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Abstract

The Phase 1 upgrade of the LHC interaction regions aims
at increasing the machine luminosity by reducing the beam
size at the interaction point. This requires an in-depth re-
view of the full insertion region layout and a large set of
options have been proposed with conceptually different de-
signs. This paper reports on a general approach for the
compensation of the non-linear field errors of the insertion
region magnets by means of dedicated correctors. The goal
is to use the same correction approach for all the different
layouts. The correction algorithm is based on the computa-
tion of the high orders of the polynomial transfer map using
MAD-X and Polymorphic Tracking Code, while the actual
performance of the method is estimated by computing the
dynamic aperture of the layouts under study.

INTRODUCTION

The design of the interaction region (IR) of a circular
collider is one the most critical issues for the machine per-
formance. Many constraints should be satisfied at the same
time and the parameter space to be studied is huge (see
Refs. [1, 2] and references therein for an overview of the
problem). The strong focusing required to increase the lu-
minosity generates large values of the beta-function at the
triplet quadrupoles. This in turns enhance the harmful ef-
fects of the magnets field quality on the beam dynamics.
It is therefore, customary to foresee a system of non-linear
corrector magnets to perform a quasi-local compensation
of the non-linear aberrations. This is the case of the nom-
inal LHC ring, for which corrector magnets are located in
the Q1, Q2, and Q3 quadrupoles, the latter including non-
linear corrector elements.

The strategy for determining the strength of correctors
was presented in Ref. [3] and is based on the compensa-
tion of those first-order resonance driving terms that were
verified to be dangerous for the nominal LHC machine. In
general, the proposed approach is based on a number of as-
sumptions that are in general valid for the nominal LHC
machine, but not necessarily true for the proposed upgrade
scenarios [4,5], such as perfect antisymmetry of the IR op-
tics between the two beams circulating in opposite direc-
tions. Indeed, some LHC upgrade options may not respect
the antisymmetry of the IR optics between the two beams
and the set of dangerous resonances might not be the same
as for the nominal LHC or even be different among the
LHC upgrade options. Furthermore, it might be advisable
to use a method that should take into account all possible

sources of non-linearities within the IR, such as the field
quality of the separation dipoles and also collective beam
effects like the long-range beam-beam interactions.

For these reasons a more general correction algorithm
should be envisaged, thus allowing a direct and straight-
forward application to any of the upgrade options or, more
generally, to any section of an accelerator. The propose
method is based in the analysis of the non-linear transfer
map a given section of a particle accelerator. The essential
details about the non-linear effects of the elements com-
prised in the section of the machine under consideration are
retained in the polynomial transfer map. For this reason the
one-turn transfer map was proposed as an early indicator of
single-particle instability with a reasonable correlation with
the dynamic aperture [6–8].

In the next sections the proposed method is described
and some applications to Phase 1 LHC upgrade layouts
given.

MATHEMATICAL BACKGROUND

The transfer map between two locations of a beam line
is expressed in the form

�xf =
∑

jklmn

�Xjklmn xj
0 pk

x0 yl
0 pm

y0 δn
0 , (1)

where �xf represents the vector of final coordinates
(xf , pxf , yf , pyf , δf), the initial coordinates being repre-
sented with the zero subindex, and �Xjklmn is the vector
containing the map coefficients for the four phase-space
coordinates and the momentum deviation δ, considered as
a parameter. The MAD-X [9] program together with the
Polymorphic Tracking Code (PTC) [10] provide the com-
putation of the quantities �Xjklmn up to any desired order.

To assess how much two maps, X and X ′ deviate from
each other, the following quantity is defined:

χ2 =
∑

jklmn

|| �Xjklmn − �X ′
jklmn|| (2)

where || · || stands for the quadratic norm of the vector.
To disentangle the contribution of the various orders to the
global quantity χ2, the partial sum χ2

q over the map coeffi-
cients of order q is defined, namely

χ2
q =

∑
j+k+l+m+n=q

|| �Xjklmn − �X ′
jklmn|| (3)

so that
χ2 =

∑
q

χ2
q . (4)



In principle, this definition could be used to introduce a
weighting of the various orders, using a well-defined am-
plitude in phase space. This option is not considered in the
applications described in this paper.

Furthermore, χ2
q is split into a chromatic χ2

q,c and achro-
matic χ2

q,a contribution, corresponding to

χ2
q,a =

∑
j+k+l+m=q

|| �Xjklm0 − �X ′
jklm0||. (5)

It is immediate to verify that χ2
q = χ2

q,c + χ2
q,a.

CORRECTION OF MULTIPOLAR
ERRORS

Algorithm

The basic assumption is that the multipolar field errors of
the IR magnets are available as the results of magnetic mea-
surements. The ideal IR map X without errors is computed
using MAD-X and PTC to the desired order and stored for
later computations. Including the magnetic errors to the IR
elements perturbs the ideal map. To cancel or compensate
this perturbation, distributed multipolar correctors need to
be located in the IR. The map including both the errors
and the effect of the correctors will be indicated with X ′.
The corrector strength is determined by simply minimising
χ2

q for these two maps. For efficiency, the minimisation
is accomplished order-by-order (see, e.g., Ref. [11] for a
description of the dependence of the various orders of the
non-linear transfer map on the non-linear multipoles). In
such an approach the sextupolar correctors are used to act
on χ2

2, the octupolar ones on χ2
3, and so on.

The code MAPCLASS [12] already used in [13] has been
extended to compute χ2

q from MAD-X output. The correc-
tion is achieved by the numerical minimisation of χ2

q using
any of the existing algorithms in MAD-X for this purpose.

Performance evaluation

The evaluation of the performance of the method previ-
ously described is carried out using two of the three layouts
proposed for the upgrade of the LHC insertions (see, e.g.,
Refs. [2, 4, 5, 14] for the details on the various configura-
tions under consideration).

The field quality of the low-beta triplets is considered to
follow the assumption reported in Ref. [15]. This implies
that the various multiple components bn, an given by

By + i Bx = 10−4 B2

∞∑
n=2

(bn + i an)
(

x + i y

Rref

)n−1

,

(6)
where Bx, By represents the transverse components of the
magnetic field, and Rref the reference radius, scale down
linearly with the reference radius, taken at a given fraction
of the magnet aperture φ, according to [15]

σ(bn, an; α φ, α Rref ) =
1
α

σ(bn, an; φ, Rref ). (7)

As a natural consequence, large-bore quadrupoles will fea-
ture a better field quality than smaller aperture ones. The
multipolar components used for the simulations discussed
in this paper are listed in Table 1.

An example of the order-by-order correction is shown

Table 1: Random part of the relative magnetic errors of
the low-beta quadrupoles at 17 mm radius [16]. The com-
ponents bn and an stand for normal and skew multipolar
errors, respectively.

Order bn an

[10−4] [10−4]
2 0.349431 0.477730
3 0.100570 0.309803
4 0.067294 0.062218
5 0.135565 0.057960
6 0.012633 0.016546
7 0.003812 0.014816
8 0.006825 0.003813
9 0.008446 0.003973

in Fig. 1 for the so-called low βmax configuration [2, 5]. A
total of sixty realisations of the LHC lattice are used in the
computations. It is worthwhile stressing that even though
the random errors are Gaussian-distributed with zero mean
and sigma given by the values in Table 1 re-scaled to the
appropriate value of the magnet aperture, the limited statis-
tics used to draw the values for a single realisation (corre-
sponding to 16 magnets each divided into ?? slices) implies
that in reality non-zero systematic errors are included in the
simulations.

One corrector per IR side and per type (normal or skew
component) are used, for a total of ?? correctors. Differ-
ent locations of the non-linear correctors can be used for
the minimisation of χ2

q . The configuration having the low-
est χ2

q after correction is selected for additional studies (see
next section). The difference between a non-optimised po-
sitioning and the best possible one is illustrated in Fig. 2.
There, the results of the proposed correction scheme in the
case of a symmetric configuration (see Refs. [2, 4, 14]) are
shown. The configuration corresponding to the grey dots
achieves slightly better corrections over the ensemble of
realisations and therefore is selected for further studies.

DYNAMIC APERTURE COMPUTATION

Assessment of the non-linear correction algo-
rithm

The main goal of the error compensation is to increase
the domain in phase space where the motion is quasi-linear,
thus improving the single-particle stability. It is custom-
ary to quantify the stability of single-particle motion using
the concept of dynamic aperture (DA). The DA is defined
as the minimum initial transverse amplitude becoming un-
stable beyond a given number N of turns. The standard
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Figure 1: Evaluation of the various orders of χ2
q (upper

plot) before (blue markers) and after (red markers) correc-
tion. Sixty realisations of the random magnetic errors are
used. The layout is the low βmax, whose optics is also re-
ported (lower plot).

protocol used to compute the DA for the LHC machine is
based on N = 105 and a sampling of the transverse phase
space (x, y) via a polar grid of initial conditions of type
(ρ cos θ, 0, ρ sin θ, 0) with θ ∈ [0, π/2]. In practise, five
values for θ are used. The scan in ρ is such that a 2 σ inter-
val is covered with 30 initial conditions. The momentum
offset is set to 3/4 of the bucket height.

As far as the magnetic field errors used in the numerical
simulations are concerned, the as-built configuration of the
LHC is used. The information concerning the measured
errors, as well as the actual slot allocation of the various
magnets is taken into account in the numerical simulations.
The errors on the results of the magnetic measurements are
included in the numerical simulations by adding random
errors to the various realisations of the LHC ring. On the
other hand, the field quality of the low-beta triplets from
Table 1 and the scaling law from Ref. [15] are used. It
is worth mentioning that the layouts under studies are not
finalised, yet. In particular, the details for the implementa-
tion of the separation dipoles D1 and D2 are not fixed. As
a consequence, no estimate concerning their field quality
was taken into account in the modelling of the LHC ring.
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Figure 2: Evaluation of the various orders of χ2
q (upper

plot) before (blue markers) and after (grey markers) correc-
tion. The red markers represent a non-optimised (in terms
of correctors location) compensation scheme. Sixty reali-
sations of the random magnetic errors are used. The layout
is the symmetric one, whose optics is also reported (lower
plot).

As for the evaluation of the correction schemes, sixty real-
isations of the random multipolar errors in the triplets are
used and the value of DA represents the minimum over the
realisations. The accuracy of the numerical computation of
the minimum DA is considered to be at the level of ±0.5σ.

In Fig. 3 the DA for the two LHC upgrade options, low
βmax and symmetric, as a function of phase space angle is
plotted with and without non-linear corrections schemes.

The correction algorithm proved to be particularly suc-
cessful in the case of the symmetric layout. Indeed, for this
configuration about 2.5 σ are recovered thanks to the cor-
rection of the non-linear b3 and b6 errors.

The compensation in the case of the low βmax layout
is less dramatic, allowing to recover 2.5 σ for small an-
gles, only. It is also important to stress that the baseline
DA is not the same for the two layouts, as the low βmax

is already well above 14.5 σ without any correction. Fur-
thermore, not only the optics is different for the options,
but also the triplets’ aperture. The first implies a differ-
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Figure 3: Comparison of the dynamic aperture for the so-
called LHC upgrade layouts low βmax and symmetric with
and without correction of the non-linear magnetic errors in
the low-beta quadrupoles.

ent enhancement of the harmful effects of the triplets field
quality, while the latter has a direct impact on the actual
field quality because of the scaling law [15]. It is clear that
the DA for the low βmax is already well beyond the targets
used for the design of the nominal LHC even without non-
linear correctors. The situation for the symmetric option is
slightly worse and a correction scheme might be envisaged.

Digression: Dynamic aperture vs. low-beta
triplet aperture

A third layout proposed as a candidate for the LHC IR
upgrade is the so-called compact [2, 5]. It features very
large aperture triplet quadrupoles (150 mm diameter for Q 1

and 220 mm for Q2 and Q3). Thanks to the proposed scal-
ing law, the field quality is excellent and the results DA
is beyond 16 σ and hence does not require any correction
scheme.

Nevertheless, a detailed study of the dependence of the
dynamic aperture on the magnets aperture is carried out.
The overall LHC model is the same as the one described
in the previous sections, the main difference being the scan
over the aperture of Q1 and simultaneously over the aper-
tures of Q2 and Q3. The optics is assumed to be con-
stant, which implies that the configurations corresponding
to larger magnets apertures than the nominal ones cannot
be realised in practise.

The results are shown in Fig. 4. The minimum, aver-
age, and maximum (over the realisations) DA are shown
for the two type of scans. The horizontal lines represent
the asymptotic value of the DA and are obtained by using a
huge (and unrealistic) value for the triplets aperture.

The dependence on the aperture of Q1 is rather mild,
because of the not too high value of the beta-function, and
there exists a rather wide range of apertures for which the
DA is almost constant. In particular for φ > 110 mm the
asymptotic value of the DA is reached. A constant drop of
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Figure 4: DA as a function of the low-beta quadrupoles
aperture. The scan over the aperture of Q1 is shown
in the upper plot (nominal aperture 150 mm), while Q 2

and Q3 are considered in the lower plot (nominal aperture
220 mm). The layout is the so-called compact one.

DA is observed for φ < 100 mm and, in general, the three
curves behave the same.

The dependence of DA on the Q2 and Q3 aperture
is somewhat different. The asymptotic value is hardly
reached for apertures larger than 250 mm and the DA drop
with aperture is monotonic and smooth. The spread be-
tween the asymptotic values for minimum, average, and
maximum DA is smaller than for the case of the scan over
the aperture of Q1.

As an example, the behaviour of the DA as a function of
aperture is fit with two functions (exponential and power
law) and the results are shown in Fig. 5. The difference
between the asymptotic and the actual DA value is plotted
as a function of the Q2 and Q3 aperture. The agreement
between the fit functions and the simulation results is ex-
cellent, even though, for the time being no theoretical ar-
gument explains these results.

CONCLUSIONS

A general algorithm for the correction of multipolar er-
rors in a given section of a circular accelerator has been de-
veloped. It is based on the computation and comparison of
map coefficients obtained from standard accelerator codes
such as MAD-X and PTC. The algorithm aims at minimis-
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Figure 5: Behaviour of the minimum DA as a function of
Q2 and Q3 aperture. Two types of fit functions are also
shown.

ing the difference between a target transfer map and the
actual one. Both order-by-order and global optimisation
strategies are possible. Of course, the algorithm can be
used also to optimise the location of the corrector elements.
In its present form the non-linear magnetic field errors are
the only source of non-linearities included in the transfer
map. Nevertheless, other sources of non-linear effects in
the transfer map could also be included in the correction
algorithm, such as beam-beam kicks from long-range en-
counters. The efficiency of such an approach should be
tested in practise with dedicated studies.

The correction algorithm was successfully tested on two
layouts for the proposed IR upgrade of the LHC machine.
The quality of the correction was also verified by means
of numerical simulations aimed at computing the dynamic
aperture. In the two cases under consideration a sizable
increase of the dynamic aperture due to the correction
scheme is observed.

In the numerical simulations used to evaluate the dy-
namic aperture a new scaling law for the magnetic field er-
rors as a function of the low-beta quadrupoles aperture was
used. The impact of such an assumption on the value of
the dynamic aperture was assessed in details with a series
of dedicated studies, where the triplets aperture is scanned.
Smooth dependency of the dynamic aperture with respect
to the magnets aperture is found, and exponential or power
laws are fitted to the numerical data with very good agree-
ment. These results could be used as an additional cri-
terion for the definition of the required aperture of triplet
quadrupoles. Indeed, one could derive the minimum aper-
ture for which the dynamic aperture does not require any
correction. Such a condition should then be taken into ac-
count together with the ones related to the needed beam
aperture and energy deposition issues.
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