Light hadron physics at KLOE and KLOE-2

DIPARTIMENTO DI FISICA

(Universita' La Sapienza e INFN – Roma) for the KLOE / KLOE-2 Collaboration

P.Gauzzi

INFN Istituto Nazionale di Fisica Nucleare

Excited QCD 2013 4 February 2013 – Sarajevo

1200

1000

- Frascati ϕ -factory: e^+e^- collider (a) $\sqrt{s} \approx 1020 \text{ MeV} \approx M_{\phi}$; $\sigma_{\text{peak}} \approx 3.1 \text{ }\mu\text{b}$
- Best performance in 2005: $L_{peak} = 1.4 \times 10^{32} \text{ cm}^{-1} \text{s}^{-1} \int Ldt = 8.5 \text{ pb}^{-1}/\text{day}$
- KLOE: 2.5 fb⁻¹ @ $\sqrt{s}=M_{\phi} \implies 8 \times 10^9 \phi \text{ produced}$) + 250 pb⁻¹off-peak a \sqrt{s} =1000 MeV
- DAΦNE upgrade (2008): new interaction scheme; large beam crossing angle + crabbed waist sextupoles
- **2010: DAΦNE commissioning for KLOE-2 start** several hardware failures \Rightarrow long shutdown
- End 2011: commissioning resumed At present ~ same performance as in 2005
- Nov-Dec. 2012: 100 pb⁻¹ collected with carbon target for AMADEUS (deeply bound kaonic nuclei)
- Dec.2012-June 2013: shutdown for installation of the new detectors
- **DAPNE** operations will restart in June 2013
- KLOE-2 goal: collect $O(10 \text{ fb}^{-1})$ in the next 2 -3 years

Magnetic field: 0.52 T

KLOE-2

- *e*[±] taggers for γγ physics (already installed):
 - Low Energy Tagger (E_e =130-230 MeV) 2 calorimeters, LYSO + SiPM; near the IP $\sigma_E/E < 10\%$ for E > 150 MeV
 - High Energy Tagger ($E_e > 400 \text{ MeV}$) Scintillator hodoscope + PMTs; after the first dipole, ~ 11 m from IP pitch: 5 mm $\Rightarrow \sigma_E = 2.5 \text{ MeV}; \sigma_t \approx 200 \text{ ps}$

LET

KLOE-2

- Major upgrade (by June 2013)
 - Inner tracker : 4 layers of cylindrical triple GEM
 - improve acceptance for low momemtum tracks
 - better vertex recontruction
 - QCALT: W + scint. tiles + SiPM
 - quadrupole coverage for K_L decays
 - CCALT : LYSO + APD
 - increase acceptance for γ's from the IP from 21° to 10°

- Kaon physics: |V_{us} | and CKM unitarity, CP and CPT violation, rare decays, ChPT tests, quantum mechanics tests
- Scalar and pseudoscalar mesons in φ radiative decays and in $\gamma\gamma$ collisions

⇒ Constraints on light quark masses

- \Rightarrow Study of the box anomaly
- $\phi \rightarrow \eta e^+ e^-, \phi \rightarrow \pi^0 e^+ e^- \Rightarrow$ Transition Form Factors
 - ⇒ Search for light dark photons (U-Bosons)

$$- e^+e^- \rightarrow e^+e^-\eta \ (\pi^0)$$

 \Rightarrow γγ→η (π⁰); Two-photon partial width \Rightarrow Transition Form Factors

•Hadronic cross-section via ISR $[e^+e^- \rightarrow \gamma (\pi^+\pi^-)]$: hadronic corrections to $(g-2)_{\mu}$

Decay channel	Events (2.5 fb ⁻¹)
K ⁺ K ⁻	3.7×10^{9}
K _L K _S	2.5×10^{9}
$ ho\pi+\pi^+\pi^-\pi^0$	1.1 × 10 ⁹
ηγ	9.7 × 10 ⁷
$π^0$ γ	9.4 × 10 ⁶
η′γ	4.6×10^{5}
ππγ	2.2×10^{6}
ηπ ⁰ γ	5.2×10^{5}

•
$$\eta \rightarrow \pi\pi\pi \operatorname{decay} \Rightarrow \operatorname{Isospin violation}$$

 $\Gamma(\eta \rightarrow 3\pi) \propto |A|^2 \propto Q^{-4}$
 $\Gamma_{LO}(\eta \rightarrow \pi^+\pi^-\pi^0) = 66 \text{ eV}$
 $\Gamma_{NLO}(\eta \rightarrow \pi^+\pi^-\pi^0) = 167 \text{ eV}$
 $\Gamma_{exp}(\eta \rightarrow \pi^+\pi^-\pi^0) = 296 \text{ eV}$
where $Q^2 \equiv \frac{m_s^2 - \hat{m}_u^2}{m_d^2 - m_u^2}$ $\left(\hat{m} = \frac{1}{2}(m_u + m_d)\right)$
Determining Q gives
constraints on the quark
mass ratios
[Leutwyler, PoS CD09(2009)005]
 P_{Gauzzi}
 P_{Gauzzi}
 P_{Gauzzi}
 P_{Gauzzi}
 P_{Gauzzi}
 P_{Gauzzi}
 $L_1 = -\frac{1}{2}(m_u - m_d)(\overline{u}u - \overline{d}d)$
 $\Gamma_{LO}(\eta \rightarrow \pi^+\pi^-\pi^0) = 66 \text{ eV}$
 $\Gamma_{NLO}(\eta \rightarrow \pi^+\pi^-\pi^0) = 296 \text{ eV}$
 $\Gamma_{exp}(\eta \rightarrow \pi^+\pi^-\pi^0) = 296 \text{ e$

The $\eta \rightarrow 3\pi$ decay

 $\phi \rightarrow \eta \gamma$ (E_{$\gamma rec} = 363 MeV$) with $\eta \rightarrow \pi^+ \pi^- \pi^0 \Rightarrow \pi^+ \pi^- + 3\gamma$ final state 450 pb⁻¹ \Rightarrow 1.34 × 10⁶ events in the Dalitz plot</sub>

 $|A(X,Y)|^2 = 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3$

a	$-1.090 \pm 0.005 ^{+0.008}_{-0.019}$
b	$0.124 \pm 0.006 \pm 0.010$
С	$0.002 \pm 0.003 \pm 0.001$
d	$0.057 \pm 0.006 ^{+\ 0.007}_{-\ 0.016}$
е	$-0.006 \pm 0.007 + 0.005 - 0.003$
f	$0.14 \pm 0.01 \pm 0.02$
$P(\chi^2)$	73%

c, *e* compatible with zero (C violation)
fit without cubic term (*f*Y³) ⇒ P(χ²) ~ 10⁻⁶

[JHEP0805(2008)006]

• Symmetric Dalitz plot:

• Recent dispersive analyses of $\eta \rightarrow 3\pi$: subtraction constants fixed from a fit to KLOE measurements of $\eta \rightarrow \pi^+ \pi^- \pi^0$

and by using \hat{m} and m_S from lattice QCD \Rightarrow

$$\Rightarrow R = rac{m_S - \hat{m}}{m_d - m_u} = 37.7 \pm 3.3$$

[Kampf et al., PRD84(2011)114015]

 $m_u = (2.23 \pm 0.14) MeV$ $m_d = (4.63 \pm 0.14) MeV$ P.Gauzzi

- New analysis of KLOE data in progress to reduce systematics from event selection procedure:
 - Whole dataset, $\sim 2.5 \text{ fb}^{-1}$
 - New analysis scheme
 - Improved MC simulation

• With 5 fb⁻¹ @ KLOE-2 we also expect ~ 8000 $\eta' \rightarrow \pi^+\pi^-\pi^0$ events

P.Gauzzi

Study of the box anomaly:
 Contact Term vs Resonant one

[Benayoun et al. EPJC31(2003)525; Holstein, Phys. Scripta, T99(2002)55; Borasoy, Nissler, NPA740(2004)362, Picciotto PRD45(1992)1569]

CLEO result (2007) is
 2-3 σ lower than previous measurements

$\Gamma(\eta \rightarrow \pi^+\pi^-)$	γ) / Γ(r	 →π⁺π⁻π⁰)
---------------------------------------	----------	-------------------

value	events	author	year
0.203 ± 0.008	F	DG average	e
0.175 ± 0.007 ± 0.006	859	Lopez	2007
0.209 ± 0.004	18 k	Thaler	1973
0.201 ± 0.006	7250	Gormley	1970

Inv. mass M__

MeV

550

 $M_{\pi\pi}$ (MeV)

Fit of the $M_{\pi\pi}$ spectrum to the 7000 Entries 226169 Exp. data 6000 $n \rightarrow \pi + \pi - \pi 0$ parametrization of Stollenwerk et al. um of all Mi 4000 [PLB707(2012)184] 3000 2000 1000 Non perturbative part: pion FF 350 400 450 500 $\frac{d\Gamma(\eta \to \pi^+ \pi^- \gamma)}{ds_{\pi\pi}} = |AP(s_{\pi\pi})F_V(s_{\pi\pi})|^2 \Gamma_0(s_{\pi\pi})$ $(s_{\pi\pi} = M_{\pi\pi}^2)$ **Process-specific part:** bckg subtracted $P(s_{\pi\pi}) = 1 + \alpha s_{\pi\pi} + \mathcal{O}(s_{\pi\pi}^2)$ Data 6000 Fit 5000 $lpha = (1.32 \pm 0.08 \pm 0.10) \; {
m GeV}^{-1}$ 4000 3000 [PLB718(2013)910] 2000 WASA@COSY: [PLB 707(2012)243] 1000 $lpha = (1.89 \pm 0.25 \pm 0.59) \ {
m GeV}^{-2}_{
m D\,2013-4}$ 200 250 300 350 400 450 500 _ _

Transition FFs from Dalitz Construction decays

• Naive VMD approach well describes $\eta \rightarrow \gamma \ell^+ \ell^-$, but fails for $\omega \rightarrow \pi^0 \ell^+ \ell^-$

-6

0

Search for dark forces

• Recent astrophysical observations (PAMELA, ATIC, INTEGRAL, DAMA/ LIBRA) could be interpreted by assuming the existence of a light dark sector that interacts with SM particles through a mixing of a new gauge boson (U-boson) with *O*(1 GeV) mass, with the photon

$$e \rightarrow \gamma^* U_{\varepsilon} \qquad e \rightarrow U_{e \times \varepsilon}$$

[Arkani-Hamed et al. PRLD79(2009), 015014 Essig et al., PRD80(2009)015003]

$$arepsilon^2 = rac{lpha'}{lpha_{em}}$$

- If the mixing parameter $\varepsilon \sim 10^{-3} 10^{-4} \Rightarrow$ could be observable at KLOE
- Signature: $\phi \rightarrow \eta U, U \rightarrow \ell^+ \ell^- \Rightarrow \phi \rightarrow \eta e^+ e^-$
- Two η decay channels analyzed: $\eta \rightarrow \pi^+ \pi^- \pi^0$ and $\eta \rightarrow \pi^0 \pi^0 \pi^0$

```
Other DF searches @ KLOE: e^+e^- \rightarrow U\gamma \rightarrow \mu^+\mu^-\gamma;
e^+e^- \rightarrow h'U \rightarrow \mu^+\mu^- + missing energy
```


- Analyzed sample: 1.7 fb⁻¹
- $\underline{\eta} \longrightarrow \pi^+ \pi^- \pi^0$:
- 4 tracks + 2 prompt photons
- Best $\pi^+\pi^-\gamma\gamma$ match to the η mass

 $535 < M_{recoil}(ee) < 560 \text{ MeV}$ ~13000 $\phi \rightarrow \eta e^+e^- (\eta \rightarrow \pi^+\pi^-\pi^0)$ candidates

 $\underline{\eta \rightarrow \pi^0 \pi^0 \pi^0}$:

• 2 tracks + 6 prompt photons

 $536.5 < M_{recoil}(ee) < 554.5 \text{ MeV}$ ~ 30000 $\phi \rightarrow \eta e^+ e^- (\eta \rightarrow \pi^0 \pi^0 \pi^0)$

Exclusion plot on \alpha'/\alpha

- Upper limit for $\phi \rightarrow \eta U$ evaluated in 1 MeV step in M_{ee} (MC simulation from Reece, Wang, JHEP 07(2009)051)
- Bckg from fit to M_{ee} distribution excluding the 5 bins around the selected one
- Upper limit evaluated with the CL_s method

(input for calculation of the Light-by-Light contribution to g-2 of the muon)

- $X = \pi^0 \pi^0 \Rightarrow$ study of $\sigma(600)$
- KLOE: no e^{\pm} tagging $\Rightarrow \sqrt{s} = 1$ GeV
- KLOE-2: $\sqrt{s} = M_{\phi} \Rightarrow$ Tagger is essential to reduce the background from the ϕ and to close the kinematics

 π^0,η,\imath

 $\gamma\gamma \rightarrow \eta; \quad \eta \rightarrow \pi^+\pi^-\pi^0$

- Data sample: 240 pb⁻¹ off-peak ($\sqrt{s} = 1$ GeV), no taggers
- Select events with two tracks and two prompt photons
- Main bckg: $e^+e^- \rightarrow \eta \gamma$ with γ lost

• Fit to $\pi^+\pi^-\gamma\gamma$ transverse momentum (p_T) and missing mass (M_{miss})_{$e^+e^-\rightarrow\eta\gamma$}

• 2720 events in the final sample \Rightarrow 394 signal events from fit

 $\sigma(e^+e^- o e^+e^-\eta) = (34.5 \pm 2.5 \pm 1.3) \; {
m pb}$

- Select events with no tracks and 6 prompt photons
- Background: $e^+e^- \rightarrow \eta \gamma$ with γ lost
- Fit to 6γ longitudinal momentum (p_L) and missing mass (M_{miss})

• 2166 events in the final sample: $\sim 1/3$ signal

 $\sigma(e^+e^- \to e^+e^-\eta) = (32.0 \pm 1.5 \pm 0.9) \; {\rm pb}$

• Combining the two measurements:

$$\sigma(e^+e^- \rightarrow e^+e^-\eta) = (32.7 \pm 1.3 \pm 0.7) \text{ pb}$$

Excited QCD 2013 - 4 February 2013 [JHEP01(2013)119]

P.Gauzzi

Determination of
$$\Gamma(\eta \rightarrow \gamma \gamma)$$

Extraction of the $\gamma \gamma$ width from:
 $\sigma(e^+e^- \rightarrow e^+e^-\eta) = \int \sigma_{\gamma\gamma\rightarrow\eta}(q_1, q_2) \Phi(q_1, q_2) \frac{d\bar{q}_1}{E_1} \frac{d\bar{q}_2}{E_2}$
 $\sigma_{\gamma\gamma\rightarrow\eta} = \frac{8\pi^2}{m_\eta} \Gamma(\eta \rightarrow \gamma\gamma) \delta(w^2 - m_\eta^2) |F(q_1^2, q_2^2)|^2$
and assuming:
 $F(q_1^2, q_2^2) = \frac{1}{1-bq_1^2} \frac{1}{1-bq_2^2}$ with $b = 1.94 \text{ GeV}^{-2}$
 $\Rightarrow \Gamma(\eta \rightarrow \gamma\gamma) = (520 \pm 20 \pm 13) \text{ eV}$
most precise measurement to date
[JHEP01(2013)119]

PDG average: $\Gamma(\eta
ightarrow \gamma \gamma) = (510 \pm 26) \; \mathrm{eV}$

- $\Gamma(\pi^0 \rightarrow \gamma \gamma) = (8.09 \pm 0.11) \text{ eV} \text{ (theory)}; 1.4\% \text{ uncert.}$ PriMex Coll. $\Rightarrow \Gamma(\pi^0 \rightarrow \gamma \gamma) = (7.82 \pm 0.14 \pm 0.17) \text{ eV};$ 2.8% uncert.
- KLOE-2: $\sqrt{s} = M_{\phi}$ 2 γ in the EMC + e^+ and e^- in the HET (quasi-real photons; $|q^2| < 10^{-3} \text{ GeV}^2$)
- HET (e⁺)
- $\sigma_{\rm eff} \approx 3.4 \text{ pb} \Rightarrow \sim 2000 \text{ evts/fb: with 5 fb}^{-1} \Rightarrow \delta \Gamma(\pi^0 \rightarrow \gamma \gamma) \approx 1\%$
- π⁰γ*γ Transition FF, with a quasi-real photon (q²≈0, lepton in the HET) and a virtual one (|q²|<0.1 GeV², lepton in the DCH):
- unexplored q² region
- check TFF parametrizations
- reduce the model
 dependence of the LbL
 scattering contribution
 to (g-2)_µ

[EPJC72(2012)1917]

Excited QCD 2013 – 4 Februar

- KLOE is continuing to exploit the high statistics samples of light mesons collected at DAΦNE to perform precision measurements in hadron spectroscopy
- KLOE-2: Installation of the new detectors in progress DAΦNE operations will restart in next June Goal: collect O(10 fb⁻¹)in the next 2 - 3 years
 - **Rich program of measurements in light hadron physics**
 - study of η and η' decays
 - η / η' mixing
 - search for dark forces
 - $\gamma\gamma$ processes at $\sqrt{s} = M_{\phi}$ (with e^{\pm} taggers): $\Gamma(\pi^0 \rightarrow \gamma\gamma)$, P $\gamma\gamma$ transition form factors,
 - scalar mesons: $\sigma(600)$ in $\gamma\gamma \rightarrow \pi^0\pi^0$; $f_0/a_0(980) \rightarrow K^0\bar{K}^0$ [Eur.Phys.J.C68(2010),619]

P.Gauzzi

9th International Workshop on e+e- collisions from ϕ to ψ

Spare slides

Eur. Phys. J. C68(2010)619

- *yy* physics
- Light meson spectroscopy

Kaon physics

- Dark matter searches
- Hadronic cross section P.Gauzzi

- Properties of σ(600)
- Study of $\Gamma(S/P \rightarrow \gamma \gamma)$
- P transition form factor
- Properties of scalar/vector mesons
- Rare η decays
- η' decays
- Test of CPT (and QM) in correlated kaon decays
- Test of CPT in K_S semileptonic decays
- Test of SM (CKM unitarity, lepton universality)
- Test of ChPT (K_S decays)
- Light bosons @ O(1 GeV)
- $\alpha_{em}(M_Z)$ and $(g_{\mu}-2)$ Excited QCD 2013 – 4 February 2013

e⁺e⁻ mass spectrum

- BR($\phi \to \pi^0 e^+ e^-$) = (1.12±0.28)×10⁻⁵
- ⇒ 25% uncertainty
- SND \Rightarrow 52 ; CMD-2 \Rightarrow 46 events
- Events with 2 tracks + 2 prompt photons
- Background: radiative Bhabha scattering $\phi \rightarrow \pi^0 \gamma$ with photon conversion
- Signal efficiency $\approx 16\%$
- Data –MC comparison (840 pb⁻¹)
- Work in progress ...

- Test of ChPT and its extensions
- Study of $\eta \pi$ final state interactions
- Sensitive to scalar resonances: $a_0(980)$ dominant, but $\sigma(600)$ also present

- Decay chain: $\phi \rightarrow \eta' \gamma$, $\eta' \rightarrow \eta \pi^+ \pi^-$, $\eta \rightarrow \gamma \gamma$
- $L = 1.7 \text{ fb}^{-1}$ analyzed
- Main background: $\eta \rightarrow \pi^+ \pi^- \pi^0$
- $\epsilon = 23\%$; B/S ratio = 0.2
- 10160 events selected

To be compared with 44000 evts from BES-III [PRD83(2011)012003]

• Dalitz plot projection (940 < $M_{\eta\pi\pi}$ < 980 MeV)

KLOE-2: with $O(10 \text{ fb}^{-1})$ ~ 2.5×10⁵ $\eta' \rightarrow \eta \pi^+ \pi^- (\eta \rightarrow \gamma \gamma)$ evts expected $\epsilon = 23\% \Rightarrow - 60000$ events

μ

- $e^+e^- \rightarrow U\gamma \rightarrow \mu^+\mu^-\gamma$: look for a narrow peak above the continuum
- $L = 240 \text{ pb}^{-1}$
- Photon at small angle ($\vartheta < 15^{\circ}$ not detected) low FSR contribution + reduction of $\phi \rightarrow \pi^+ \pi^- \pi^0$ bckg
- Two tracks with opposite sign at large angle ($\vartheta > 50^\circ$)

DF search in $e^+e^- \rightarrow \mu^+\mu^-\gamma$ YOKE S.C. COL

• Upper limit with the CL_S method

- With the full KLOE statistics,
 2.5 fb⁻¹, the sensitivity will improve by a factor of ~ 3
- A further factor of 2 is expected from KLOE-2 data-taking

P.Gauzzi

$$(e^+e^- \rightarrow hadr.)$$
 below 1 GeV $(e^+e^- \rightarrow hadr.)$

- ~ 3 σ discrepancy between a_{μ}^{SM} a_{μ}^{exp} $[a_{\mu}=(g_{\mu}-2)/2]$
- $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}} \longrightarrow \text{main contribution to the uncertainty on } a_{\mu}^{\text{SM}}$

$$a_{\mu}^{\text{had,LO}} = 1/(4\pi^3) \int_{4m_{\pi}^2}^{\infty} \sigma(e^+e^- \rightarrow \text{hadr.}) \mathbf{K}(s) ds \quad ; \quad \mathbf{K}(s) \sim 1/s$$

- $\sigma(e^+e^- \rightarrow hadr.)$ below 1 GeV is dominated by $e^+e^- \rightarrow \pi^+\pi^-$
- ϕ factory: fixed $\sqrt{s} \Rightarrow$ Initial State Radiation method

$$s \cdot \frac{d\sigma(e^+ e^- \rightarrow \pi^+ \pi^- + \gamma)}{ds_{\pi}} = \sigma(e^+ e^- \rightarrow \pi^+ \pi^-) \operatorname{H}(s, s_{\pi})$$

• Different analyses: (1) photon emitted at Small Angle (S.A. analysis) [PLB606(2005)12, PLB670(2009)285] (2) photon emitted at Large Angle (L.A. analysis) [PLB700(2011)102] (3) photon at S.A., $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)/\sigma(e^+e^- \rightarrow \mu^+\mu^-\gamma)$ [arXiv-submit:0616958, submitted to PLB]

S.A. analysis (KLOE08)

- 2 pions at large angle (ϑ>50°)
- Photon at small angle (θ<15° not detected) to reduce FSR
- Photon momentum reconstructed from kinematics

$$ec{p}_\gamma = -(ec{p}_+ + ec{p}_-)$$

• 240 pb⁻¹ from 2002 data-taking

$$a_{\mu}^{\pi\pi}=\int_{s_{1}}^{s_{2}}\sigma_{ee
ightarrow\pi\pi}(s)K(s)ds$$

$$a_{\mu}^{\pi\pi}$$
 (0.35–0.95 GeV²) = (387.2±0.5_{stat}±2.4_{syst}±2.3_{th})×10⁻¹

Excited QCD 2013 – 4 February 2013

L.A. analysis (KLOE10)

- 2 pions at large angle (θ>50°)
- Photon detected at large angle (ϑ>50°)
- Threshold region accessible
- Lower statistics
- Larger contribution from FSR

Larger background from $\phi \rightarrow \pi^+ \pi^- \pi^0$ Irreducible background from $\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$ Use off-peak data ($\sqrt{s} = 1$ GeV); L = 233 pb⁻¹

 $\frac{a_{\mu}^{\pi\pi} (0.1-0.85 \text{ GeV}^2) = (478.5 \pm 2.0_{\text{stat}} \pm 5.0_{\text{syst}} \pm 4.5_{\text{th}}) \times 10^{-10}}{[\text{PLB700}(2011)102]}$

- Good agreement with KLOE08
 - Combined KLOE08 + KLOE10: $a_{\mu}^{\pi\pi}$ (0.1–0.95 GeV²) = (488.6±6.0)×10⁻¹⁰

 $(M_{\pi\pi}^0)^2 [GeV^2]$

0.6

0.8

35

0

0.2

0.3

0.4

0.5

$\gamma\gamma \rightarrow \pi^0\pi^0$

• $e^+e^- \rightarrow e^+e^- \pi^0\pi^0$

- 240 pb⁻¹ off-peak ($\sqrt{s} = 1$ GeV)
- Selected sample: 4 prompt photons
- Excess of events (~2000) with respect to background in the low mass region
- $\gamma\gamma \rightarrow \pi^0\pi^0$ cross-section evaluation in progress

8090 events after

selections

4γ invariant mass distribution

KLOE-2: $O(10 \text{ fb}^{-1})$ at $\sqrt{s} = M_{\phi}$ with e^{\pm} tagging $\Rightarrow 2\%$ statistical accuracy using the same energy bin as Crystal Ball (~20% error)

- $e^+e^- \rightarrow \eta\gamma \rightarrow \pi^+\pi^-\pi^0\gamma$: 3 photons + 2 tracks
 - pion ID
 - kinematic cuts to suppress background from kaons
 - kinematic fit

 $\sigma(e^+e^- \rightarrow \eta\gamma, 1 \text{ GeV}) = (0.856 \pm 0.008 \pm 0.016) \text{ nb}$

- η→π⁺π⁻π⁰
- $\mathcal{L} = 558 \text{ pb}^{-1}$
- N($\eta \rightarrow \pi^+ \pi^- \pi^0$)=1.19×10⁶
- ε=(22.77±0.02)%
- B/S=0.65%
- $\sigma(e^+e^- \rightarrow \phi \rightarrow \eta \gamma) = 41.8 \pm 0.2 \text{ nb}$

BR($\eta \rightarrow \pi^+ \pi^- \pi^0$) = (22.41 ±0.03 ±0.35)%

PDG: BR($\eta \rightarrow \pi^+ \pi^- \pi^0$) = (22.74 ±0.28)%

• Asymmetries ⇔ test of C conservation:

• All asymmetries compatible with zero at 10⁻³ level

[JHEP0805(2008)006]

P.Gauzzi

- Rare decay: ChPT and VDM predictions \Rightarrow Br ~ 3 × 10⁻⁴
- 2 measurements: CMD-2 4 events WASA@CELSIUS 16 events
- Data sample: 1.7 fb⁻¹
- $M(\pi^+\pi^-e^+e^-)$ distribution: fit with signal + background (MC) \Rightarrow 1555 ± 52 signal events 368 background 66

- Plane asymmetry ⇒ test of CP violation
- Constraints from Br($\eta \rightarrow \pi^+\pi^-$): expt. A_{CP} < 10⁻⁴ th. (SM) A_{CP} < 10⁻¹⁵

 $\mathbf{A}_{\mathrm{CP}} = \frac{\mathbf{N}(\sin\phi\cos\phi > 0) - \mathbf{N}(\sin\phi\cos\phi < 0)}{\mathbf{N}(\sin\phi\cos\phi > 0) + \mathbf{N}(\sin\phi\cos\phi < 0)}$

 Non conventional CP violation mechanism (non CKM) proposed ⇒ A_{CP} up to 2×10⁻² [D.N.Gao MPLA17(2002)]

 $A_{CP} = (-0.6 \pm 2.5 \pm 1.8) \times 10^{-2}$

[PLB675(2009)283]

- KLOE-2 with *O*(10 fb⁻¹):
 - Inner Tracker will increase acceptance
 - statistical uncert. on Br \Rightarrow 1.4%
 - factor of 2 in sensitivity to A_{CP}

- Theoretical predictions: BR ~ $2.4 2.6 \times 10^{-5}$
- BR < 6.9×10⁻⁵ @90%C.L. (CMD-2, 2001) BR < 9.7×10⁻⁵ @90%C.L. (WASA, 2008) (2 evts, with 1.3 bckg)
- Data sample: 1.7 fb⁻¹
- MC simulation according to Bijnens and Persson [hep-ph/0106130]
- e^+e^- pairs from photon conversions in the beam pipe and Drift Chamber wall rejected
- Fit with signal + background from continuum $(e^+e^- \rightarrow e^+e^-\gamma \text{ with } \gamma \text{ conversion})$

[PLB702(2011)324]

 $BR(\eta
ightarrow e^+e^-e^+e^-(\gamma)) = (2.4 \pm 0.2_{stat} \pm 0.1_{syst}) imes 10^{-5}$

- ChPT: O(p²) ∝ Q = 0; O(p⁴) @ tree level = 0; O(p⁴) @ 1 loop suppressed by G-parity ⇒ O(p⁶) test
 Prev. measurements ⇒ Br(η→π⁰γγ): (7.2±1.4)×10⁻⁴ GAMS (1984)
- $< 8.4 \times 10^{-4} @90\% \text{ C.L.} \text{SND (2001)}$ $(22.1 \pm 2.4 \pm 4.7) \times 10^{-5} \text{ Crystal Ball@AGS (2008)}$ $(22.4 \pm 4.6 \pm 1.7) \times 10^{-5} \text{ Crystal Ball@MAMI(2009)}$

η→π^υγγ @ KLOE-2

- KLOE-2, $O(10 \text{ fb}^{-1}) \Rightarrow \sim 3\%$ accuracy on Br
- $\mathbf{M}_{\gamma\gamma}$ distribution to distinguish among different theoretical models

Excited QCD 2013 – 4 February 2013

• 8 σ discrepancy: GEM (COSY) $\Rightarrow M_{\eta} = 547.311 \pm 0.028 \pm 0.032$ MeV (p + d \rightarrow ³He + η) NA48 $\Rightarrow M_{\eta} = 547.843 \pm 0.030 \pm 0.041$ MeV (π + p $\rightarrow \eta$ + n with $\eta \rightarrow 3\pi^{0}$) CLEO-c $\Rightarrow M_{\eta} = 547.785 \pm 0.017 \pm 0.057$ MeV ($\psi' \rightarrow J/\psi \eta$) • KLOE: $\phi \rightarrow \eta\gamma$; $\eta \rightarrow \gamma\gamma$ check with $\phi \rightarrow \pi^{0}\gamma$; $\pi^{0} \rightarrow \gamma\gamma$ [JHEP12(2007)073]

Excited QCD 2013 – 4 February 2013

η mass (MeV)

Final state: $\pi^+\pi^- + 7 \gamma$

•
$$\phi \rightarrow \eta' \gamma; \eta' \rightarrow \eta \pi^+ \pi^-; \eta \rightarrow \pi^0 \pi^0 \pi^0$$

 $\eta' \rightarrow \eta \pi^0 \pi^0; \eta \rightarrow \pi^+ \pi^- \pi^0$
• $\phi \rightarrow \eta \gamma; \eta \rightarrow \pi^0 \pi^0 \pi^0$

$$R=rac{Br(\phi
ightarrow\eta^\prime\gamma)}{Br(\phi
ightarrow\eta\gamma)}=(4.77\pm0.09\pm0.19) imes10^{-3}$$

$$N_{\eta'\gamma} = 3407 \pm 61 \pm 43 \text{ ev.}$$

 $N_{\eta\gamma} = 16.7 \times 10^6 \text{ ev.}$

 $L = 427 \text{ pb}^{-1}$

[systematics dominated by $\delta Br(\eta' \rightarrow \eta \pi \pi) = 3\%$] $\Rightarrow Br(\phi \rightarrow \eta' \gamma) = (6.20 \pm 0.11 \pm 0.15) \times 10^{-5}$

• Pseudoscalar mixing angle: $(|q\overline{q}\rangle = \frac{1}{\sqrt{2}}(|u\overline{u}\rangle + |d\overline{d}\rangle))$ $\eta = \cos\varphi_{\rm P} |q\overline{q}\rangle - \sin\varphi_{\rm P} |s\overline{s}\rangle$ $\eta' = \sin\varphi_{\rm P} |q\overline{q}\rangle + \cos\varphi_{\rm P} |s\overline{s}\rangle$ $R = \cot^{2}\varphi_{\rm P} \left(1 - \frac{m_{\rm s}}{\overline{m}} \cdot \frac{C_{\rm NS}}{C_{\rm S}} \cdot \frac{\tan\varphi_{\rm V}}{\sin 2\varphi_{\rm P}}\right)^{2} \cdot \left(\frac{p_{\eta'}}{p_{\eta}}\right)^{3}$ $\varphi_{\rm P} = (41.4 \pm 0.3 \pm 0.9)^{\circ} \implies \vartheta_{\rm P} = (-13.3 \pm 0.3 \pm 0.9)^{\circ}$ 2013

Inv.mass of $\pi^+\pi^-$ + 6 γ **out of** 7

η' gluonium content

$$\begin{split} & \mathbf{\eta}' = \mathbf{X}_{\mathbf{\eta}'} \left| \mathbf{q} \overline{\mathbf{q}} \right\rangle + \mathbf{Y}_{\mathbf{\eta}'} \left| \mathbf{s} \overline{\mathbf{s}} \right\rangle + \mathbf{Z}_{\mathbf{\eta}'} \left| \mathbf{G} \right\rangle \qquad \text{Fit:} \qquad \mathbf{R} = \cot^2 \varphi_{\mathbf{p}} \cos^2 \varphi_G \left(1 - \frac{\mathbf{m}_s}{\overline{\mathbf{m}}} \cdot \frac{\mathbf{C}_{NS}}{\mathbf{C}_s} \cdot \frac{\tan \varphi_V}{\sin 2\varphi_{\mathbf{p}}} \right)^2 \cdot \left(\frac{\mathbf{p}_{\mathbf{\eta}'}}{\mathbf{p}_{\mathbf{\eta}}} \right)^3 \\ & \mathbf{X}_{\mathbf{\eta}'} = \cos \varphi_G \sin \varphi_{\mathbf{p}} \\ & \mathbf{Y}_{\mathbf{\eta}'} = \cos \varphi_G \cos \varphi_{\mathbf{p}} \\ & \frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\pi^0 \to \gamma\gamma)}, \frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, \frac{\Gamma(\omega \to \eta\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, \frac{\Gamma(\omega \to \eta\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, \frac{\mathbf{PDG08}}{\mathbf{KLOE}} \\ & \frac{\Gamma(\rho \to \eta\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, \frac{\Gamma(\phi \to \eta\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, \frac{\Gamma(\phi \to \pi^0\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, \frac{\Gamma(K^{*+} \to K^+\gamma)}{\Gamma(K^{*0} \to K^0\gamma)} \right) \end{aligned}$$

	New fit	PLB648
Z_{η} . ²	$\boldsymbol{0.12\pm0.04}$	$\boldsymbol{0.14 \pm 0.04}$
φ_{P} (deg.)	40.4 ± 0.6	39.7 ± 0.7
C _{NS}	$0.94\pm\!0.03$	0.91 ±0.05
Cs	$0.83\pm\!0.05$	$\textbf{0.89} \pm \textbf{0.07}$
φ_V (deg.)	$\textbf{3.32} \pm \textbf{0.10}$	3.2
m _s /m	$\boldsymbol{1.24\pm0.07}$	$\boldsymbol{1.24\pm0.07}$
χ^2/ndf	4.6/3	1.42 / 2
$P(\chi^2)$	20%	49%

[JHEP07(2009)105]

 $\Gamma(\eta^* \rightarrow \gamma \gamma) / \Gamma(\pi^0 \rightarrow \gamma \gamma)$ 0.1 0.1 0.05 0.05 ⁰ 30 0 30 32 34 36 38 40 42 44 32 36 38 40 42 44 46 34 50 48 $\varphi_{\mathbf{P}}(^{\mathsf{o}})$ $\varphi_P(^\circ)$

 \Rightarrow statistical significance of $Z_{n'}^2$ will increase to $4 - 5 \sigma$

By measuring the η' width (a) 1.4% (run at $\sqrt{s} \ge 1.2$ GeV needed)

By measuring the main η' Br's @ 1%

Open problems: - do $\sigma(600)$, $\kappa(800)$, $f_0(980)$, $a_0(980)$ belong to the same SU(3) nonet $({}^{3}P_0)$?

- if so, why the inverted mass spectrum ?

The $q\bar{q}$ structure of the light scalars can be questioned Alternative explanations: $q\bar{q}q\bar{q}$ states (Jaffe '77, Maiani et al.,), $K\bar{K}$ molecules (Weinstein-Isgur '90), ...,

- **\$ radiative decays:**
 - $\phi \rightarrow \pi^0 \pi^0 \gamma, \pi^+ \pi^- \gamma \quad \Rightarrow f_0(980) / \sigma(600) \rightarrow \pi \pi$
 - $\phi \rightarrow \eta \pi^0 \gamma \implies a_0(980) \rightarrow \eta \pi^0$
 - $\phi \rightarrow \mathbf{K}_{\mathrm{S}} \mathbf{K}_{\mathrm{S}} \gamma \qquad \Rightarrow (f_0/a_0) \rightarrow K \bar{K}$
 - **1. Measurement of the branching ratios**
 - 2. Extraction of the resonance parameters, masses and couplings $(g_{SPP}, g_{SKK}, g_{\phi S\gamma})$, from the fit of the invariant mass distributions or Dalitz plot

• $\gamma\gamma$ physics: $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$ to study $\gamma\gamma \rightarrow \sigma(600) \rightarrow \pi^0\pi^0$

 $e^+e^- \rightarrow \pi^+\pi^-\gamma : f_0(980)$

Main contributions

Event selection: 2 charged tracks and missing momentum at large angle ($\vartheta > 45^\circ$) + photon matching missing energy and momentum

Data sample: 350 pb⁻¹ at ϕ peak $\Rightarrow 6.7 \times 10^5$ events selected

 $Br(\phi
ightarrow f_0 \gamma
ightarrow \pi^+\pi^-\gamma) = (2.1 \div 2.4) imes 10^{-4}$

- Fit the $\pi^0\pi^0\gamma$ Dalitz plot and the M($\pi^+\pi^-$) distribution with the same scalar amplitude (with $\sigma(600)$ with fixed parameters)
- Latest version of the Kaon Loop model [N.Achasov]

$f_0(980)$ param.	$f_0 \rightarrow \pi^0 \pi^0$	$f_0 \rightarrow \pi^+ \pi^-$
M _{f0} (MeV)	984.7	983.7
g _{f0π+π} - (GeV)	-1.82	-2.22
g _{f0K+K-} (GeV)	3.97	4.74
$R = (g_{f0K+K} / g_{f0\pi+\pi})^2$	~ 4.8	~ 4.6

	$f_0 \rightarrow \pi^0 \pi^0$	$f_0 \rightarrow \pi^+ \pi^-$
$g_{\phi f 0 \gamma}$ (GeV ⁻¹)	$2.61 \pm 0.02^{+0.31}_{-0.08}$	1.2 - 2.0

σ(600) fixed parameters : $M_{\sigma}=462 \text{ MeV}; \Gamma_{\sigma}=286 \text{ MeV}$ $g_{\sigma K+K}=0.5 \text{ GeV}$ $g_{\sigma n+n}=2.4 \text{ GeV}$ Achasov,Kiselev,PRD73(2006)054029

Agreement between the two channels

 g_{φf0γ} from fit to No Structure model (point-like coupling φf₀γ)
 [G.Isidori, L.Maiani et al., JHEP0605(2006)049]

1) $\eta \rightarrow \gamma \gamma$ (Br=38.31%) \Rightarrow 5 photon final state Total background = 55%

 $Br(\phi o \eta \pi^0 \gamma) = (7.01 \pm 0.10 \pm 0.20) imes 10^{-5}$

2) $\eta \rightarrow \pi^+ \pi^- \pi^0$ (Br=22.73%) $\Rightarrow 5\gamma + 2$ tracks Total background = 15%

 $Br(\phi o \eta \pi^0 \gamma) = (7.12 \pm 0.13 \pm 0.22) imes 10^{-5}$

• Combined fit of the two $M(\eta \pi^0)$ distributions

 $\Rightarrow \text{ Free parameter: } R_{\eta} = Br(\eta \rightarrow \gamma \gamma) / Br(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0})$

	KL	NS
M _{a0} (MeV)	$982.5 \pm 1.6 \pm 1.1$	982.5 (fixed)
g _{<i>a</i>K+K-} (GeV)	$2.15 \pm 0.06 \pm 0.06$	${\bf 2.01 \pm 0.07 {\pm 0.28}}$
g _a ηπ(GeV)	$2.82 \pm 0.03 \pm 0.04$	${\bf 2.46 \pm 0.08 \pm 0.11}$
g φ <i>a</i> γ (GeV ⁻¹)	$\textbf{1.58} \pm \textbf{0.10} {\pm} \textbf{0.16}$	$1.83{\pm}~0.03{\pm}0.08$
Br(VDM)×10 ⁶	$\textbf{0.92} \pm \textbf{0.40} \pm \textbf{0.15}$	~ 0
Rη	$1.70{\pm}0.04{\pm}0.03$	$1.70 \pm 0.03 \pm 0.01$
$\mathbf{R}=(\mathbf{g}_{aK+K}-/\mathbf{g}_{a\eta\pi})^{2}$	$0.58 \pm 0.03 \pm 0.03$	$0.67 \pm 0.06 \pm 0.13$
$\mathbf{P}(\mathbf{\chi}^2)$	10.4%	30.9%

P.Gauzzi

Excited QCD 2013

	$qqar{q}ar{q}ar{q}$) S	$oldsymbol{q}oldsymbol{ar{q}}$	
KK molec.) (KK molec2) (4q) (qq) (qq) (qq) (qq) (4q)				
			S U(3)	
		4 q	l pp	bar
$\left(\mathbf{g}_{a0\mathrm{K}+\mathrm{K}-}/\mathbf{g}_{a0\eta\pi}\right)^2$	0.6 - 0.7	1.2 – 1.7	0.	4
	Crystal Barrel: 0.525 ± 0.043			
	SND (2000) : 1.8 ± 2.5			
$(g_{f^{0}K^{+}K^{-}}/g_{f^{0}\pi^{+}\pi^{-}})^{2}$	4.6 - 4.8	>> 1	$>>$ 1 (f_0 =ssbar)	1/4 (f ₀ =nnbar)
	CMD-2 (1999) : 3.61 ± 0.62			

SND (2000): 4.6 ± 0.8BES (2005): 4.21 ± 0.33

4-5

P.Gau

 $(g_{f^{0}K^{+}K^{-}}/g_{a^{0}K^{+}K^{-}})^{2}$

56

1

2

1

$\phi ightarrow (f_0/a_0)\gamma ightarrow K^0 ar{K}^0 \gamma$

[PLB679(2009),10]

- $K^0 ar{K}^0$ with scalar quantum numbers (J^{PC}= 0^{++})
- Small phase space $(2M_K \le M_{KK} \le M_{\phi})$ \Rightarrow small Br expected $(10^{-9} - 10^{-7})$
- "Golden channel" $\phi \to K_S K_S \gamma \to \pi^+ \pi^- \pi^+ \pi^- \gamma$
- Analyzed sample: 2.2 fb⁻¹
- 5 events in data and 3.2 background events (MC) $(\pi^+\pi^-\pi^+\pi^-(\gamma) \text{ from } \phi \rightarrow K_S K_L \text{ and from continuum})$

 $Br(\phi o K^0 ar{K}^0 \gamma) < 1.9 imes 10^{-8} \ @ \ 90\% C.L.$

• Consistency check: using the KLOE couplings from $\phi \rightarrow \pi \pi \gamma$, $\eta \pi^0 \gamma$ in the Kaon Loop model $\Rightarrow Br(\phi \rightarrow K^0 \overline{K}^0 \gamma) = 4 \times 19^{-9} - 6.8 \times 10^{-8}$

KLOE-2: sensitivity for Br $\Rightarrow 5 \times 10^{-9}$ (with Inner Tracker) \Rightarrow First observation possible P.Gauzzi Excited QCD 2013 – 4 Febr

