From a complex scalar field to the hydrodynamics of dense quark matter

Stephan Stetina
Institute for Theoretical Physics, TU Wien
Mark G. Alford, S. Kumar Mallavarapu, Andreas Schmitt
dense matter in the QCD phase diagram

- r mode instability
 [e.g., N. Andersson, Astrophys. J. 502, 708 (1998)]
- pulsar glitches
 [e.g., B. Link, MNRAS 422, 1640 (2012)]
Superfluids in dense quark matter

- CFL breaks chiral symmetry and Baryon conservation:
 - octet of (pseudo) goldstone modes
 \[SU(3)_C \otimes SU(3)_L \otimes SU(3)_R \otimes U(1)_B \rightarrow SU(3)_{L+R+C} \otimes Z(2) \]
 - CFL is a superfluid! - (exact) Goldstone mode due to U(1)_B

- Kaon condensation in CFL at high (but not asymptotically high) densities:
 - going down in density: \(m_s \) becomes non negligible
 - CFL reacts on stress on pairing pattern by developing a kaon condensate
 \[U(1)_s \rightarrow 1 \]
 - on top of CFL breaking pattern: (not exact) Goldstone mode due to U(1)_s

- how many superfluid components are to expect in CFL with kaon condensation?
Landau’s model of superfluidity
Comparison: Landau vs microscopic model

<table>
<thead>
<tr>
<th>Landau model</th>
<th>Microscopic model</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Phenomenological model based on hydrodynamic equations such as:</td>
<td>• QFT model based on SSB and the existence of Goldstone modes</td>
</tr>
<tr>
<td>[\vec{g} = \rho_s \vec{v}_s + \rho_n \vec{v}_n]</td>
<td>• Condensate related to superfluid, elementary excitations to the normal fluid part</td>
</tr>
<tr>
<td>[\epsilon = \epsilon_n + \epsilon_s + \frac{\rho_s v_s^2}{2} + \frac{\rho_n v_n^2}{2}]</td>
<td>• Variables:</td>
</tr>
<tr>
<td>• Fluid formally divided into superfluid and normal density (very successful describing superfluid He4)</td>
<td>- gradients of Goldstone fields: [\partial_0 \psi, \vec{\nabla} \psi, T] , ...</td>
</tr>
<tr>
<td>• Variables: (\rho, \vec{v}_s, T) , ...</td>
<td>• Variables:</td>
</tr>
</tbody>
</table>

\[T = \begin{cases} 0 & \rho = \rho_s \\ > T_C & \rho = \rho_n \end{cases} \]
SSB in a φ^4 model

$$\mathcal{L} = \partial_\mu \varphi \partial^\mu \varphi^* - m^2 |\varphi|^2 - \lambda |\varphi|^4$$

- from effective theory for mesons:
 $$\lambda_{eff} = \frac{4\mu^2 K^0 - m_{K^0}^2}{6f^2_\pi} \quad \mu K^0 = \frac{m_{s}^2 - m_{d}^2}{2\mu}$$

- ansatz for the condensate:
 $$\varphi(x) \rightarrow \frac{\rho(x)}{\sqrt{2}} e^{i\psi(x)} + \text{fluctuations}$$

$$\mathcal{L} = -U + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \mathcal{L}^{(3)} + \mathcal{L}^{(4)}$$

$$U = -\frac{1}{2} \partial_\mu \rho \partial^\mu \rho - \frac{\rho^2}{2} (\sigma^2 - m^2) + \frac{\lambda}{4} \rho^4$$

$$\sigma^2 = \partial_\mu \psi \partial^\mu \psi$$

- assumption:
 $$\rho, \partial_\mu \psi = \text{cons}$$

homogeneous superflow
Comparison: Landau vs microscopic model

Hydrodynamics

- **super current**
 \[j^\mu = n_s v^\mu \]
- **stress-energy tensor**
 \[T^{\mu\nu} = (\epsilon_s + P_s) v^\mu v^\nu - g^{\mu\nu} P_s \]
- **superfluid density**
 \[n_s = \sqrt{j^\mu j_\mu} = v^\mu j_\mu \]
- **superfluid velocity**
 \[v^\mu = \gamma (1, \vec{v}_s) \]
- **energy density**
 \[\epsilon_s = v_\mu v_\nu T^{\mu\nu} \]
- **pressure**
 \[P_s = -\frac{1}{3} (g_{\mu\nu} - v_\mu v_\nu) T^{\mu\nu} \]

Microscopic Model

- **Noether current**
 \[j^\mu = \partial \mathcal{L} / \partial (\partial_\mu \psi) = \partial^\mu \psi (\sigma^2 - m^2) / \lambda \]
- **stress-energy tensor**
 \[T^{\mu\nu} = \partial^\mu \psi \partial^\nu \psi (\sigma^2 - m^2) / \lambda - g^{\mu\nu} \mathcal{L} \]
- **superfluid density**
 \[n_s = \sigma (\sigma^2 - m^2) / \lambda \]
- **superfluid velocity**
 \[v^\mu = \partial^\mu \psi / \sigma \]
- **energy density**
 \[\epsilon_s = v_\mu \partial^\mu \psi n_s - \mathcal{L} \]
- **pressure:**
 \[P_s = \mathcal{L} + (v_\mu \partial^\mu \psi - \sigma) n_s \]
Superfluidity from φ^4 model (T=0)

- connection to thermodynamics:
 \[
 \epsilon_s + P_s = \mu_s n_s \rightarrow \mu_s = \sigma = \nu \mu \partial_\mu \psi
 \]

→ chemical potential and flow velocity of the superfluid are both determined in terms of the phase of the condensate:

- rotations of the phase around the U(1) circle generate the chem. pot.
- number of rotations/unit length gives rise to the superflow velocity

→ Lorentz factor in σ:
 \[
 \sigma = \sqrt{(\partial_0 \psi)^2 - (\nabla \psi)^2} = \partial_0 \psi \sqrt{1 - \left(\frac{\nabla \psi}{\partial_0 \psi}\right)^2} = \mu \sqrt{1 - v^2}
 \]
finite temperature

- use pressure as effective action:
 \[\Gamma_{eff}[\Phi, S] = -U(\Phi) - \frac{1}{2} Tr \ln S^{-1} \]
 \[S^{-1}(k) = \begin{pmatrix} -k^2 + 2(\sigma^2 - m^2) & 2ik \cdot \partial \psi \\ 2ik \cdot \partial \psi & -k^2 \end{pmatrix} \]

- Anisotropic dispersions (Goldstone + massive):
 \[\epsilon_{1,k} = \sqrt{\frac{\sigma^2 - m^2}{3\sigma^2 - m^2}} \zeta(\cos \theta) |k| + \mathcal{O}(|k|^3) \]
 \[\epsilon_{2,k} = \sqrt{2} \sqrt{3\sigma^2 - m^2 + 2(\nabla \psi)^2} + \mathcal{O}(|k|) \]
 \[\zeta(\theta) = \frac{\sqrt{1 - v_s^2} \sqrt{1 - \frac{v_s^2}{3} (1 + 2 \cos^2 \theta) + \frac{2|v_s|}{\sqrt{3}} \cos \theta}}{1 - \frac{v_s^2}{3}} \]

- Anisotropic pressure: \[P\delta_{ij} \to \{ P_\perp, P_\parallel \} \]

- low T approximation: use linear and cubic terms in \(k \) in the dispersions.
- to go (numerically) up to \(T_c \): use 2 particle irreducible formalism (CJT)
finite temperature

• two major difficulties to be resolved:

→ How to define thermodynamics in a relativistic two fluid system?

[I. M. Khalatnikov and V.V. Lebedev, Phys. Lett. 91A, 70 (1982)]
[V.V. Lebedev and I. M. Khalatnikov, Sov. Phys. JETP 56, 923 (1982)]
[N. Andersson and G. Comer, Living Rev. Relativity 10, 1 (2005)]

→ In which frame of reference are the microscopic calculations performed?
Carter`s canonical two fluid formalism
[B. Carter and I. M. Khalatnikov, PRD 45, 4536 (1992)]

• generalization of TD relation (generalized Pressure and Energy):
 \[\epsilon + P = \mu n + Ts \rightarrow \Lambda + \Psi = \partial \psi \cdot j + \theta \cdot s \]
 \[d\Lambda = \partial_{\mu} \psi \, dj^{\mu} + \Theta_{\mu} ds^{\mu} \quad d\Psi = j_{\mu} d(\partial^{\mu} \psi) + s_{\mu} d\Theta^{\mu} \quad \partial_{\mu} j^{\mu} = 0 \]
 \[\Lambda = \Lambda[j^2, s^2, s \cdot j] \quad \Psi = \Psi[(\partial \psi)^2, \theta^2, \partial \psi \cdot \theta] \quad \partial_{\mu} s^{\mu} = 0 \]
 \[\rightarrow \text{hydro description either in terms of conserved currents or their conjugated momenta!} \]
 (this set of variables differs from \(\partial_{\mu} j^{\mu} \neq 0 \) and \(\partial_{\mu} j^{\mu} \neq 0 \))

• definition of coefficients (A, B, C), A “entrainment coefficient”
 \[\partial^{\mu} \psi = \frac{\partial \Lambda}{\partial j_{\mu}} = B j^{\mu} + A s^{\mu}, \Theta^{\mu} = \frac{\partial \Lambda}{\partial s_{\mu}} = A j^{\mu} + C s^{\mu} \]

• stress energy tensor:
 \[T^{\mu\nu} = -g^{\mu\nu} \Psi + j^{\mu} \partial^{\nu} \psi + s^{\mu} \Theta^{\nu} \quad \partial_{\mu} T^{\mu\nu} = 0 \]
 \[T^{\mu\nu} = -g^{\mu\nu} \Psi + B j^{\mu} j^{\nu} + C s^{\mu} s^{\nu} + A (j^{\mu} s^{\nu} + s^{\mu} j^{\nu}) \]
relativistic two fluid formalism

- relation to formalism of Landau\Khalatnikov:
 [e.g., D. T. Son, Int. J. Mod. Phys. A 16S1C, 1284 (2001)]

\[T^{\mu\nu} = (\epsilon_n + P_n)u_n^\mu u_n^\nu + P_n g^{\mu\nu} + (\epsilon_s + P_s)u_s^\mu u_s^\nu + P_s g^{\mu\nu} \]

\[j^\mu = n_n u^\mu + n_s \frac{\partial^\mu \psi}{\sigma} \quad s^\mu = su^\mu \]

- expressible through coefficients:

\[A = -\frac{\sigma n_n}{s n_s}, \quad B = \frac{\sigma}{n_s}, \quad C = \frac{\sigma n_n^2}{s^2 n_s} + \frac{\mu n_n + s T}{s^2} \]

- the microscopic calculations are performed in the normal fluid restframe (restframe of the heat bath), in this frame, we can identify:

\[\Psi = \frac{1}{3} (g^{\mu\nu} - u^\mu u^\nu) (j_\mu \partial_\nu \psi - T_{\mu\nu}) \rightarrow \frac{T}{V} \Gamma = \Psi = T_\perp \quad u^\mu = (1, \vec{0}) \]

\[\Lambda + \Psi = \partial \psi \cdot j + \theta \cdot s \quad s^0 = \frac{\partial \Psi}{\partial T} \rightarrow \theta^0 = T \]
relation to microscopic theory

• coefficients:

\[
A = -\frac{\partial^0 \psi}{s^0 \nabla \psi} \left(\bar{v}_s j^0 \partial^0 \psi - \vec{j} \cdot \nabla \psi \right) \quad B = -\frac{\left(\nabla \psi \right)^2}{\nabla \psi \cdot \vec{j}}
\]

\[
C = \frac{j^0 \partial^0 \psi \left(\bar{v}_s j^0 \partial^0 \psi - \vec{j} \cdot \nabla \psi \right) + s^0 \partial^0 \left(\vec{j} \cdot \nabla \psi \right)}{(s^0)^2 \left(\vec{j} \cdot \nabla \psi \right)}
\]

• some exemplary results:

\[
\frac{T}{V} \Gamma_{eff} \simeq \frac{\mu^4}{4 \lambda} (1 - v_s^2)^2 + \frac{\pi^2 T^4}{10 \sqrt{3}} \frac{(1 - v_s^2)^2}{(1 - 3v_s^2)^2} - \frac{4\pi^4 T^6}{105 \sqrt{3}} \frac{(1 - v_s^2)^2}{(1 - 3v_s^2)^5} (5 + 30v_s^2 + 9v_s^4)
\]

\[
n_s \simeq \frac{\mu^3}{\lambda} (1 - v_s^2) - \frac{4\pi^2 T^4}{5 \sqrt{3} \mu} \frac{1 - v_s^2}{(1 - 3v_s^2)^3} + \frac{8\pi^4 T^6}{105 \sqrt{3}} \frac{1 - v_2^2}{(1 - 3v_s^2)^6} (95 + 243v_s^2 - 135v_s^4 - 27v_s^6)
\]

\[
n_n \simeq \frac{4\pi^2 T^4}{5 \sqrt{3} \mu} \frac{(1 - v_s^2)^2}{(1 - 3v_s^2)^3} - \frac{16\pi^4 T^6}{35 \sqrt{3} \mu^3} \frac{(1 - v_s^2)^2}{(1 - 3v_s^2)^6} (15 + 38v_s^2 - 9v_s^4)
\]
relation to analog gravity (linear dispersion)

relation of sonic metric and superfluidity in the cold limit
[Barcelo, Liberati, Visser; Living Rev. Rel. 8:12, 2005] fluids as laboratory for black hole physics

- sonic metric: \(G^{\mu\nu} = g^{\mu\nu} + \left(\frac{1}{u_s^2} - 1 \right) v_s^\mu v_s^\nu \)

- dispersions: \(G^{\mu\nu} k_\mu k_\nu = 0 \)

\(\Rightarrow \) eliminate \(v_s, T, \mu \):
\[\sigma^2 = \mu^2 (1 - v_s^2), \quad \partial_\psi \cdot \theta = \mu T - \frac{A}{B} (\nabla \psi)^2 = \frac{1 - v_s^2}{1 - 3v_s^2} \mu T + O(T^3) \]
\[\theta^2 = T^2 - \frac{A^2}{B^2} (\nabla \psi)^2 = \frac{(1 - v_s^2)(1 - 9v_s^2)}{(1 - 3v_s^2)^2} T^2 + O(T^4) \]
\(\Rightarrow \) \(\Psi(\partial_\psi^2, \theta^2, \partial_\psi \cdot \theta) = \frac{\sigma^4}{4\lambda} + \frac{\pi^2}{90\sqrt{3}} \left[\theta^2 + 2 \frac{(\partial_\psi \cdot \theta)^2}{\sigma^2} \right]^2 = \frac{\sigma^4}{4\lambda} + \frac{\pi^2}{90\sqrt{3}} [G^{\mu\nu} \theta_\mu \theta_\nu]^2 \)
first and second sound

- two fluid system allows for two sound modes:

 - **first sound**: normal and super fluid densities oscillate in phase, pressure wave, weak temperature dependence

 - **second sound**: normal and super fluid densities oscillate out of phase, temperature wave

figure: [R.J. Donnelly, Physics Today 62, 10 (2009)]
first and second sound- limit cases

- the general form of the 2 equations which determine the sound velocities is complicated, discussion of limit cases:

$\rightarrow T=0:$

\[0 \simeq (g^{\mu\nu} + 2v_s^{\mu}v_s^{\nu}) \partial_\mu \partial_\nu \delta\mu(\vec{x}, t) = G^{\mu\nu} k_\mu k_\nu \delta\mu(\vec{x}, t) \]

we recover the term linear in k of the dispersion relation:

\[\epsilon_k = u_1 k + O(k^3) \]

$\rightarrow v_s = 0:$

\[0 = w \left(\partial_s \frac{\partial n}{\partial \mu} - \frac{\partial n}{\partial \mu} \frac{\partial s}{\partial T} \right) \omega^2 - n_s s^2 \vec{k}^4 \]

\[+ \left[s^2 \mu \frac{\partial n}{\partial \mu} + (\mu n_n^2 + wn_s) \frac{\partial s}{\partial T} - 2\mu sn_n \frac{\partial s}{\partial \mu} \right] \omega^2 \vec{k}^2 \]

we recover the (velocity independent) results for first and second sound given for example in: [Herzog, Kovtun, Son; Phys.Rev. D79, 066002 (2009)]
first and second sound: full results

\[T = 0 \]

\[T/\mu = 0.02 \]

\[T/\mu = 0.04 \]
what we have discussed:

- The microscopic physics of CFL and kaon condensation can be translated into a multifluid hydrodynamic system.

- We provide a translation in between existing descriptions of superfluid hydrodynamics.

- We show how the hydro parameters emerge from an underlying microscopic field theory.

- We study the (anisotropic) first and second sound modes.
what is left to do:

- towards a complete hydro description of CFL and kaon condensation:

 - use the CJT formalism to numerically go up to T_c
 [work in progress; Mark G. Alford, S. Kumar Mallavarapu, Andreas Schmitt, Stephan Stetina]
 - include effect of weak interactions (include a $U(1)_s$ breaking term into the effective Lagrangian)
 [work in progress; Denis Parganlija, Andreas Schmitt]
 - repeat the analysis for a fermionic system of Cooper pairs
Thank you!