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Introduction and motivation
RHIC experiments show that hot QCD matter has very
intricate properties = a big challenge to understand.
But it is clear that:

Hot QCD matter may be called "QGP", but this cannot
be perturbatively interacting quark-gluon gas (as once
expected) until much higher T

Still no direct “smoking gun" signal of deconfinement, etc ...
compelling signals of new form of matter sought:

e.g., a change in symmetries obeyed by the strong
interaction: the restoration of the [SUA(3) flavor] chiral
symmetry andUA(1) symmetry ⇒ a good
understanding of the light-quark pseudoscalar
nonet is needed - especially η, η′.
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Hot hadrons = important for understanding hot QCD matter

- especially since lattice (& other, e.g., see Gossiaux’s talk)
show: J/Ψ and ηc stay bound till ∼ 2Tcri, maybe higher ... +
similar indications about light-quark mesons = motivation to:

explore validity of meson relations, e.g., WV relation:

Mη′
2+Mη

2−2MK
2 =

2Nf

f 2π
χYM

(
+O(

1

Nc
)

)

(... and test validity of various T -rescaling procedures).

use, even at high T , bound-state equations ... here,
Dyson-Schwinger approach (by Zagreb group: Horvatić
et al. PRD76 (2007) 096009) for non-anomalous sector,
but results of Benić et al., Phys. Rev. D84 (2011) 016006, for
UA(1)-anomalous sector of η-η′ complex at T > 0.
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Introduction and motivation

UA(1) symmetry is broken by the nonabelian ("gluon") axial
anomaly: even in the chiral limit (ChLim, where mq → 0),

∂αψ̄(x)γ
αγ5

λ0

2
ψ(x) ∝ F a(x) · F̃ a(x) ≡ ǫµνρσF a

µν(x)F
a
ρσ(x) 6= 0 .

This breaks the UA(1) symmetry of QCD and precludes the

9th Goldstone pseudoscalar meson ⇒ very massive η′:
even in ChLim, where mπ,mK ,mη → 0, still (‘ChLim WVR’)

0 6= ∆M2
η0 = ∆M2

η′ =
(A = qty.dim.mass)4

(“fη′”)2
=

6χYM
f2π

+O(
1

Nc
)

... but uncertain fate of UA(1) breaking as T grows towards
TYM and TCh, where χYM(T ) and fπ(T ) strongly drop/vanish!
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Experimental observation of in-mediumη′ mass reduction

High E heavy ion collisions ⇒ hot and dense medium

√
s = 200 GeV Au+Au collide at RHIC ⇒ enhanced η′

abundance = 1st exp. signature of a partial UA(1) sym.
restoration ... is it before chiral symmetry restoration?!?!

Combined STAR & PHENIX data analyzed robustly
through six popular models for multiplicities (ALCOR,

FRITIOF, ...) ⇒ at 99,9% confidence level, η′ mass is
reduced by at least 200 MeV inside fireball.
M∗

η′ = 340+50
−60(statist.)

+280
−140(model)± 42(system.)MeV

(Csörgő, Vértesi & Sziklai, Phys. Rev. Lett. 105 (2010) 182301.

= “The return of the prodigal Goldstone boson!”

What are implications for the WV relation at T > 0?
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Dyson-Schwinger approach to quark-hadron physics

= the bound state approach which is nopertubative,
covariant and chirally well-behaved.

a) direct contact with QCD through ab initio calculations

b) phenomenological modeling of hadrons as quark
bound states (used also here, for example)

coupled system of integral equations for Green
functions of QCD

... but ... equation for n-point function calls (n+1)-point
function ... → cannot solve in full the growing tower of
DS equations

→ various degrees of truncations, approximations and
modeling is unavoidable (more so in phenomenological
modeling of hadrons, as here)
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Dyson-Schwinger approach to quark-hadron physics

For the present purposes, the most important advantage of
DS approach is that it is chirally well-behaved:
non-anomalous parts of the masses of the light

pseudoscalar qq̄′ mesons (i.e., all parts except ∆Mη0)
behave as M2

qq̄′ = const (mq +mq′) , (q, q′ = u, d, s) .

⇒ non-anomalous parts of the masses in WVR cancel:
Mη′

2 +Mη
2 − 2MK

2 ≈ ∆Mη0

⇒ already ChLim WVR reveals the essence of the influence
of the gluon anomaly on the masses in η-η′ complex.
= IMPORTANT, since it shows almost model-independently
that the WVR containing χYM(T ) implies Mη′(T ) in conflict
with experiment
⇒ Model dependence of our discussion is minimal as
everything boils down to the ratio χYM(T )/fπ(T )

2 ...
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Dyson-Schwinger approach to quark-hadron physics

Gap equation for propagator Sq of dressed quark q

λa

2
γµ

Sq(l) Γa
ν(l, p)

= +

Homogeneous Bethe-Salpeter (BS) equation for a
Meson qq̄ bound state vertex Γqq̄

Γqq̄ Γqq̄

Sq

= KMM
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Gap and BS equations in ladder truncation

Sq(p)
−1 = iγ · p+ m̃q +

4

3

∫
d4ℓ

(2π)4
g2Geff

µν(p− ℓ)γµSq(ℓ)γν

→ Sq(p) =
1

ip�Aq(p2) +Bq(p2)
=

−ip�Aq(p
2) +Bq(p

2)

p2Aq(p2)2 +Bq(p2)2
=

1

Aq(p2)

−ip�+mq(p
2)

p2 +mq(p2)2

Γqq̄′(p, P ) = −4

3

∫
d4ℓ

(2π)4
g2Geff

µν(p−ℓ)γµSq(ℓ+
P

2
)Γqq̄′(ℓ, P )Sq(ℓ−

P

2
)γν

Euclidean space: {γµ,γν}=2δµν , γ†µ=γµ, a·b =
∑4

i=1aibi

P is the total momentum, M2 = −P 2 meson mass2

Geff
µν(k) an “effective gluon propagator” - modeled !
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From the gap and BS equations ...

solutions of the gap equation → the dressed quark mass function

mq(p
2) =

Bq(p
2)

Aq(p2)

propagator solutions Aq(p
2) and Bq(p

2) pertain to confined quarks if

m2
q(p

2) 6= −p2 for real p2

The BS solutions Γqq̄′ enable the calculation of the properties of qq̄
bound states, such as the decay constants of pseudoscalar mesons:

fPS Pµ = 〈0|q̄ λPS

2
γµ γ5 q|ΦPS(P )〉

−→ fπPµ = Nc trs

∫
d4ℓ

(2π)4
γ5γµ S(ℓ+ P/2) Γπ(ℓ;P ) S(ℓ− P/2)
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Renormalization-group improved interactions

Landau gauge gluon propagator : g2Geff
µν(k) = G(−k2)(−gµν +

kµkν
k2

),

G(Q2) ≡ 4π
αeff
s (Q2)

Q2
= GUV(Q

2) +GIR(Q
2), Q2 ≡ −k2 .

GUV(Q
2) = 4π

αpert
s (Q2)

Q2
≈ 4π2d

Q2 ln(x0 +
Q2

Λ2

QCD
)
{1 + b

ln[ln(x0 +
Q2

Λ2

QCD
)]

ln(x0 +
Q2

Λ2

QCD
)

} ,

but modeled non-perturbative part, e.g., Jain & Munczek:

GIR(Q
2) = Gnon-pert(Q

2) = 4π2 aQ2 exp(−µQ2) (similar : Maris,Roberts...)

or, the dressed propagator with dim. 2 gluon condensate
〈A2〉-induced dynamical gluon mass (Kekez & Klabučar):

G(Q2) = 4π
αpert
s (Q2)

Q2


 Q2

Q2 −M2
gluon +

cghost
Q2




2

Q2

Q2 +M2
gluon +

cgluon
Q2

.
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Some effective strong couplingsαeff
s (Q2) ≡ Q2G(Q2)/4π

0.2 0.4 0.6 0.8 1 1.2 1.4 Q2
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Blue = Munczek & Jain model. Red = K & K propagator with
〈A2〉-induced dynamical gluon mass. Green = Alkofer. Magenta =
Bloch. Turquoise dashed: Maris, Roberts & Tandy model.
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Separable model = good, + easier atT > 0

Calculations simplify with the separable Ansatz for Geff
µν :

Geff
µν(p− q) → δµν G(p

2, q2, p · q)

G(p2, q2, p · q) = D0 f0(p
2)f0(q

2) +D1 f1(p
2)(p · q)f1(q2)

two strength parameters D0, D1, and corresponding form factors
fi(p

2). In the separable model, gap equation yields

Bf (p
2) = m̃f +

16

3

∫
d4q

(2π)4
G(p2, q2, p · q) Bf (q

2)

q2A2
f
(q2) +B2

f
(q2)

[
Af (p

2)− 1
]
p2 =

8

3

∫
d4q

(2π)4
G(p2, q2, p · q) (p · q)Af (q

2)

q2A2
f
(q2) +B2

f
(q2)

.

This gives Bf (p
2) = m̃f + bf f0(p

2) and Af (p
2) = 1 + af f1(p

2),
reducing to nonlinear equations for constants bf and af .

η′ multiplicity and Witten-Veneziano relation at finite temperaturea – p. 13/49



A simple choice for ‘interaction form factors’ of the separable model:

f0(p
2) = exp(−p2/Λ2

0)

f1(p
2) = [1 + exp(−p20/Λ

2
1)]/[1 + exp((p2 − p20))/Λ

2
1]

gives good description of pseudoscalar properties if the interaction is
strong enough for realistic DChSB, when mu,d(p

2 ∼ small) ∼ the
typical constituent quark mass scale ∼ mρ/2 ∼ mN/3.

1 2 3 4 5
p2
@GeV2

D

0.2

0.4

0.6

0.8

1

f0,1Hp
2
L

f0Hp
2
L

f1Hp
2
L
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Nonperturbative dynamical propagator dressing

−→ Dynamical Chiral Symmetry Breaking (DChSB)
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DChSB = nonperturb. generation of large quark masses ...

... even in the chiral limit (m̃f → 0), where the octet
pseudoscalar mesons are Goldstone bosons of DChSB!
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At T = 0, good DS results; e.g., “non-anomalous”:

Separable model parameter values reproducing experimental data:

m̃u,d = 5.5 MeV, Λ0 = 758 MeV, Λ1 = 961 MeV, p0 = 600 MeV,
D0Λ

2
0 = 219, D1Λ

4
1 = 40 (fixed by fitting Mπ, fπ, Mρ, gρπ+π− , gρe+e−

→ pertinent predictions au,d = 0.672, bu,d = 660 MeV, i.e., mu,d(p
2),

〈ūu〉)
m̃s = 115 MeV (fixed by fitting MK → predictions as = 0.657, bs = 998

MeV, i.e., ms(p
2), 〈s̄s〉, Mss̄, fK , fss̄)

Summary of results (all in GeV) for q = u, d, s and pseudoscalar
mesons without the influence of gluon anomaly:

PS MPS Mexp
PS fPS fexp

PS mq(0) −〈qq̄〉1/30

π 0.140 0.1396 0.092 0.0924± 0.0003 0.398 0.217

K 0.495 0.4937 0.110 0.1130± 0.0010

ss̄ 0.685 0.119 0.672
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At T > 0, good and less good DS results

E.g., chiral symmetry restoration qualitatively good, but TCh
lower than lattice (maybe up to 35%, and even more for
‘more realistic’ DS models unless they contain δ-function):
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Same with pseudoscalar decay constantsfP (T ):

Both crossover and Ch-limit behavior OK, but TCh = 128 MeV
... but this is cured by introducing Polyakov loop (PL)

0.05 0.1 0.15 0.2
T@GeVD
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Similarly with the T -dependence ofπ,K, ss̄, σ masses:

‘Deconfinement’ Td,q from Sq pole - very different Td,u, Td,s ...
also cured/synchronized with TCh(= Tcri) by PL

0.05 0.1 0.15 0.2
T@GeVD

0.2
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Anomaly and mixing in η-η′ complex

present approach yields mass2 eigenvalues
M2

ud̄
=M2

π+ ,M2
us̄ =M2

K , ..., M̂
2
NA = diag(M2

uū,M
2
dd̄
,M2

ss̄)

|ud̄〉 = |π+〉, |us̄〉 = |K+〉, ... but |uū〉, |dd̄〉 and |ss̄〉 do not
correspond to any physical particles (at T = 0 at least!),
although in the isospin limit (adopted from now on)
Muū =Mdd̄ =Mud̄ =Mπ. I is a good quantum number!

⇒ recouple into "more physical" I3 = 0 octet-singlet basis

I = 1 |π0〉 =
1√
2
(|uū〉 − |dd̄〉) ,

I = 0 |η8〉 =
1√
6
(|uū〉+ |dd̄〉 − 2|ss̄〉) ,

I = 0 |η0〉 =
1√
3
(|uū〉+ |dd̄〉+ |ss̄〉) .
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Anomaly and mixing in η-η′ complex

the “non-anomalous” (chiral-limit-vanishing!) part of the
mass-squared matrix of π0 and η’s is (in π0-η8-η0 basis)

M̂2
NA =




M2
π 0 0

0 M2
88 M2

80

0 M2
08 M2

00




M2
88 ≡ 〈η8|M̂2

NA|η8〉 =
2

3
(M2

ss̄ +
1

2
M2

π),

M2
80 ≡ 〈η8|M̂2

NA|η0〉 = M2
08 =

√
2

3
(M2

π −M2
ss̄)

M2
00 ≡ 〈η0|M̂2

NA|η0〉 =
2

3
(
1

2
M2

ss̄ +M2
π),

Not enough! In order to avoid the UA(1) problem, one
must break the UA(1) symmetry (as it is destroyed by
the gluon anomaly) at least at the level of the masses.
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Gluon anomaly is not accessible to ladder approximation!

 P

f

f 
–

f´

f´
–

P´

Diamond graph: an example of a transition |qq̄〉 → |q′q̄′〉
(q, q′ = u, d, s[...]), contributing to the anomalous masses in the η-η′

complex, but not included in the interaction kernel in the ladder
approximation.
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Anomaly and mixing in η-η′ complex

All masses in M̂2
NA are calculated in the ladder approx.,

which cannot include the gluon anomaly contributions.

Large Nc: the gluon anomaly suppressed as 1/Nc! →
Include its effect just at the level of masses: break the
UA(1) symmetry and avoid the UA(1) problem by shifting
the η0 (squared) mass by anomalous contribution 3β.

complete mass matrix is then M̂2 = M̂2
NA + M̂2

A where

M̂2
A =




0 0 0

0 0 0

0 0 3β


 does not vanish in the chiral limit.

3β = ∆M2
η0 = the anomalous mass2 of η0 [in SU(3) limit incl.

ChLim] is related to the YM topological susceptibility. Fixed
by phenomenology or (here) taken from the lattice.
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Anomaly and mixing in η-η′ complex
we can also rewrite M̂2

A in the qq̄ basis |uū〉, |dd̄〉, |ss̄〉

M̂2
A = β




1 1 1

1 1 1

1 1 1




flavor

−→
breaking

M̂2
A = β




1 1 X

1 1 X

X X X2




We introduced the effects of the flavor breaking on the
anomaly-induced transitions |qq̄〉 → |q′q̄′〉 (q, q′ = u, d, s).
ss̄ transition suppression estimated by X ≈ fπ/fss̄.

Then, M̂2
A in the octet-singlet basis is modified to

M̂2
A = β




0 0 0

0 2
3
(1−X)2

√
2

3
(2−X −X2)

0
√
2
3
(2−X −X2) 1

3
(2 +X)2




→ In the isospin limit, one can always restrict to 2× 2

submatrix of etas (I=0), as π0 (I=1) is decoupled then.
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Anomaly and mixing in η-η′ complex

nonstrange (NS) – strange (S) basis

|ηNS〉 =
1√
2
(|uū〉+ |dd̄〉) = 1√

3
|η8〉+

√
2

3
|η0〉 ,

|ηS〉 = |ss̄〉 = −
√

2

3
|η8〉+

1√
3
|η0〉 .

the η–η′ matrix in this basis is

M̂2 =


 M2

ηNS
M2

ηSηNS

M2
ηNSηS

M2
ηS


 =


 M2

uū + 2β
√
2βX

√
2βX M2

ss̄ + βX2


 φ→


 m2

η 0

0 m2
η′




NS–S mixing relations

|η〉 = cosφ|ηNS〉 − sinφ|ηS〉 , |η′〉 = sinφ|ηNS〉+ cosφ|ηS〉 .

θ = φ− arctan
√
2
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Anomaly and mixing in η-η′ complex

Let lowercase mM ’s denote the empirical mass of
meson M . From our calculated, model mass matrix in
NS–S basis, we form its empirical counterpart m̂2

exp by

i) obvious substitutions Muū ≡Mπ → mπ, Mss̄ → mss̄

ii) by noting that mss̄, the “empirical" mass of the
unphysical ss̄ pseudoscalar bound state, is given in
terms of masses of physical particles as
m2

ss̄ ≈ 2m2
K −m2

π. Then,

m̂2
exp =

[
m2

π + 2β
√
2βX√

2βX 2m2
K −m2

π + βX2

]
−→
φexp

[
m2

η 0

0 m2
η′

]
.

η′ multiplicity and Witten-Veneziano relation at finite temperaturea – p. 27/49



Finally, fix anomalous contribution to η-η′:

the traceof theempirical m̂2
exp demands the 1st equality in

β(2+X2) = m2
η+m

2
η′−2m2

K =
2Nf

f2π
χYM (2ndequality = WV relation)

requiring that the experimental trace (m2
η +m2

η′)exp≈1.22

GeV2 be reproduced by the theoretical M̂2, yields
βfit =

1
2+X2 [(m2

η +m2
η′)exp − (M2

uū +M2
ss̄)]

Or, get β from lattice χYM ! Then no free parameters!

then, can calculate the NS-S mixing angle φ

tan 2φ =
2M2

ηSηNS

M2
ηS

−M2
ηNS

=
2
√
2βX

M2
ηS

−M2
ηNS

and

M2
ηNS

=M2
uū+2β =M2

π+2β, M2
ηS =M2

ss̄+βX
2 =M2

ss̄+β
f2π
f2ss̄
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Anomaly and mixing in η-η′ complex

The diagonalization of the NS-S mass matrix then
finally gives us the calculated η and η′ masses:

M2
η = cos2 φ M2

ηNS
−

√
2βX sin 2φ+ sin2 φ M2

ηS

M2
η′ = sin2 φ M2

ηNS
+

√
2βX sin 2φ+ cos2 φ M2

ηS

Equivalently, from the secular determinant,

M2
η =

1

2

[
M2

ηNS
+ M2

ηS
−

√
(M2

ηNS
− M2

ηS
)2 + 8β2X2

]

=
1

2

[
M2

π +M2
ss̄ + β(2+X2)−

√
(M2

π+2β−M2
ss̄−βX2)2 + 8β2X2

]

M2
η′ =

1

2

[
M2

ηNS
+ M2

ηS
+

√
(M2

ηNS
− M2

ηS
)2 + 8β2X2

]

=
1

2

[
M2

π +M2
ss̄ + β(2+X2) +

√
(M2

π+2β−M2
ss̄−βX2)2 + 8β2X2

]
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Separable model results onη and η′ mesons (atT = 0)

βfit βlatt. Exp.
θ -12.22◦ -13.92◦

Mη 548.9 543.1 547.75
Mη′ 958.5 932.5 957.78
X 0.772 0.772
3β 0.845 0.781

masses are in units of MeV, 3β in units of GeV2 and the
mixing angles are dimensionless.

βlatt. was obtained from χYM(T = 0) = (175.7 MeV)4

X = fπ/fss̄ as well as the whole M̂2
NA (consisting of Mπ

and Mss̄) are calculated model quantities.
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For three DS models: summary ofT = 0 results from WV
from Ref. J-M&WV A2 &WV separab&WV orig. Shore Experiment

Mπ 137.3 135.0 140.0 (138.0)isospinaverage

MK 495.7 494.9 495.0 (495.7)isospinaverage

Mss̄ 700.7 722.1 684.8

fπ 93.1 92.9 92.0 92.4± 0.3

fK 113.4 111.5 110.1 113.0± 1.0

fss̄ 135.0 132.9 119.1

Mη 568.2 577.1 542.3 547.75± 0.12

Mη′ 920.4 932.0 932.6 957.78± 0.14

φ 41.42o 39.56o 40.75o 38.24o

θ −13.32o −15.18o −13.98o −16.5o

θ0 −2.86o −5.12o −6.80o −12.3o

θ8 −22.59o −24.14o −20.58o −20.1o

f0 108.8 107.9 101.8 106.6

f8 122.6 121.1 110.7 104.8

f0
η 5.4 9.6 12.1 22.8

f0
η′ 108.7 107.5 101.1 104.2

f8
η 113.2 110.5 103.7 98.4

f8
η′ -47.1 -49.5 -38.9 -36.1η′ multiplicity and Witten-Veneziano relation at finite temperaturea – p. 31/49



χ, topological susceptibility of QCD vacuum, atT > 0
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χ =

∫
d4x ; 〈q(x)q(0)〉 , q(x) =

g2

64π2
ǫµνρσF

a
µν(x)F

a
ρσ(x)

q(x) = topological charge density operator

In WV rel., χ is the pure-glue, YM one, χYM ↔ χquench.
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Relative temperature (T/Tχ) dependence of meson masses

χ = χYM ⇒ The required drop (∼ 200 MeV) of Mη′ only for very
unrealistically low Tχ/TCh ratio, where χYM(T ) melts before fπ(T )

diminishes much.
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Relative temperature (T/Tχ) dependence of meson masses
χYM/f2

π implies η′ mass increase → suppression of the η′ multiplicity
already for still unrealistically low topological susceptibility-melting

temperature Tχ
>∼ 0.8TCh. Failure of WV relation at T >∼ TCh.
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Obviously WV relation fails as T approachesTχ ∼ TCh:

χYM/f2
π implies a huge η′ mass increase, to 5 GeV for Tχ = TCh,

⇒ total suppression of the η′ multiplicity, instead of enhancement
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Tχ = TCh
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Solution: another connection of different theories

Early work by Di Vecchia & Veneziano ... Leutwyler &
Smilga [Phys. Rev. D46 (1992) 5607] derived, up to O( 1

Nc
),

(atT = 0), χYM =
χ

1 + χ
Nf

m 〈q̄q〉0

≡ χ̃

⇒ relates χYM to the full-QCD topological susceptibility χ,
chiral condensate 〈q̄q〉0 and m ≡ Nf× the reduced mass.
Presently Nf = 3, i.e., Nf/m =

∑
q=u,d,s(1/mq).

in the limit of very heavy quarks, mq,m→ ∞, it confirms
expectations that χYM = value of topolog. susceptibility
in quenched QCD, χYM = χ(mq = ∞)

It shows χ ≤ min(−m 〈q̄q〉0/Nf , χYM)
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LS relation also holds in the oposite limit!

This (presently pertinent!) limit of light quarks = still a
problem to get the full-QCD topol. susceptibility χ on lattice.
Fortunately (Di Vecchia, Veneziano), there is the analytic
result for small mq:

χ = −m 〈q̄q〉0
Nf

+ C(m) ,

C(m) = small corrections of higher orders in small mq, ...
but C(m) should not be neglected, since C(m) = 0 would
imply that χYM = ∞.

LS relation fixes the value of the correction at T = 0:

1

C(m)
=

Nf

m 〈q̄q〉0
− χYM(0)

(
Nf

m 〈q̄q〉0

)2

.
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T -dependence of̃χ

LS relation must break down as T rises towards the
(pseudo)critical temperatures of full QCD (∼ TCh) since
the YM quantity, χYM, is much more T -resistant than
RHS.

RHS ≡ χ̃ consists of the full-QCD quantities χ and
〈q̄q〉0, the quantities of full QCD with quarks,
characterized by TCh, just as fπ(T ).

Thus, the troublesome mismatch in T -dependences of
fπ(T ) and the pure-gauge χYM(T ) is expected to
disappear if χYM(T ) is replaced by χ̃(T ), the T -extended
RHS of LS relation

The usual, successful zero-T WV relation is thereby
retained, since χYM = χ̃ at T = 0.
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T -dependence ofχ and χ̃

Extending the light-quark full-QCD topol. susceptibility
χ is somewhat uncertain, as there is no guidance from
lattice [unlike for χYM(T )].

The leading term in Di Vecchia-Veneziano relation
∝ 〈q̄q〉0(T ) very plausibly, but for the correction term we
have to explore a range of Ansätze, i.e.,

χ(T ) = −m 〈q̄q〉0(T )
Nf

+ C(m)

[
〈q̄q〉0(T )

〈q̄q〉0(T = 0)

]δ
, (0 ≤ δ < 2).

Then, χ̃(T ) =

=
〈q̄q〉0(T )

∑
q=u,d,s

(
1
mq

)



1− 〈q̄q〉0(T )

∑
q=u,d,s

(
1
mq

) 1

C(m)

[
〈q̄q〉0(T = 0)

〈q̄q〉0(T )

]δ


 .
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T -dependence of̃χ follows the chiral condensate〈q̄q〉0(T ):

→ T -dependence of the anomalous mass contribution will
also follow the chiral condensate 〈q̄q〉0(T )!
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Case 1:T -independent correction term inχ
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Case 2: StronglyT -dependent correction term∝ 〈q̄q〉0(T )

ss

Π

ΗS
ΗNS

Η8

Η0

Η

Η' 2ΠT

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T�Tch

M
P
@G

eV
D

ΧYM =H0.1757 GeVL4, ∆=1

η′ multiplicity and Witten-Veneziano relation at finite temperaturea – p. 42/49



Summary

η′ enhanced multiplicity shows that WV relation cannot
be straightforwardly extended to T ′s close to TCh,
because the T -dependence of the ratio χYM(T )/fπ(T )

2

starts failing as T → TCh. Rescalings of TYM useless!

Leutwyler-Smilga and Di Vecchia-Veneziano relations
1.) enable one to retain unchanged WV relation, with
χYM, for T = 0 (in fact, any T sufficiently below TCh) and
2.) to replace the T -dependence of χYM by that of the
chiral condensate. This achieves consistency of the WV

relation with the data on η′ multiplicities, and indicates
how chiral restoration may be linked with the UA(1) one.

Further work: – Extension to finite density - for η′
experiments, e.g., at NICA, as 〈q̄q〉0(µ) → 0 for µ→ µcrit.
– What happens in Shore’s generalization of WV
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Shore’s generalization of WV valid to all orders in1/Nc

Inclusion of gluon anomaly in DGMOR relations →

(f0η
′
)2m2

η′ + (f0η)2m2
η = 1

3

(
f2πm

2
π + 2f2Km

2
K

)
+ 6A (1)

f0η
′
f8η

′
m2

η′ + f0ηf8ηm2
η = 2

√
2

3

(
f2πm

2
π − f2Km

2
K

)
(2)

(f8η
′
)2m2

η′ + (f8η)2m2
η = − 1

3

(
f2πm

2
π − 4f2Km

2
K

)
mber (3)

A = χYM +O( 1
Nc

) = full QCD topological charge. (1)+(3)→

(f0η
′

)2m2
η′ + (f0η)2m2

η + (f8η)2m2
η + (f8η

′

)2m2
η′ − 2f2Km

2
K = 6A

Then, large Nc limit and f0η, f8η
′ → 0 as well as

f0η
′
, f8η, fK → fπ recovers the standard WV.
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η′ and η have 4 independent decay constants

f0η′ , f8η , f
0
η , f

8
η′ : 〈0|Aaµ(x)|P (p)〉 = ifaP p

µe−ip·x, a = 8, 0; P = η, η′ .

Equivalently, one has 4 related but different constants fNS
η′ , fNS

η , fS
η , fS

η′ if instead of
octet and singlet axial currents (a = 8, 0) one takes this matrix element of the
nonstrange-strange axial currents (a = NS ,S )

A
µ
NS(x) =

1√
3
A8µ(x) +

√
2

3
A0µ(x) =

1

2

(
ū(x)γµγ5u(x) + d̄(x)γµγ5d(x)

)
,

A
µ
S
(x) = −

√
2

3
A8µ(x) +

1√
3
A0µ(x) =

1√
2
s̄(x)γµγ5s(x) ,


 fNS

η fS
η

fNS
η′ fS

η′


 =


 f8

η f0
η

f8
η′ f0

η′






1√
3

−
√

2
3√

2
3

1√
3


 ,

a, P = NS, S : 〈0|Aµ
NS(x)|ηNS(p)〉 = ifNS pµe−ip·x , 〈0|Aµ

NS(x)|ηS(p)〉 = 0 ,

a, P = NS, S : 〈0|Aµ
S
(x)|ηS(p)〉 = ifS pµe−ip·x , 〈0|Aµ

S
(x)|ηNS(p)〉 = 0 ,

Note: in our approach, fNS = fuū = fdd̄ = fπ , fS = fss̄ are calculated quantities
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Two Mixing Angles and FKS one-angle scheme

Any 4 η-η′ decay constants conveniently parametrized
in terms of two decay constants and two angles:

f8
η = cos θ8 f8 , f0

η = − sin θ0 f0 , fNS
η = cosφNS fNS , fS

η = − sinφS fS ,

f8
η′ = sin θ8 f8 , f0

η′ = cos θ0 f0 , fNS
η′ = sinφNSfNS , fS

η′ = cosφSfS

Big practicaldifference between 0-8 and NS-S schemes:

while θ8 and θ0 differ a lot from each other and from
θ ≈ (θ8 + θ0)/2, FKS showed that φNS ≈ φS ≈ φ.

[
fNS
η fS

η

fNS
η′ fS

η′

]
=

[
cosφ − sinφ

sinφ cosφ

][
fNS 0

0 fS

]
.
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For four decay constants, can use FKS one-angle scheme!

we can relate {f8η , f8η′ , f0η , f
0
η′} with {fNS , fS}= {fπ, fss̄}:

[
f8η f0η
f8η′ f0η′

]
=

[
cosφ − sinφ

sinφ cosφ

][
fNS 0

0 fS

]


1√
3

√
2
3

−
√

2
3

1√
3




Some other useful relations between quantities of NS-S
(FKS) and 0-8 schemes:

f8 =

√
1

3
f2NS +

2

3
f2S , θ8 = φ− arctan

(√
2fS

fNS

)
,

f0 =

√
2

3
f2NS +

1

3
f2S , θ0 = φ− arctan

(√
2fNS

fS

)
.

η′ multiplicity and Witten-Veneziano relation at finite temperaturea – p. 47/49



For 3 DS models:T = 0 results of Shore’s generalization
Published by D. Horvatić et al., Eur. Phys. J. A 38 (2008) 257.

Jain-Munczek 〈A2〉-induced separable

χYM 1914 175.74 1914 175.74 1914 175.74

Mη 499.8 485.7 496.7 482.8 526.2 507.0

Mη′ 931.4 815.8 934.9 818.4 983.2 868.7

φ 52.01o 46.11o 51.85o 46.07o 47.23o 40.86o

θ −2.72o −8.62o −2.89o −8.67o −7.51o −13.87o

θ0 7.74o 1.84o 7.17o 1.39o −0.33o −6.69o

θ8 −12.00o −17.90o −11.85o −17.6o −14.12o −20.47o

f0 108.8 108.8 107.9 107.9 101.8 101.8

f8 122.6 122.6 121.1 121.1 110.7 110.7

f0
η -14.7 -3.5 -13.5 -2.6 0.6 11.9

f0
η′

107.9 108.8 107.1 107.9 101.8 101.1

f8
η 119.9 116.7 118.5 115.4 107.4 103.7

f8
η′ -25.5 -37.7 -2.49 -37.6 -27.0 -38.7

For T > 0, the substitution A → χ̃(T ) leads to similar successful results as
in the WV case!
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Summary 2

The results of the approach through Witten-Veneziano relation and
Shore’s approach are (qualitatively) quite similar.

Data on η′ enhanced multiplicity in RHIC experiments ⇒ neither the
original Witten-Veneziano relation nor Shore’s scheme can be
straightforwardly extended to T close to TCh, because the the ratio
6χYM(T )/fπ(T )

2 tends to blow up as T → TCh.

We find that the Leutwyler-Smilga relation enables one
1.) to retain unchanged Witten-Veneziano relation, with χYM, for
T = 0 (in fact, for any T sufficiently below TCh) but also
2.) to replace the T -dependence of χYM by that of the chiral
condensate. This ties the UA(1) symmetry restoration with the chiral
symmetry restoration, and achieves consistency of both
Witten-Veneziano and Shore’s approach with the data on η′

multiplicity.
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