Study of tetraquark system from meson-meson scattering with a color flip-flop model

Marco Cardoso1, Pedro Bicudo1, Nuno Cardoso1

1CFTP, Instituto Superior Técnico, Lisboa

Excited QCD 2013
Motivation

- The existence of tetraquarks is still debated
- Various experimental tetraquark candidates
- Theoretically is a four-body problem, with a four body force
- The system of two mesons is the simplest system with more than one color singlet
Static Potential I

- Static potential from the lattice: \(V_{FF} = \min(V_I, V_{II}, V_T) \)

- This kind of potentials were postulated to prevent the difficulties arising from Casimir potentials \(V_C = \sum_{i<j} C_{ij} V(r_{ij}) \)
In more detail: V_I and V_{II} are the two-meson potentials

$$V_I = V_M(r_{13}) + V_M(r_{24})$$
$$V_{II} = V_M(r_{14}) + V_M(r_{23})$$

$V_M = K - \frac{\gamma}{r} + \sigma r$

V_T is the tetraquark potential:

$$V_T = 2K - \gamma \sum_{i<j} \frac{C_{ij}}{r_{ij}} + \sigma L_{min}(x_1, x_2, x_3, x_4)$$

Variational method calculations with this potential indicate that this could bind a tetraquark \footnote{Vijande et al, Phys. Rev. D76 114013}
The potential was studied in the lattice using a Wilson Loop operator. This can be improved by the use of a variational basis.
We used this method to calculate\(^2\) the color fields for a static \(QQQ\bar{Q}\bar{Q}\) system

Mesons to mesons transition (anti-parallel geometry)

\(\text{Phys. Rev. D84 054508 and Phys. Rev. D86 014503}\)
Static color fields III

- Tetraquark to mesons transition (parallel geometry)
Also results for the excited states in both cases

Parallel:

Anti-parallel:
Flip-flop toy model I

To have some qualitative insight, we solved an unitarized model with a simplified Flip-flop potential

\[V_{FF} = \sigma \min(2r, \sqrt{3}\rho + r) \]
We can determine the model’s bound states by using finite differences.

We find a bound state for $l_r = 3$.

This does not work for scattering with more than one channel.
Flip-flop toy model III

- Project in the meson states: \(\psi_i(\rho) = \int d^3r \, \phi_i(r)^* \Psi(r, \rho) \) with
 \[- \frac{\hbar^2}{2m} \nabla^2_r \phi_i + 2\sigma r \phi_i = \epsilon_i \phi_i \]

- Coupled channels equation:
 \[- \frac{\hbar^2}{2m} \nabla^2_\rho \psi_i + V_{ij} \psi_j = (E - \epsilon_i) \psi_i \]

- Use asymptotic behavior (scattering \(i \to j \)):
 \[
 \begin{align*}
 \psi_j &\to \delta_{ij} \hat{j}_\rho(k_i \rho) + f_{ij}^l \frac{e^{ik_j \rho}}{\rho} \quad \text{if channel is open} \\
 \psi_j &\to 0 \quad \text{otherwise}.
 \end{align*}
 \]

- This way we can determine the phase shifts
We find resonances with high angular momentum

This was in agreement with some authors4 who postulated that the centrifugal barrier would prevent the tetraquark from decaying

4 Karliner and Lipkin, Phys. Lett. B 575, 249
However this potential neglects some important effects

- Only one transition is considered
- Color is omitted

We have two linearly independent color singlets

The potential of the system is a 2×2 matrix

Lattice results give $v_0 = \min(V_I, V_{II}, V_T)$

We have to find the whole matrix!
Two meson states:

- $|C_I\rangle = \frac{1}{3}|Q_i Q_j \bar{Q}_i \bar{Q}_j\rangle$
- $|C_{II}\rangle = \frac{1}{3}|Q_i Q_j \bar{Q}_j \bar{Q}_i\rangle$

Antisymmetric and symmetric color states:

- $|A\rangle = \frac{\sqrt{3}}{2}(|C_I\rangle - |C_{II}\rangle)$
- $|S\rangle = \sqrt{\frac{3}{8}}(|C_I\rangle + |C_{II}\rangle)$

Note that $\langle C_I | C_{II} \rangle = \frac{1}{3}$

Ground state can be $|C_I\rangle$, $|C_{II}\rangle$ or $|A\rangle$
Potential II

- The corresponding eigenvector should be $|C_I\rangle$, $|C_{II}\rangle$ or $|A\rangle$
 - $|C_I\rangle$ when $v_0 = V_I$
 - $|C_{II}\rangle$ when $v_0 = V_{II}$
 - $|A\rangle$ when $v_0 = V_T$

- Since the potential is hermitian, the second eigenvector must be orthogonal to the first one:
 - $|\overline{C}_I\rangle$ when $v_0 = V_I$, with $\langle \overline{C}_I | C_I \rangle = 0$
 - $|\overline{C}_{II}\rangle$ when $v_0 = V_{II}$, with $\langle \overline{C}_{II} | C_{II} \rangle = 0$
 - $|S\rangle$ when $v_0 = V_T$
Potential III

- For the transition to be as smooth as possible, we impose
 - $v_1 = \min(V_{II}, V_T)$ when $v_0 = V_I$
 - $v_1 = \min(V_I, V_T)$ when $v_0 = V_{II}$
 - $v_1 = \min(V_I, V_{III})$ when $v_0 = V_T$

- Lattice results seem to agree with this in the transition region \(^5\)
- With this we can construct a color-dependent flip-flop potential

\(^5\)Bornyakov et al., hep-lat/0508006
Meson-meson scattering I

- Wave-function is expanded as $\Psi = \Psi^A |C_A\rangle$
- Contra-variant color states $|C^A\rangle$ with $\langle C^A | C_B \rangle = \delta^A_B$
- Kinetic Energy operator
 $$\hat{T}_S = (\hat{T} + \hat{V}_I) |C_I\rangle \langle C^I| + (\hat{T} + \hat{V}_{II}) |C_{II}\rangle \langle C^{II}|$$
- Scattering potential
 $$\hat{V}_S = \hat{V} - \hat{V}_I |C_I\rangle \langle C^I| - \hat{V}_{II} |C_{II}\rangle \langle C^{II}|$$
- Schrödinger equation:
 $$T^A_A \Psi^A + \sum_B V^A_B \Psi^B = E \Psi^A$$
Each color component is expanded as

$$\Psi^A = \sum_k \phi^1_k(\rho_1) \phi^2_k(\rho_2) \psi^A_k(\mathbf{r}_A)$$

The $\phi^i_k(\rho_i)$ are eigenfunctions of the mesonic hamiltonian.

Integrate intra-mesonic degrees of freedom:

$$-\frac{\hbar^2}{2\mu_\alpha} \nabla^2 \psi^\alpha(\mathbf{r}) + \int d^3\mathbf{r}' \ v^\alpha_\beta(\mathbf{r}, \mathbf{r}') \psi^\beta(\mathbf{r}') = (E - \epsilon_\alpha) \psi^\alpha(\mathbf{r})$$

v^α_β is calculated using Monte Carlo (Metropolis algorithm).

By looking at the asymptotic behavior we can calculate the T matrix.
For now we do the following approximations:

- Consider only heavy quarks
- Neglect spin effects
- Neglect dynamical quark effects
- Non-relativistic kinematics
Exotic channels

- We study the exotic $QQq\bar{q}$ channels
- In this case the Hamiltonian matrix has the form:
 \[
 \hat{H} = \begin{bmatrix}
 \hat{D} & \hat{A} \\
 \hat{A} & \hat{D}
 \end{bmatrix}
 \]
- Eigenfunctions have the form $\Psi_\xi = \begin{bmatrix} u \\ \xi u \end{bmatrix}$, with $\xi = \pm 1$
Results I

- Results for $m_Q = m_b$ and $m_q = m_c$
- We use $\sigma = 0.19 \text{GeV}^2$ and $\gamma = 0.4$
- Phase shifts, for $L = 0$

\[
\begin{align*}
L = 0, \xi = +1 & \quad \text{(preliminary results)} \\
L = 0, \xi = -1 & \quad \text{(preliminary results)}
\end{align*}
\]

- Bound state (Binding energy < 1 MeV)
Results II

- Phase shifts, for $L = 1$:

 \[L = 1, \xi = +1 \]

 \[L = 1, \xi = -1 \]

 (preliminary results)

- Resonance mass and width can be determined using Newton’s method
An unitarized method to compute the meson-meson scattering was developed.

In the heavy mass limit we find a bound states and resonances for $L = 0$.

For the $L = 1$ case we find a resonance.

Refinements should be easy to include:
- Spin-spin interactions, etc.
- Other potential models.

In principle, poles can be find directly using Newton’s method or similar.