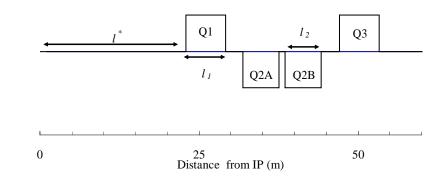


Frascati, 7th November 2007 CARE HHH APD mini-workshop IR'07

DESIGN ISSUES IN A 130 MM APERTURE TRIPLET

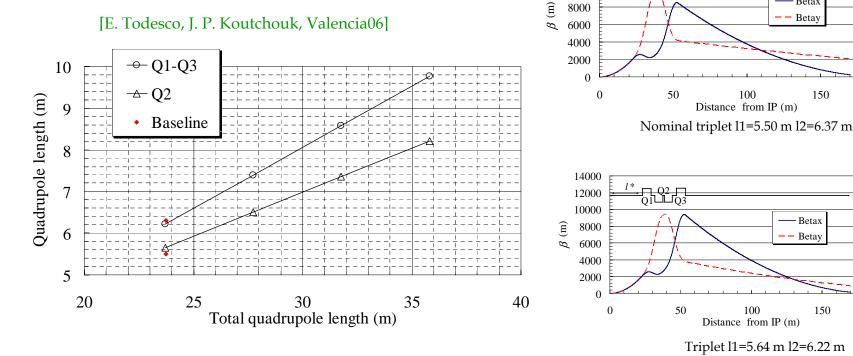
F. Borgnolutti, E. Todesco Magnets, Cryostats and Superconductors Group Accelerator Technology Department, CERN

F. Borgnolutti, E. Todesco



- Motivations for a 130 mm aperture triplet
- 130 mm aperture quadrupoles in Nb-Ti
- 130 mm aperture quadrupoles in Nb₃Sn
- Conclusions

- Proposed LHC triplet lay-out for getting β^{*}=0.25 (the "symmetric" solution, LHC Project Report 1000)
 - A stretched version of the present lay-out
 - The same aperture and cross-section in Q1-Q3
 - To minimize cost of model, prototypes and spares, maximize interchangeability
 - Different lengths of Q1-Q3 and Q2 but the same current
 - To minimize cost of power supply, simplify powering schemes
 - We require $\beta^*=0.25$ m and additional aperture for collimation
 - We end up with
 - A=130 mm
 - G~125 T/m
 - L(Q1)=L(Q3)=9.2 m
 - L(Q2) =7.8 m
 - Total triplet length 35 m
 - with gaps, 40 m


- The study presented in LHC PR 1000 presents a parametric study of solutions having [E. Todesco, J. P. Koutchouk, CARE workshop Valencia06]
 - Triplet length from 25 to 40 m
 - Triplet aperture from 90 to 150 mm
- Main features of the semi-analytical approach
 - It is not a simple scaling
 - It is not a simplified analytical model of the optics
 - Triplet optics from IP to Q4 is exact, approximate matching is done
 - Four cases are computed, and then results are fit
 - Obtained solutions proved to be rather close to exactly matched solutions with MAD [R. De Maria, LIUWG meeting, October 2007]
 - A completely analytical approach on simplified model has been recently developed [R. De Maria, *Phys. Rev. STAB* 10 (2007)]

- How to fix the relative lengths of Q1-Q3 and Q2
 - For each total quadrupole length there is a combination of lengths that gives equal beta function in the two planes

14000

12000 10000 • We compute four cases, and then we fit

Design issues in 130mm aperture quadruopoles - 5

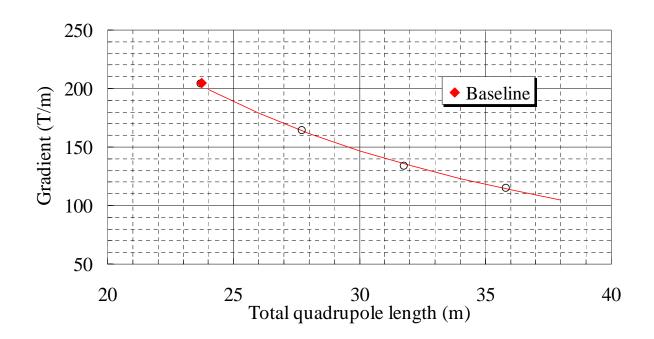
Betax

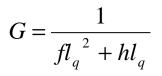
Betay

150

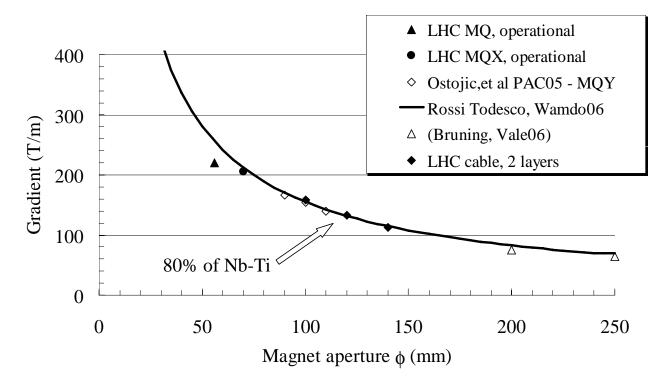
Betax

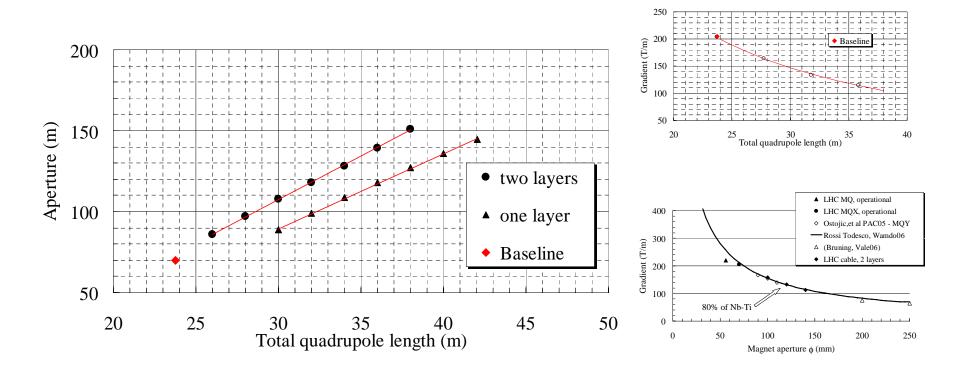
Betay


150

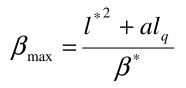

200

200

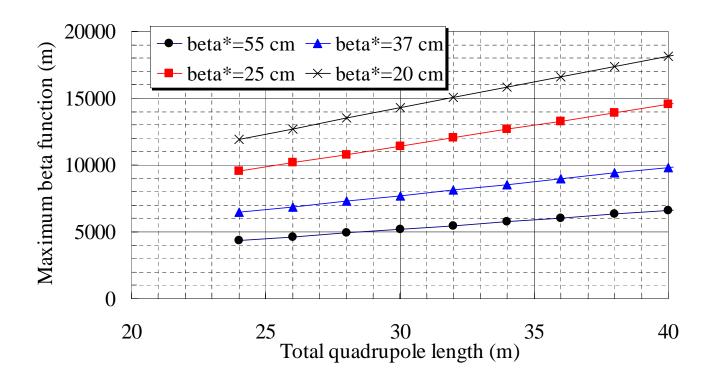

- How to fix the gradient
 - This depends on matching conditions
 - We require to have in Q4 "similar" beta functions to the nominal
 - We find an empirical fit of the four cases



- What a Nb-Ti quadrupole can give as gradient vs aperture
 - We computed three lay-outs with 2 layers of the LHC MB cable, of apertures 100, 120, 140 mm agreement with the semi-analytical formula [L. Rossi, E. Todesco, *Phys. Rev. STAB* 9 (2006) 102401]

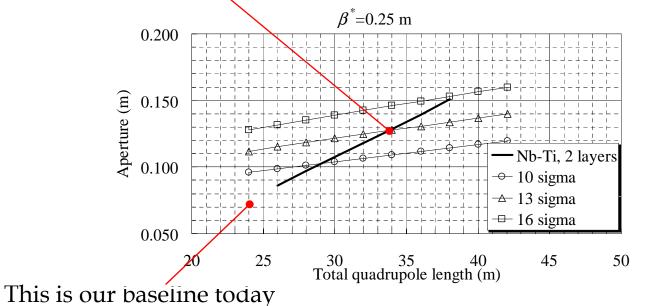


- We can now have aperture vs quadrupole length
 - With two layers Nb-Ti we can build focusing triplet of 30 m, 110 mm aperture or 34 m, 130 mm aperture



- Longer triplet will give larger beta functions !
 - Larger, but not terribly larger ... we find a fit as $a \sim 77.5 \text{ m}$ (where β^* is the beta in the IP)

[E. Todesco, J. P. Koutchouk, Valencia06]



- β^* , β_{max} and the triplet length determine the aperture needs
 - 10 σ : the nominal

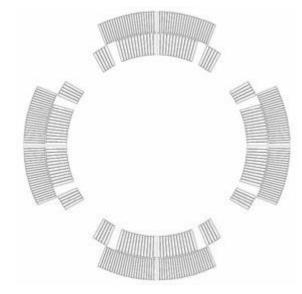
$$\phi = \phi_0 + \chi \phi_1 \sqrt{\beta_{\max}} + \phi_2 \frac{l^* + l_t}{\sqrt{\beta^*}} + \phi_3 \frac{(l^* + l_t)^{3/2}}{\sqrt{\beta^*}} \sqrt{N_b k_b}$$

- 13 *σ*: reduces the collimator impedance, and allowing a nominal beam intensity [E. Metral, et al., PAC07, R.W. Assman LIUWG October 2007]
- We chose 130 mm aperture quadrupole, giving a triplet length of 34 m (without gaps)

•

- Motivations for a 130 mm aperture triplet
- 130 mm aperture quadrupoles in Nb-Ti
- 130 mm aperture quadrupoles in Nb₃Sn

Conclusions

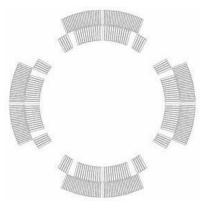


130 MM NB-TI QUADRUPOLE

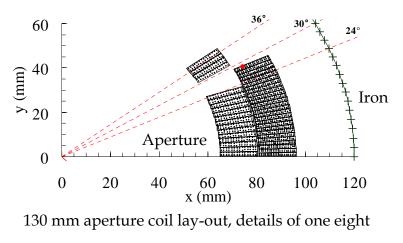
- MQXC: operational gradient of 124 T/m
 - 20% operational margin
- Operational current 12.5 kA
- Coil: two layers, with grading (27%), using the LHC MB inner and outer layer respectively
- Peak field 8.4 T (in between MQXA and MQXB)

• Cable needed to wind one dipole unit length is enough

		Inner layer		Outer layer	
	length	n turns	pole length	n turns	length
	(m)	(per pole)	(m)	(per pole)	(m)
MQXC	9.2	18	331	26	478
MQXC	7.8	18	281	26	406
MB	14.3	15	429	25	715

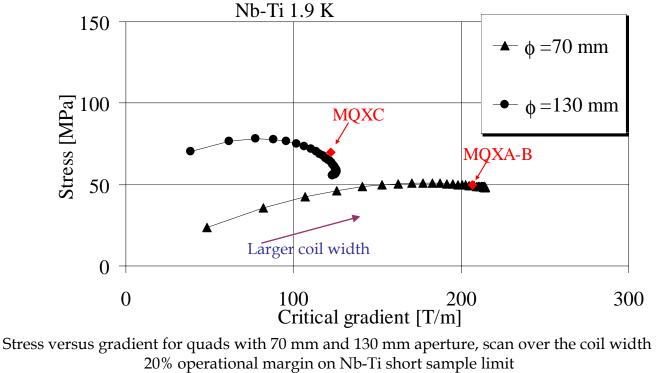


130 mm aperture coil lay-out

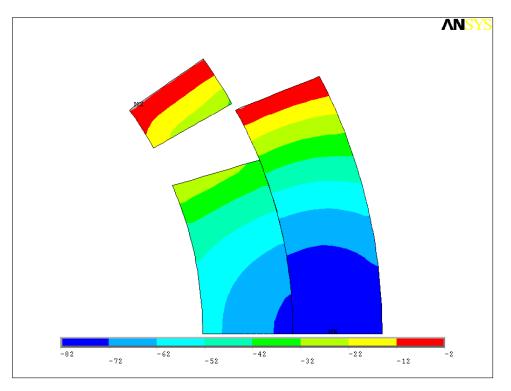


130 MM NB-TI QUADRUPOLES – FIELD QUALITY

- Field quality is critical at nominal field optimization includes iron saturation, persistent currents not an issue
- Coil design based on:
 - Inner layer: two blocks with [24°,30°,36°] lay-out this kills $b_6 b_{10}$
 - Outer layer: one block at 60° this kills b_6 (b_{10} not affected by outer layer)
- Design multipoles at high field lower than 1 unit
 - A first iteration will be needed to fine tune field quality
 - Mid-plane shims of 0.375 mm thickness are included in the design, so that it can be varied in both directions for fine tuning


130 mm aperture coil lay-out

130 MM NB-TI QUADRUPOLES – FORCES


- According to analytical model [P. Fessia, F. Regis, E. Todesco, ASC06]
 - Lorentz forces induce a stress in the coil of 70 MPa, i.e. 40% more than for the MQXA-B (50 MPa)
 - Does not look so critical, but mechanical structure should be carefully designed

Design issues in 130mm aperture quadruopoles - 14

- Cross-check with computations using FEM model
 - MQXC: ~80 MPa
 - MQXA: ~ 70 MPa, MQXB: ~ 50 MPA

Stress in the coil due to e.m. forces in infinitely rigid structure evaluated with FEM

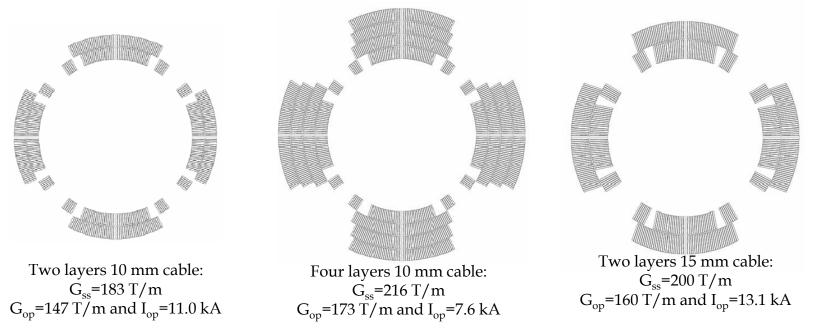
130 MM NB-TI QUADRUPOLES – PROTECTION

- This MQXC is longer and larger than the previous ones
 - Inductance similar to MQY, MB, MQXA
 - Operating current similar to MB, MQ, MQXB
 - Stored energy is ~5 MJ: twice than MQXA, and 50% larger than one aperture of an MB

- Preliminary hot spot temperature evaluations show that the order of magnitudes are similar to the MB
 - Time for firing quench heaters to avoid hot spot larger than 300 K must be not larger than 0.1 s [M. Sorbi, Qlasa code] challenging, but feasible

- Motivations for a 130 mm aperture triplet
- 130 mm aperture quadrupoles in Nb-Ti
- 130 mm aperture quadrupoles in Nb₃Sn

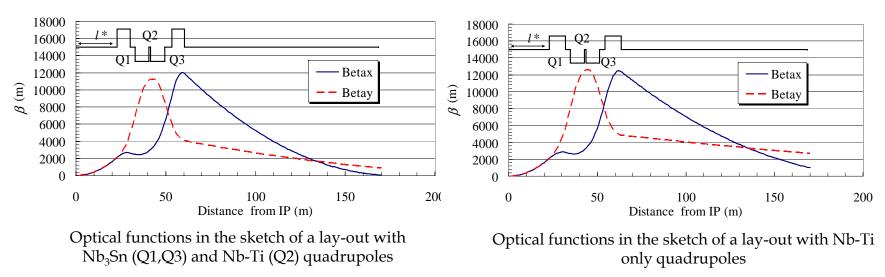
Conclusions


130 MM NB₃SN QUADRUPOLES - GENERAL

- Main hypothesis
 - We consider the possibility of substituting the Nb-Ti 130 mm aperture magnets with 130 mm aperture Nb₃Sn quadrupoles [proposal by L. Rossi, LARP collaboration meeting, October 2007]
 - Constraints
 - Same powering current of Nb-Ti (12.5 kA)
 - Having a safe operational margin
 - Having a reasonable level of forces
 - Providing at least the same level of gradient
 - Satisfy the optics requirements

130 MM NB₃SN QUADRUPOLES - DESIGN

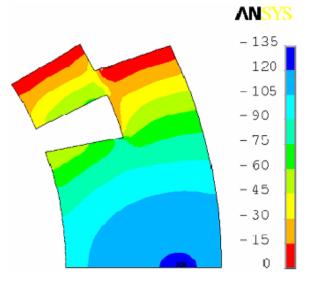
- We considered 3 designs, based on LARP strand
 - 2-4 layers with the present 10 mm width LARP cable (~TQ)
 - 2 layers with a 15 mm width cable, same strand of 0.7 mm diameter
 - Assuming 3000 A/mm² at 12 T, 4.2 K, 20% operational margin



• The 15 mm cable is the only one that can bear the 12.5 kA current

SKETCH OF A MIXED TRIPLET FOR THE UPGRADE

- Same lay-out as for the Nb-Ti triplet, but Q1-Q3 replaced by Nb₃Sn quadrupoles 7.2 m long
 - Operating at 160 T/m, at 20% margin, in series with Q2a-Q2b,
 - Q2 in the same position and with the same lengths in the "Nb-Ti only" lay-out
 - Small trim on the current (4% larger) than in the Nb-Ti only option
 - a small gain in the maximal beta function (~5%)



F. Borgnolutti, E. Todesco

Design issues in 130mm aperture quadruopoles - 20

- At operational values (20% margin from short sample) peak stress due to e.m. forces is large (120 MPa), but within 150 MPa
 - with a model in an infinitely rigid structure more analysis should be done with the real structure
 - 2 layers 15 mm has ~10% less stress than the 10 mm cable designs

Stress due to e.m. forces evaluated with ANSYS, infinitely rigid structure

130 MM NB₃SN QUADRUPOLES

- Please note that at short sample the stress is (25%)²⁼56% larger
 - The magnet can go up to ~200 MPa
 - It cannot be powered at the short sample !!
 - It could be a nice destructive test to find out the stress (strain) limits in Nb₃Sn in a short model
- Temperature margin
 - With the mixed lay-out, Nb₃Sn has 4.7 K temperature margin with respect to 2.1 of Nb-Ti

CONCLUSIONS

- We outlined the motivations to go for a 130 mm aperture in a Nb-Ti LHC triplet
 - $\beta^* = 0.25 \text{ m with } 3 \sigma$ clearance for collimation
- We discussed a conceptual design of the Nb-Ti magnet
 - Field quality, stresses, protection
- We considered the possibility of replacing Q1-Q3 with Nb₃Sn magnets
 - Not possible with the present 10 mm cable
 - With 15 mm cable could be viable, with margin and stresses within limits
 - Optics seems viable, should be validated by exact matching
 - It would give a more than a factor 2 in temperature margin (and would be the first test of Nb₃Sn in operational conditions)