

BNL - FNAL - LBNL - SLAC

High Field Nb₃Sn Magnets

IR'07 Workshop Frascati, November 7-9, 2007

Gian Luca Sabbi

IR'07, November 7-9, 2007

IR Upgrade Roadmap

Access to higher fields ⇒ *better performance and more design options*

LARP

HQ Goal: Demonstrate Coil Field >15 T

HQ Design Study (FY06-07):

1. Investigate design options in preparation for model fabrication:

- Magnetic, mechanical and quench analysis

- R&D issues, magnet parameters and features
- 2. Provide input to LHC IR quad conceptual design and analysis:

- Optics, IR layout, radiation deposition, cryogenics studies

<u>R&D Issues</u>: • Materials: conductor, cable, insulation

- Coil design efficiency (magnetic & mechanical)
- Structures to handle large forces and stresses
- Quench Protection parameters and limits
- Analysis and diagnostics

High Coil Stress was identified as the most critical R&D issue for HQ

From TQ to HQ

<u>Initial strategy</u>: Use a 4-Layer design with the TQ coil as inner double-layer

Implementation:1) Build and test outer double layer (~130 mm aperture)2) Assemble 4-layer magnet using existing TQ coils

Motivation:Addresses main R&D goals: 15 T coil field, high stressesTwo aperture data points with only one set of new coilsCan use TQ strand and cable with small modifications

Field, Energy and Force Comparisons

	TQS	HQ1out	HQ1	HD1	RD3
Temperature (K)	1.9	1.9	1.9	4.5	4.5
Short sample current (kA)	15.1	13.5	10.6	11.4	10.8
Coil peak field @ S.S. (T)	13.5	14.5	15.7	16.1	14.8
Stored Energy (MJ/m)	0.56	1.1	1.46	0.66	1.2
Inductance (mH/m)	5	12	26	11	22
Fx (MN/m)	4.2	2.7	4.1	4.7	3.7

HQ parameters are very challenging but comparable to those that were achieved in the HD and RD series

Magnetic Design Studies

Vadim Kashikhin, H Pa

LARP

Vaalm Kasnikhin, Helene Felice & Paolo Ferracin		40 50 60 70 80 00		⁵ 44 66 88	110 60 70 80 90) 60 70 80 90 100			
	HQ1	HQ2	HQ3	HQ4	HQ1out	HQ3out	HQ1out*		
Aperture (mm)	90	90	90	90	130	130	130		
Cable width (mm)	10	10	10/15	10/15	10	10 15			
SS Gradient	312	319	308	307	185	205	204		
I short sample (kA)	10.6	12.45	11.01	10.87	13.5	17.03	16.5		
SS Peak field (T)	15.74	16.03	15.49	15.49	14.53	15.59			
Stored Energy (MJ/m)	1.46	1.46	1.49	1.5	1.1	1.65	1.63		
Inductance (mH/m)	26	18.8	24.58	25.39	12.1	11.38	11.97		
Fx (MN/m)	4.13	3.85	4.25	4.14 2.73 3.9			3.67		
Fy (MN/m)	-5.28	-5.18	-5.33	-5.22	-3.48	-5.14	-4.85		

IR'07, November 7-9, 2007

Coil End Optimization

		Of	fsets, r	nm		ı,		B _p ^{er}	^{1d} , T	
№	BL 1	BL 2	BL 3	BL 4	Yoke	End lengtl mm	BL 1	BL 2	BL 3	BL 4
9	380	371	355	328	328	97.4	13.96 (-1.50) [-9.7%]	13.43 (-2.03) [-13.1%]	13.47 (-0.67) [-4.7%]	13.10 (-1.04) [-7.3%]

IR'07, November 7-9, 2007

Coil Stress (Lorentz force, rigid structure)

Stress considerations were taken into account in the cross-section optimization

LORENTZ STRESS AT 300 TESLA/METER (MPA)

Coil	ANSYS	5 (Fig 3)	Mid-pla	Mid-plane stress: ΣF_{θ} /(layer w					
Design	L1&2	L3&4	L1	L2	L3	L4			
HQ1	176	167	139	98	179	150			
HQ2	178	131	148	143	159	114			

IR'07, November 7-9, 2007

Coil Stress during Pre-load LARP Helene Felice, 450 mm +50 mm clearance \Leftrightarrow 40 MPa in two 60 mm bladders **Paolo Ferracin Original (TQ based) HQ Optimized Cross-section Cross-section** -.119E+09 -.993E+08 -.108E+09 -.898E+08 -.968E+08 -.803E+08 -.855E+08 -.708E+08 -.742E+08 613E+08 -.629E+08 -.<u>517E+08</u> -.516E+08 .422E+08 -.403E+08 -.291E+08 232E+08 -.137E+08 -.178E+08

IR'07, November 7-9, 2007

Optimization of Load Key Position

IR Quadrupole Design Space

Conductor Options

61 sub-element designs (54/61 and 60/61):

Production wire, highest Jc, long piece length, best characterized
Large sub-elements, flux jumps esp. in larger diameter wires

91 sub-element design (90/91):

Experience at OST from previous production-size orders
Small improvement from 60/61, no experience in LARP

127 sub-element designs (108/127 and 114/127):

D_{eff} reduced by 30%, some experience, showing promise
 Still being optimized, 10-20% lower Jc, cabling degradation

127 sub-element designs (108/127 and 114/127):

☺ D_{eff} reduced by 50%, optimization effort through CDP ⊗ Early R&D wire, many issues (yeld, Jc, cabling etc)

IR'07, November 7-9, 2007

Conductor Characterization

- Critical current degradation under stress is a critical magnet design parameter
- No facilities are available to measure cable under transverse fields >12 T

Features of a high field test facility:

- Background field up to 15 T
- Uniform high field >30 cm
- 70*2 MPa load (warm)
- Stress increase at cool-down

Cable Ic degradation (D. Dietderich)

LARP

High Field Dipole Development

LHC Energy Upgrade

Design Features & Applications

- Target field 15 Tesla
- Clear bore 36 mm
- Simple coil configuration
- Designed for high field quality
- Suitable for HF cable testing
- Compatible with HTS inserts

4.5 K Short Sample Parame	ters
---------------------------	------

Parameter	Unit	HD1	HD2
Clear bore	mm	8	36
Coil field	Tesla	16.1	15.8
Bore field	Tesla	16.7	15.0
Max current	kA	11.4	17.3
Stored Energy	MJ/m	0.66	0.84
F_x (quadrant, 1ap)	MN/m	4.7	5.6
F_{y} (quadrant, 1ap)	MN/m	-1.5	-2.6
Ave. stress (h)	MPa	150	150

High-field cable testing

2-layer winding without spacers in body or ends

IR'07, November 7-9, 2007

- Target cable width is 15.1 mm (match LHC Dipole)
- Wire diameter will be in 0.8 to 1 mm range (w/same cable width)
- Designs based on two wire diameters may be considered/compared
 1 mm diameter is desirable but introduces additional issues/risk
- Proposing to choose 127 sub-element strand as the baseline
 - Push wire development for a possible Phase I upgrade
 - 180 kg in order for March delivery
- Cable optimization: 2 prototype runs of 50 m each in the near term
 - Width: 9 pairs of rolls available in 14.8-15.2 mm range
 - *Keystone angle: 0.7-1.3 degrees*
 - *Thickness:* 1.45 mm (0.8 mm wire) or 1.80 mm (1 mm wire)
 - No. strands: 35/36 (0.8 mm wire) or 27/28 (1 mm wire)
- Plan: demonstrate cable design by January 2008

Structure Alignment

Include in HQ for Phase I upgrade

<u>Near term:</u>

- Shell to yoke alignment pins
- Yoke-to-yoke radial keys
- Yoke to pad master blocks
 - align during loading
 - preserve during cool-down

Longer term:

- Close yoke at cool-down
- Pad-coil alignment
 - options studied in HQ DS
 - mid-plane or pole keys

Alignment concept for shell-based structures

ID	HO Dian (DOE Davious $(/07)$)	Start	Finish	2007				2008			20	009			20	10	
	ng Plan (DOE Keview 0/07)			Q2 Q3	Q	4 Q	1 (Q2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
105	HQ Design	Mon 7/23/07	Mon 5/19/08		\sim												
106	Coil layout & basic parameters	Mon 7/23/07	Mon 7/23/07		\bigcirc	7/23											
107	Optimized cable & coil design	Mon 1/7/08	Mon 1/7/08				\diamond	1/7									
108	Mechanical structure design	Mon 5/19/08	Mon 5/19/08					\bigcirc	5/19								
109	HQ Tooling & Practice Coils	Tue 7/24/07	Mon 12/15/08														
110	Winding/Curing Tooling Design	Tue 7/24/07	Tue 10/2/07			<u>h</u>											
111	Design Review	Wed 10/3/07	Wed 10/3/07			4 1	0/3										
112	Winding/Curing Tooling Procurement	Thu 10/4/07	Tue 1/8/08				₽,	-									
113	Coil parts design	Tue 1/8/08	Mon 3/17/08														
114	Coil parts procurement	Tue 3/18/08	Tue 6/10/08					Ľ,									
115	Practice coil #1	Wed 6/11/08	Wed 7/23/08						μ.								
116	Tooling/coil parts optimization	Thu 7/24/08	Thu 10/2/08							h							
117	Reaction/potting tooling design	Tue 3/18/08	Tue 6/10/08					Ļ									
118	Design Review	Wed 6/11/08	Wed 6/11/08						6/11								
119	Reaction/potting tooling procurement	Thu 6/12/08	Thu 8/21/08						Ľ.	L							
120	Practice coil #2	Fri 10/3/08	Mon 12/15/08							Ľ	1						
121	HQ Structure Fabrication	Tue 5/20/08	Wed 5/20/09									\sim					
122	Engineering Design	Tue 5/20/08	Thu 9/11/08							Ĺ							
123	Review	Thu 9/11/08	Thu 9/11/08							9/11	I						
124	Procurement	Fri 9/12/08	Wed 3/11/09														
125	Testing	Thu 3/12/09	Wed 5/20/09														
126	HQ01 Model	Tue 12/16/08	Tue 10/20/09											\sim			
127	Coil Wind / Cure (6 coils)	Tue 12/16/08	Wed 4/29/09									ך 🗖					
128	Coil React	Thu 1/22/09	Thu 5/28/09							l L							
129	Coil Impreg	Thu 2/19/09	Thu 6/25/09								⊢		1				
130	Magnet Assembly	Fri 6/26/09	Fri 8/21/09														
131	Test & Analysis	Mon 8/24/09	Mon 10/19/09										Ľ	h			
132	Review	Tue 10/20/09	Tue 10/20/09											¹⁰ 10)/20		
133	HQ02 Model	Thu 4/30/09	Mon 3/8/10														
134	Coil Wind / Cure (12 coils)	Thu 4/30/09	Fri 9/4/09									гĽ					
135	Coil React	Fri 5/29/09	Mon 10/5/09									L	: :				
136	Coil Impreg	Fri 6/26/09	Mon 11/2/09									4	-				
137	Magnet Assembly	Tue 11/3/09	Fri 1/8/10												Ł		
138	Test & Analysis	Mon 1/11/10	Fri 3/5/10												Ľ.		
139	Review	Mon 3/8/10	Mon 3/8/10												Ň	3/8	
140	HQ03 Model	Tue 9/8/09	Wed 7/14/10														

HQ Coil and Tooling Spec Sheet

LARP

Shlomo Caspi, Dan Cheng, Rodger Bossert, Nikolai Andreev

Cable Parameters			
Cable Width	15.10	0.59449	LHC Standard; subject to actual cabling test measurements
Cable Insulation	0.10	0.00394	Depends on sleeving/tape, insulation type
	•		
Coll Parameters			
Magnetic ID	134	5.27559	ID Location of conductor (minus insulation stack)
Mechanical ID	133.419	5.25272	Calculated from Coil ID below
Magnetic Length			TBD
Mechanical Length			TBD
Magnetic OD	164.65	6.48244	Calculated from Coil OD below
Mechanical OD	195.89	7.7122	Calculated from Coil OD below
Basic Coll ID Envelope			
Magnetic ID	134	5.27559	OD of non-insulated cable
Cable Insulation	0.10	0.00394	One layer of cable insulation, above
Trace	0.0635	0.0025	1.5 mil karton + 1 mil stainless (no cover sheet, otherwise .005)
Glass Sheet	0.127	0.005	the initial entry (in order entry entring entry)
Clear Bore	133 419	5 25 27 2	diamater through which the bore is completely clear
clear bole	100.410	0.20272	diameter through which the bore is completely clear
Basic Coll OD Envelop	۵		
Magnetic ID	19/	5 27 5 5 0	From coll parameters above
1 lover cable width	15.10	0.50440	1 on comparameters above
1 layer cable incul	0.10	0.00204	
Glass sheet	0.10	0.00384	Glass short for around plans insulation
t lever cable incul	0.10	0.00204	class sheet for ground plane insulation
1 layer cable insul.	15.10	0.00394	
1 layer cable width	15.10	0.59449	
Tayer cable insul.	0.10	0.00394	lasteres at the target and a target the stars
Classic	0.06	0.00250	Instrumentation trace, see notes above
Glass sheet	105.00	0.00500	Coll emissions as welled
Mechanical OD	192.69	7.71217	Coll envelope, as potted
OD of winding Mandre	1		
Clear bore dia.	133,419	5.25272	from Coll ID calcs above
subtract	0.1905	0.0075	Subtract I race and glass Sheet from above calculations
Mylarsheet	0.127	0.005	For winding process only.
Mandrel OD	133.546	5.25772	
ID of Mandrei Sizing Bi	OCKS		
Mechanical OD	195.89	7.71217	From Goil OD calcs above
subtract	0.19	0.00750	Subtract Trace and glass Sheet from above calculations
Kapton	0.127	0.005	Single Layer wrap over coils
Sizing Block ID	195.254	7.68717	

- HQ will determine the quad design envelope for the Phase II Upgrade
- Coil peak field and stresses are the key limiting factors
- Baseline parameters, design approach and features were selected
- The HQ design is also directly relevant to a Phase I upgrade
- Large design and operating margins for 130 mm, 122 T/m requirement
- Application toward Phase I increases accelerator-quality priorities:
 - Strand design with 127 sub-elements may be selected as baseline
 - Alignment features will be incorporated in the structure design
 - Welded SS shell above Al shell was studied for LHe containment:
 - contact between shells is preserved at all stages
 - negligible effects on mechanical performance
- Schedule will depend on the overall strategy and priorities