition with SSC ⇒ energy versus luminosity race

Large volume detectors to deal with the large multiplicity per crossing \Rightarrow full separation of the detector / focusing triplet

parameter	symbol	nominal	ultimate	
transverse emittance	ε [μm]	3.75	3.75	
protons per bunch	<i>N_b</i> [10 ¹¹]	1.15	1.7	
bunch spacing	∆t [ns]	25	25	
beam current	I [A]	0.58	0.86	
longitudinal profile		Gauss	Gauss	
rms bunch length	σ _z [cm]	7.55	7.55	
beta* at IP1&5	β* [m]	0.55	0.5	
full crossing angle	θ _c [μrad]	285	315	
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75	
peak luminosity	<i>L</i> [10 ³⁴ cm ⁻² s ⁻¹]	1	2.3	
peak events per crossing		19	44	
initial lumi lifetime	τ _L [h]	22	14	
offective luminosity	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91	
(T _{turnaround} =10 h)	T _{run,opt} [h]	21.2	17.0	
effective luminosity (T _{turnaround} =5 h)	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.56	1.15	
	T _{run,opt} [h]	15.0	12.0	
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	
image current heat	P _{IC} [W/m]	0.15	0.33	
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.04 (0.38)	0.06 (0.56)	
extent luminous region	σ _ι [cm]	4.5	4.3	

LHC Upgrade

- 10x higher luminosity $\sim 10^{35}$ cm⁻² s⁻¹ (SLHC)
 - Requires changes of the machine and particularly of the detectors
 - \Rightarrow Upgrade to SLHC mode around 2014-2016
 - \Rightarrow Collect ~1000 fb⁻¹/experiment per year
 - \Rightarrow difficult trade-off in between:
 - collimation & machine protection
 - $\bullet \quad \text{electron cloud} \Leftrightarrow \text{heat load}$
 - $\bullet \quad \text{beam-beam interaction} \Leftrightarrow \text{average luminosity luminosity lifetime }$
 - $\bullet \quad \text{multiplicity of the events per crossing} \Leftrightarrow \text{detector upgrade}$

much later: higher energy? (DLHC)

 -LHC can reach √s = 15 TeV with present magnets (9T field)
 -√s of 28 (25) TeV needs ~17 (15) T magnets ⇒ R&D needed!

parameter	symbol	25 ns, small β*	50 ns, long	
transverse emittance	ε [μm]	3.75	3.75	
protons per bunch	N _b [10 ¹¹]	1.7	4.9	
bunch spacing	Δt [ns]	25	50	
beam current	I [A]	W 0.86	1.22	
longitudinal profile		Gauss	Flat	
rms bunch length	σ_{z} [cm]	9 7.55	2 11.8	
beta* at IP1&5	β* [m]	0.08	0.25	
full crossing angle	θ_{c} [µrad]	0	3 381	
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0	2.0	
hourglass reduction		3 0.86	0.99	
peak luminosity	$L [10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}]$	15.5	x 10.7	
peak events per crossing		294	2 403	
initial lumi lifetime	τ_{L} [h]	2.2	3 4.5	
effective luminosity (T _{turnaround} =10 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	2.4	2.5	
	T _{run,opt} [h]	6.6	9.5	
effective luminosity (T _{turnaround} =5 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	3.6	3.5	
	T _{run,opt} [h]	4.6	6.7	
e-c heat SEY=1.4(1.3)	P [W/m]	1.04 (0.59)	0.36 (0.1)	
SR heat load 4.6-20 K	P _{SR} [W/m]	0.25	0.36	
image current heat	P _{IC} [W/m]	0.33	0.78	
gas-s. 100 h (10 h) t _b	P _{gas} [W/m]	s [W/m] 0.06 (0.56) 0.09		
extent luminous region	σ_{l} [cm]	3.7	5.3	
comment		D0 + crab (+ Q0)	wire comp.	

New upgrade scenarios

- challenges
- injector upgrade
- Crossing with large Piwinski angle
- aggressive triplet

compromises between # of pile up events and heat load

ES scenario assessment

<u>merits:</u>

most long-range collisions negligible, no geometric luminosity loss, no increase in beam current beyond ultimate, could be adapted to crab waist collisions (LNF/FP7)

<u>challenges:</u>

- D0 dipole deep inside detector (~3 m from IP),
- optional Q0 doublet inside detector (~13 m from IP),
- strong large-aperture quadrupoles (Nb₃Sn)
- crab cavity for hadron beams (emittance growth), or shorter bunches (requires much more RF)
- 4 parasitic collisions at $4-5\sigma$ separation,
- off-momentum β beating 50% at δ =3x10^{-4} compromising collimation efficiency,
- low beam and luminosity lifetime $\sim \beta^*$

LHC upgrade path 2: large Piwinski angle (LPA)

double bunch spacing to 50 ns, longer & more intense bunches with $\phi_{Piwinski} \sim 2$

larger-aperture triplet magnets

- $\beta^* \sim 25$ cm, do not add any elements inside detectors
- long-range beam-beam wire compensation
 - \rightarrow novel operating regime for hadron colliders

F. Ruggiero, W. Scandale. F. Zimmermann (2006)

fewer, long & intense bunches + nonzero crossing angle + wire compensation

LPA scenario assessment

merits:

no elements in detector, no crab cavities,

lower chromaticity,

less demand on IR quadrupoles

(NbTi expected to be possible),

could be adapted to crab waist collisions (LNF/FP7)

<u>challenges:</u>

- operation with large Piwinski parameter unproven for
- hadron beams (except for CERN ISR),
- high bunch charge,
- beam production and acceleration through SPS,
- larger beam current,
- wire compensation (almost established),
- off-momentum β beating ~30% at δ =3x10^{-4}

motivation for flat bunches & LPA

luminosity for Gaussian bunches

$$L^{Gauss} \approx \frac{1}{2} \frac{f_{coll} \gamma}{r_p \beta^*} \Delta Q_{tot} N_b$$

F. Ruggiero, G. Rumolo,

- F. Zimmermann,
- Y. Papaphilippou, RPIA2002

luminosity for "flat" bunches

$$L^{flat} \approx \frac{1}{\sqrt{2}} \frac{f_{coll} \gamma}{r_p \beta^*} \Delta Q_{tot} N_b$$

- for the same total number of particles and the same total tune shift from two IPs the luminosity will be ~1.4x higher with a "flat" bunch distribution;
- ♦ the number of particles N_b can be increased independently of ΔQ_{tot} only in the regime of large Piwinski angle

geometric luminosity reduction vs β^* geometric reduction factor

average luminosity vs β^* average luminosity [10^{34} cm⁻²s⁻¹]

including crossing angle + hourglass, assuming optimum run time for 5 h turn-around

aside: "crab waist" scheme for LHC?

requires: -flat beams $(\beta_y^* << \beta_x^*)$ -large Piwinski angle (like LPA) $-\beta_y^* \sim \sigma_x^* / \theta$ (like ES) - crab-waist sextupole transformation

possible approach: go to flat beams, combine ingredients of LPA & ES schemes, add sextupoles

experiments prefer more constant luminosity, less pile up at the start of run, higher luminosity at end

how could we achieve this?

luminosity leveling

 $Penalty \Rightarrow unavoidable \ reduction \ of \ the \ average \ luminosity$

ES: dynamic β squeeze dynamic θ change (either IP angle bumps or varying crab voltage)
LPA: dynamic β squeeze, and/or dynamic reduction in bunch length

new upgrade bunch structures

Updated needs of SLHC

Proposed goal 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ded at mage Beam parameters [tentative]	Bunch spacing [ns]	Protons per bunch* [10 ¹¹]	Transverse emittance in LHC [mm.mrad]	Intensity factor at PS injection*
	Nominal	25	1.15 (1.4)	3.75	0.68 (0.81)
	Ultimate	25	1.7 (2.1)	3.75	1 (1.2)
	2 x ultimate & 25 ns spacing	25	3.4 (4.1)	3.75 (blown-up to 7.5 in LHC)	2 (2.4)
	3 × ultimate & 50 ns spacing	50	4.9 (5.9)	3.75	1.44 (1.73)

* Case of 100 % (80 %) transmission PS to LHC

perspective

- first two or three years of LHC operation will clarify severity of electron cloud, long-range beam-beam collisions, impedance etc.
- first physics results will indicate whether or not magnetic elements can be installed inside the detectors
- these two experiences may decide upgrade path
 crab waist option could be further explored

Issues for discussion

- ES
 - Integrability
 - D0 and crab cavity are both are required
 ⇒ in alternative use only a crab cavity ?
 - Feasibility of β* < 0.15 (chromaticity, dynamic aperture, crossing angle, integrated luminosity,...)
- **LPA**
 - Large intensity per bunch
 - Multiplicity per crossing
 - Flat bunch in the longitudinal phase space

Once β^* is minimized all the hadron colliders have improved the average luminosity through an increase of the circulating intensity

Frank Zimmermann, Scenarios for the LHC Upgrade, BEAM07