η' multiplicity and Witten-Veneziano relation at finite temperature^a

S. Benić^b, D. Horvatić^b, D. Kekez^c, D. Klabučar^b (speaker)

 ^a Talk at Excited QCD 2013, 3.-9. February 2013, Bjelašnica Mountain, Sarajevo, Bosnia and Herzegovina
 ^bPhysics Department, University of Zagreb, Croatia
 ^cRudjer Bošković Institute, Zagreb, Croatia

Introduction and motivation

RHIC experiments show that hot QCD matter has very intricate properties = a big challenge to understand. But it is clear that:

- Hot QCD matter may be called "QGP", but this cannot be perturbatively interacting quark-gluon gas (as once expected) until much higher T
- Still no direct "smoking gun" signal of deconfinement, etc ... compelling signals of new form of matter sought:

• e.g., a change in symmetries obeyed by the strong interaction: the restoration of the [$SU_A(3)$ flavor] chiral symmetry and $U_A(1)$ Symmetry \Rightarrow a good understanding of the light-quark pseudoscalar nonet is needed - especially η, η' .

Hot hadrons = important for understanding hot QCD matter

- especially since lattice (& other, e.g., see Gossiaux's talk) show: J/Ψ and η_c stay bound till $\sim 2T_{cri}$, maybe higher ... + similar indications about light-quark mesons = motivation to:
 - explore validity of meson relations, e.g., WV relation:

$$M_{\eta'}^{2} + M_{\eta}^{2} - 2M_{K}^{2} = \frac{2N_{f}}{f_{\pi}^{2}}\chi_{\rm YM} \quad \left(+O(\frac{1}{N_{c}})\right)$$

(... and test validity of various T-rescaling procedures).

• use, even at high *T*, bound-state equations ... here, Dyson-Schwinger approach (by Zagreb group: Horvatić *et al.* PRD76 (2007) 096009) for non-anomalous sector, but results of Benić *et al.*, Phys. Rev. D84 (2011) 016006, for $U_A(1)$ -anomalous sector of $\eta - \eta'$ complex at T > 0.

Introduction and motivation

 $U_A(1)$ symmetry is broken by the nonabelian ("gluon") axial anomaly: even in the chiral limit (ChLim, where $m_q \rightarrow 0$),

$$\partial_{\alpha}\bar{\psi}(x)\gamma^{\alpha}\gamma_{5}\frac{\lambda^{0}}{2}\psi(x)\propto F^{a}(x)\cdot\widetilde{F}^{a}(x)\equiv\epsilon^{\mu\nu\rho\sigma}F^{a}_{\mu\nu}(x)F^{a}_{\rho\sigma}(x)\neq0\,.$$

This breaks the $U_A(1)$ symmetry of QCD and precludes the 9th Goldstone pseudoscalar meson \Rightarrow very massive η' : even in ChLim, where $m_{\pi}, m_{K}, m_{\eta} \rightarrow 0$, still ('ChLim WVR')

$$0 \neq \Delta M_{\eta_0}^2 = \Delta M_{\eta'}^2 = \frac{(A = \text{qty.dim.mass})^4}{("f_{\eta'}")^2} = \frac{6\,\chi_{\text{YM}}}{f_{\pi}^2} + O(\frac{1}{N_c})$$

... but uncertain fate of $U_A(1)$ breaking as T grows towards T_{YM} and T_{Ch} , where $\chi_{\text{YM}}(T)$ and $f_{\pi}(T)$ strongly drop/vanish!

Experimental observation of in-medium η' mass reduction

- High E heavy ion collisions \Rightarrow hot and dense medium
- $\sqrt{s} = 200 \text{ GeV Au+Au collide at RHIC} \Rightarrow \text{enhanced } \eta'$ abundance = 1st exp. signature of a partial $U_A(1)$ sym. restoration ... is it before chiral symmetry restoration?!?!
- Combined STAR & PHENIX data analyzed robustly through six popular models for multiplicities (ALCOR, FRITIOF, ...) \Rightarrow at 99,9% confidence level, η' mass is reduced by at least 200 MeV inside fireball. $M_{\eta'}^* = 340^{+50}_{-60}(statist.)^{+280}_{-140}(model) \pm 42(system.)$ MeV (Csörgő, Vértesi & Sziklai, Phys. Rev. Lett. 105 (2010) 182301.

= "The return of the prodigal Goldstone boson!" What are implications for the WV relation at T > 0?

Dyson-Schwinger approach to quark-hadron physics

- In the bound state approach which is nopertubative, covariant and Chirally well-behaved.
- a) direct contact with QCD through ab initio calculations
- b) phenomenological modeling of hadrons as quark bound states (used also here, for example)
- coupled system of integral equations for Green functions of QCD
- In but ... equation for n-point function calls (n+1)-point function ... \rightarrow cannot solve in full the growing tower of DS equations
- → various degrees of truncations, approximations and modeling is unavoidable (more so in phenomenological modeling of hadrons, as here)

Dyson-Schwinger approach to quark-hadron physics

For the present purposes, the most important advantage of DS approach is that it is **chirally well-behaved**: **non-anomalous parts** of the masses of the light pseudoscalar $q\bar{q}'$ mesons (i.e., all parts except ΔM_{η_0}) behave as $M_{q\bar{q}'}^2 = \text{const}(m_q + m_{q'}), \quad (q, q' = u, d, s).$ \Rightarrow non-anomalous parts of the masses in WVR cancel: $M_{n'}^2 + M_n^2 - 2 M_K^2 \approx \Delta M_{n_0}$ \Rightarrow already ChLim WVR reveals the essence of the influence of the gluon anomaly on the masses in η - η' complex. = **IMPORTANT**, since it shows almost model-independently that the WVR containing $\chi_{YM}(T)$ implies $M_{n'}(T)$ in conflict

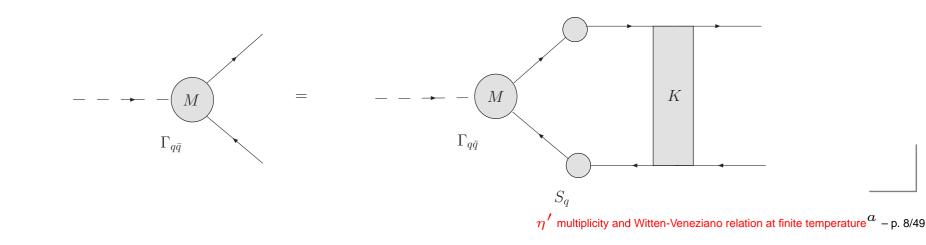
with experiment

 \Rightarrow Model dependence of our discussion is minimal as everything boils down to the ratio $\chi_{\rm YM}(T)/f_{\pi}(T)^2$...

Dyson-Schwinger approach to quark-hadron physics

• Gap equation for propagator S_q of dressed quark q

Homogeneous Bethe-Salpeter (BS) equation for a Meson $q\bar{q}$ bound state vertex $\Gamma_{q\bar{q}}$



Gap and BS equations in ladder truncation

$$S_{q}(p)^{-1} = i\gamma \cdot p + \widetilde{m}_{q} + \frac{4}{3} \int \frac{d^{4}\ell}{(2\pi)^{4}} g^{2} G_{\mu\nu}^{\text{eff}}(p-\ell)\gamma_{\mu} S_{q}(\ell)\gamma_{\nu}$$

$$\rightarrow S_q(p) = \frac{1}{i \not p A_q(p^2) + B_q(p^2)} = \frac{-i \not p A_q(p^2) + B_q(p^2)}{p^2 A_q(p^2)^2 + B_q(p^2)^2} = \frac{1}{A_q(p^2)} \frac{-i \not p + m_q(p^2)}{p^2 + m_q(p^2)^2}$$

$$\Gamma_{q\bar{q}'}(p,P) = -\frac{4}{3} \int \frac{d^4\ell}{(2\pi)^4} g^2 G^{\text{eff}}_{\mu\nu}(p-\ell) \gamma_{\mu} S_q(\ell + \frac{P}{2}) \Gamma_{q\bar{q}'}(\ell,P) S_q(\ell - \frac{P}{2}) \gamma_{\nu}$$

• Euclidean space: $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}$, $\gamma^{\dagger}_{\mu} = \gamma_{\mu}$, $a \cdot b = \sum_{i=1}^{4} a_i b_i$

- P is the total momentum, $M^2 = -P^2$ meson mass²
- $G_{\mu\nu}^{\text{eff}}(k)$ an "effective gluon propagator" modeled !

From the gap and BS equations ...

solutions of the gap equation \rightarrow the <u>dressed</u> quark mass function

$$m_q(p^2) = \frac{B_q(p^2)}{A_q(p^2)}$$

propagator solutions $A_q(p^2)$ and $B_q(p^2)$ pertain to <u>confined</u> quarks if

$$m_q^2(p^2) \neq -p^2$$
 for real p^2

• The BS solutions $\Gamma_{q\bar{q}'}$ enable the calculation of the properties of $q\bar{q}$ bound states, such as the decay constants of pseudoscalar mesons:

$$f_{PS} P_{\mu} = \langle 0 | \bar{q} \frac{\lambda^{PS}}{2} \gamma_{\mu} \gamma_{5} q | \Phi_{PS}(P) \rangle$$

$$\longrightarrow f_{\pi} P_{\mu} = N_{c} \operatorname{tr}_{s} \int \frac{d^{4} \ell}{(2\pi)^{4}} \gamma_{5} \gamma_{\mu} S(\ell + P/2) \Gamma_{\pi}(\ell; P) S(\ell - P/2)$$

Renormalization-group improved interactions

Landau gauge gluon propagator : $g^2 G^{\text{eff}}_{\mu\nu}(k) = G(-k^2)(-g_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{k^2}),$

$$G(Q^2) \equiv 4\pi \frac{\alpha_s^{\text{eff}}(Q^2)}{Q^2} = G_{\text{UV}}(Q^2) + G_{\text{IR}}(Q^2), \qquad Q^2 \equiv -k^2$$

$$G_{\text{UV}}(Q^2) = 4\pi \frac{\alpha_s^{\text{pert}}(Q^2)}{Q^2} \approx \frac{4\pi^2 d}{Q^2 \ln(x_0 + \frac{Q^2}{\Lambda_{\text{QCD}}^2})} \left\{ 1 + b \frac{\ln[\ln(x_0 + \frac{Q^2}{\Lambda_{\text{QCD}}^2})]}{\ln(x_0 + \frac{Q^2}{\Lambda_{\text{QCD}}^2})} \right\},$$

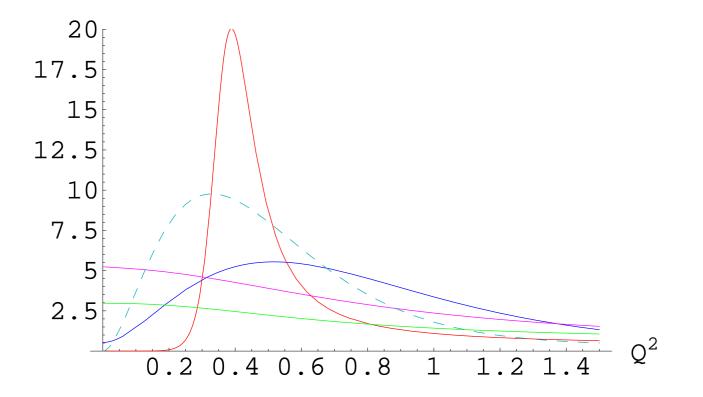
but modeled non-perturbative part, e.g., Jain & Munczek:

 $G_{\mathsf{IR}}(Q^2) = G_{\mathsf{non-pert}}(Q^2) = 4\pi^2 a Q^2 \exp(-\mu Q^2)$ (similar : Maris, Roberts...)

• or, the dressed propagator with dim. 2 gluon condensate $\langle A^2 \rangle$ -induced dynamical gluon mass (Kekez & Klabučar):

$$G(Q^2) = 4\pi \frac{\alpha_s^{\text{pert}}(Q^2)}{Q^2} \left(\frac{Q^2}{Q^2 - M_{\text{gluon}}^2 + \frac{c_{\text{ghost}}}{Q^2}} \right)^2 \frac{Q^2}{Q^2 + M_{\text{gluon}}^2 + \frac{c_{\text{gluon}}}{Q^2}} \,.$$

Some effective strong couplings $\alpha_s^{\text{eff}}(Q^2) \equiv Q^2 G(Q^2)/4\pi$



Blue = Munczek & Jain model. Red = K & K propagator with $\langle A^2 \rangle$ -induced dynamical gluon mass. Green = Alkofer. Magenta = Bloch. Turquoise dashed: Maris, Roberts & Tandy model.
Important: integrated IR strength must be sufficient for DChSB!

Separable model = good, + easier at T > 0

Calculations simplify with the separable Ansatz for $G_{\mu\nu}^{\text{eff}}$:

$$G_{\mu\nu}^{\text{eff}}(p-q) \to \delta_{\mu\nu} G(p^2, q^2, p \cdot q)$$

$$G(p^2, q^2, p \cdot q) = D_0 f_0(p^2) f_0(q^2) + D_1 f_1(p^2) (p \cdot q) f_1(q^2)$$

• two strength parameters D_0, D_1 , and corresponding form factors $f_i(p^2)$. In the separable model, gap equation yields

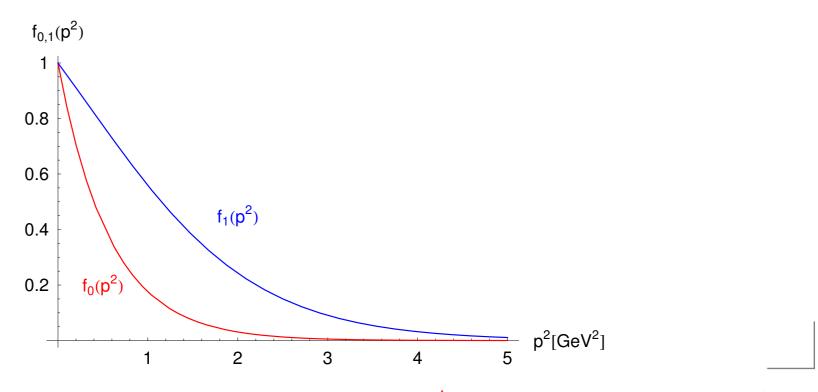
$$B_f(p^2) = \tilde{m}_f + \frac{16}{3} \int \frac{d^4q}{(2\pi)^4} G(p^2, q^2, p \cdot q) \frac{B_f(q^2)}{q^2 A_f^2(q^2) + B_f^2(q^2)}$$
$$[A_f(p^2) - 1] p^2 = \frac{8}{3} \int \frac{d^4q}{(2\pi)^4} G(p^2, q^2, p \cdot q) \frac{(p \cdot q)A_f(q^2)}{q^2 A_f^2(q^2) + B_f^2(q^2)}.$$

• This gives $B_f(p^2) = \tilde{m}_f + b_f f_0(p^2)$ and $A_f(p^2) = 1 + a_f f_1(p^2)$, reducing to nonlinear equations for constants b_f and a_f .

A simple choice for 'interaction form factors' of the separable model:

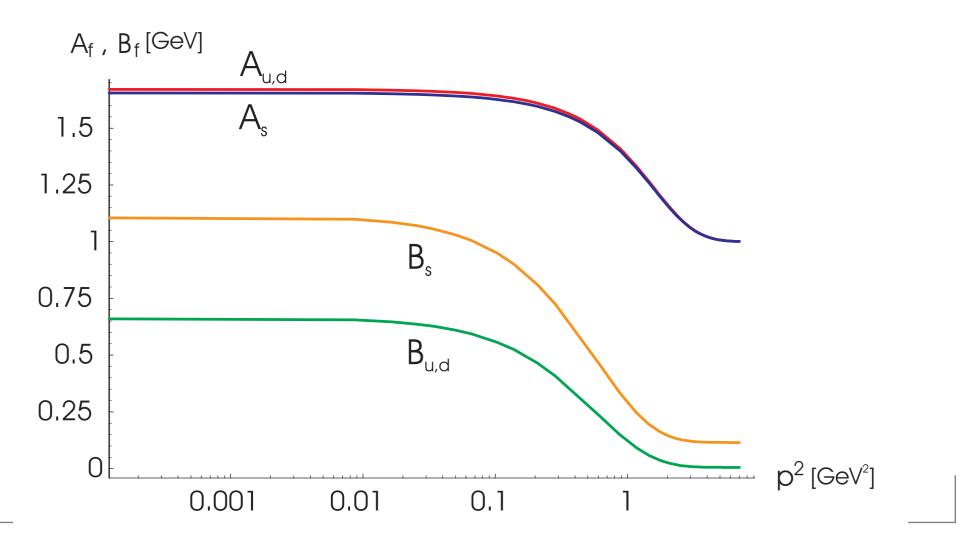
•
$$f_0(p^2) = \exp(-p^2/\Lambda_0^2)$$

• $f_1(p^2) = [1 + \exp(-p_0^2/\Lambda_1^2)]/[1 + \exp((p^2 - p_0^2))/\Lambda_1^2]$ gives good description of pseudoscalar properties if the interaction is strong enough for realistic DChSB, when $m_{u,d}(p^2 \sim small) \sim$ the typical constituent quark mass scale $\sim m_\rho/2 \sim m_N/3$.



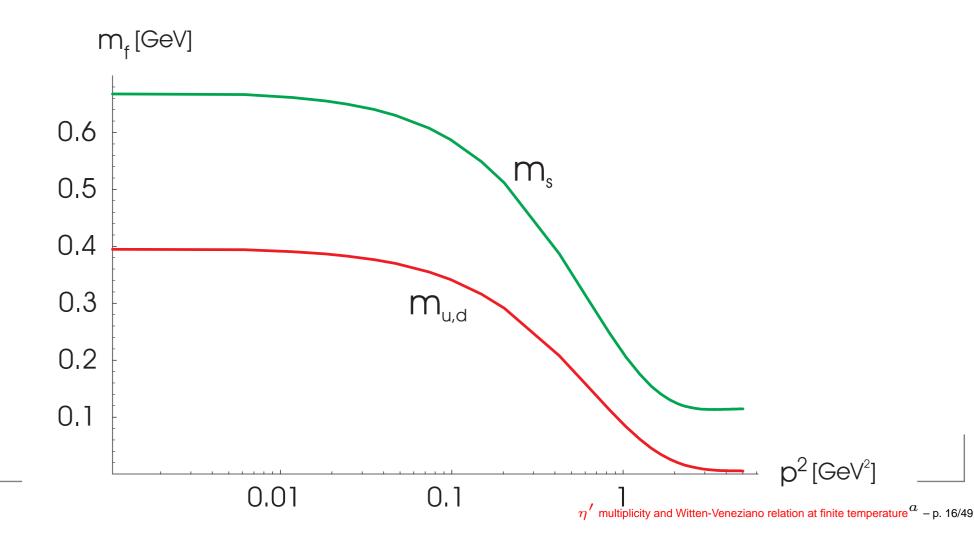
Nonperturbative dynamical propagator dressing

 \longrightarrow Dynamical Chiral Symmetry Breaking (DChSB)



DChSB = nonperturb. generation of large quark masses ...

• ... even in the chiral limit ($\tilde{m}_f \rightarrow 0$), where the octet pseudoscalar mesons are Goldstone bosons of DChSB!



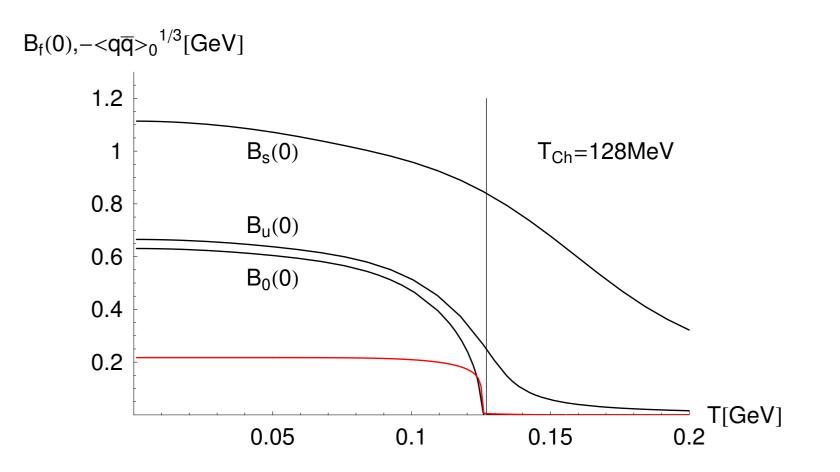
At T = 0, good DS results; e.g., "non-anomalous":

- Separable model parameter values reproducing experimental data:
- $\widetilde{m}_{u,d} = 5.5 \text{ MeV}, \Lambda_0 = 758 \text{ MeV}, \Lambda_1 = 961 \text{ MeV}, p_0 = 600 \text{ MeV},$ $D_0 \Lambda_0^2 = 219, D_1 \Lambda_1^4 = 40 \text{ (fixed by fitting } M_{\pi}, f_{\pi}, M_{\rho}, g_{\rho\pi^+\pi^-}, g_{\rho e^+e^-}$ $\rightarrow \text{ pertinent predictions } a_{u,d} = 0.672, b_{u,d} = 660 \text{ MeV}, \text{ i.e., } m_{u,d}(p^2),$ $\langle \bar{u}u \rangle$)
- $\tilde{m}_s = 115 \text{ MeV}$ (fixed by fitting $M_K \rightarrow \text{predictions } a_s = 0.657, b_s = 998$ MeV, i.e., $m_s(p^2)$, $\langle \bar{s}s \rangle$, $M_{s\bar{s}}$, f_K , $f_{s\bar{s}}$)
- Summary of results (all in GeV) for q = u, d, s and pseudoscalar mesons without the influence of gluon anomaly:

$\ \ PS$	M_{PS}	M_{PS}^{exp}	f_{PS}	f_{PS}^{exp}	$m_q(0)$	$-\langle q\bar{q}\rangle_0^{1/3}$
π	0.140	0.1396	0.092	0.0924 ± 0.0003	0.398	0.217
K	0.495	0.4937	0.110	0.1130 ± 0.0010		
$s\bar{s}$	0.685		0.119		0.672	

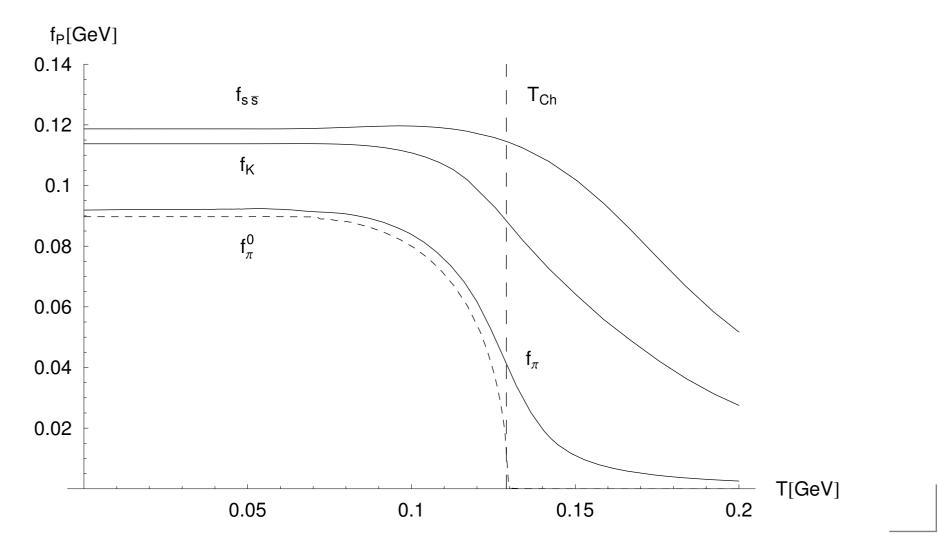
At T > 0, good and less good DS results

E.g., chiral symmetry restoration qualitatively good, but T_{Ch} lower than lattice (maybe up to 35%, and even more for 'more realistic' DS models unless they contain δ -function):



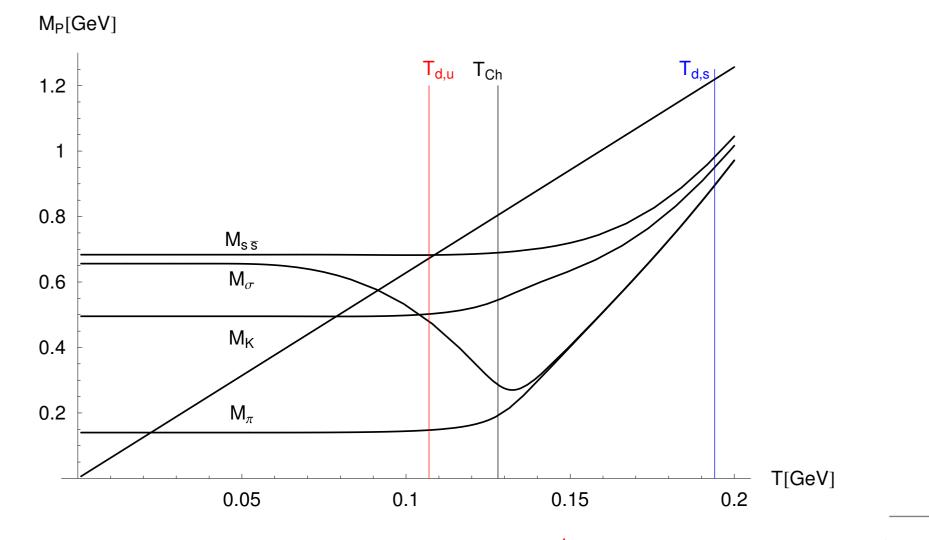
Same with pseudoscalar decay constants $f_P(T)$:

Both crossover and Ch-limit behavior OK, but $T_{Ch} = 128 \text{ MeV}$... but this is cured by introducing Polyakov loop (PL)



Similarly with the *T*-dependence of $\pi, K, s\bar{s}, \sigma$ masses:

'Deconfinement' $T_{d,q}$ from S_q pole - very different $T_{d,u}$, $T_{d,s}$... also cured/synchronized with $T_{Ch}(=T_{cri})$ by PL



- present approach yields mass² eigenvalues $M_{u\bar{d}}^2 = M_{\pi^+}^2, M_{u\bar{s}}^2 = M_K^2, ..., \hat{M}_{NA}^2 = \text{diag}(M_{u\bar{u}}^2, M_{d\bar{d}}^2, M_{s\bar{s}}^2)$
- $|u\bar{d}\rangle = |\pi^+\rangle, |u\bar{s}\rangle = |K^+\rangle, \dots$ but $|u\bar{u}\rangle, |d\bar{d}\rangle$ and $|s\bar{s}\rangle$ do not correspond to any physical particles (at T = 0 at least!), although in the isospin limit (adopted from now on) $M_{u\bar{u}} = M_{d\bar{d}} = M_{u\bar{d}} = M_{\pi}$. *I* is a good quantum number!

 \blacksquare \Rightarrow recouple into "more physical" $I_3 = 0$ octet-singlet basis

$$I = 1 \qquad |\pi^{0}\rangle = \frac{1}{\sqrt{2}}(|u\bar{u}\rangle - |d\bar{d}\rangle) ,$$

$$I = 0 \qquad |\eta_{8}\rangle = \frac{1}{\sqrt{6}}(|u\bar{u}\rangle + |d\bar{d}\rangle - 2|s\bar{s}\rangle) ,$$

$$I = 0 \qquad |\eta_{0}\rangle = \frac{1}{\sqrt{3}}(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle) .$$

• the "non-anomalous" (chiral-limit-vanishing!) part of the mass-squared matrix of π^0 and η 's is (in π^0 - η_8 - η_0 basis)

$$\hat{M}_{NA}^2 = \begin{pmatrix} M_{\pi}^2 & 0 & 0 \\ 0 & M_{88}^2 & M_{80}^2 \\ 0 & M_{08}^2 & M_{00}^2 \end{pmatrix}$$

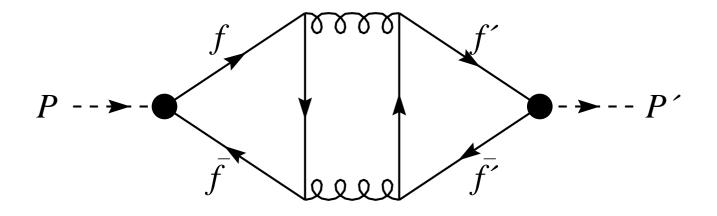
$$M_{88}^2 \equiv \langle \eta_8 | \hat{M}_{NA}^2 | \eta_8 \rangle = \frac{2}{3} (M_{s\bar{s}}^2 + \frac{1}{2} M_{\pi}^2),$$

$$M_{80}^2 \equiv \langle \eta_8 | \hat{M}_{NA}^2 | \eta_0 \rangle = M_{08}^2 = \frac{\sqrt{2}}{3} (M_\pi^2 - M_{s\bar{s}}^2)$$

$$M_{00}^2 \equiv \langle \eta_0 | \hat{M}_{NA}^2 | \eta_0 \rangle = \frac{2}{3} (\frac{1}{2} M_{s\bar{s}}^2 + M_{\pi}^2),$$

Not enough! In order to avoid the U_A(1) problem, one must break the U_A(1) symmetry (as it is destroyed by the gluon anomaly) at least at the level of the masses.

Gluon anomaly is not accessible to ladder approximation!



Diamond graph: an example of a transition $|q\bar{q}\rangle \rightarrow |q'\bar{q}'\rangle$ (q,q'=u,d,s[...]), contributing to the anomalous masses in the η - η' complex, but not included in the interaction kernel in the ladder approximation.

- All masses in \hat{M}_{NA}^2 are calculated in the ladder approx., which cannot include the gluon anomaly contributions.
- Large N_c : the gluon anomaly suppressed as $1/N_c! \rightarrow$ Include its effect just at the level of masses: break the $U_A(1)$ symmetry and avoid the $U_A(1)$ problem by shifting the η_0 (squared) mass by anomalous contribution 3β .
- complete mass matrix is then $\hat{M}^2 = \hat{M}_{NA}^2 + \hat{M}_A^2$ where

$$\hat{M}_A^2 = \left(egin{array}{cccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 3eta \end{array}
ight) \quad ext{does not vanish in the chiral limit.}$$

 $3\beta = \Delta M_{\eta_0}^2$ = the anomalous mass² of η_0 [in SU(3) limit incl. ChLim] is related to the YM topological susceptibility. Fixed by phenomenology or (here) taken from the lattice.

• we can also rewrite \hat{M}_A^2 in the $q\bar{q}$ basis $|u\bar{u}\rangle$, $|d\bar{d}\rangle$, $|s\bar{s}\rangle$

$$\hat{M}_{A}^{2} = \beta \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{\text{flavor}} \hat{M}_{A}^{2} = \beta \begin{pmatrix} 1 & 1 & X \\ 1 & 1 & X \\ X & X & X^{2} \end{pmatrix}$$
breaking

- We introduced the effects of the flavor breaking on the anomaly-induced transitions $|q\bar{q}\rangle \rightarrow |q'\bar{q}'\rangle$ (q,q'=u,d,s). $s\bar{s}$ transition suppression estimated by $X \approx f_{\pi}/f_{s\bar{s}}$.
- In the octet-singlet basis is modified to

$$\hat{M}_A^2 = \beta \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{2}{3}(1-X)^2 & \frac{\sqrt{2}}{3}(2-X-X^2) \\ 0 & \frac{\sqrt{2}}{3}(2-X-X^2) & \frac{1}{3}(2+X)^2 \end{pmatrix}$$

nonstrange (NS) – strange (S) basis

$$\begin{split} \eta_{NS} \rangle &= \frac{1}{\sqrt{2}} (|u\bar{u}\rangle + |d\bar{d}\rangle) = \frac{1}{\sqrt{3}} |\eta_8\rangle + \sqrt{\frac{2}{3}} |\eta_0\rangle ,\\ |\eta_S\rangle &= |s\bar{s}\rangle = -\sqrt{\frac{2}{3}} |\eta_8\rangle + \frac{1}{\sqrt{3}} |\eta_0\rangle . \end{split}$$

• the η - η' matrix in this basis is

$$\hat{M}^2 = \begin{pmatrix} M_{\eta_{NS}}^2 & M_{\eta_S\eta_{NS}}^2 \\ M_{\eta_{NS}\eta_S}^2 & M_{\eta_S}^2 \end{pmatrix} = \begin{pmatrix} M_{u\bar{u}}^2 + 2\beta & \sqrt{2}\beta X \\ \sqrt{2}\beta X & M_{s\bar{s}}^2 + \beta X^2 \end{pmatrix} \xrightarrow{\phi} \begin{pmatrix} m_{\eta}^2 & 0 \\ 0 & m_{\eta'}^2 \end{pmatrix}$$

NS–S mixing relations

$$|\eta\rangle = \cos\phi|\eta_{NS}\rangle - \sin\phi|\eta_S\rangle$$
, $|\eta'\rangle = \sin\phi|\eta_{NS}\rangle + \cos\phi|\eta_S\rangle$.

$$\theta = \phi - \arctan \sqrt{2}$$

- Let lowercase m_M 's denote the empirical mass of meson M. From our calculated, model mass matrix in NS-S basis, we form its empirical counterpart \hat{m}_{exp}^2 by
- i) obvious substitutions $M_{u\bar{u}} \equiv M_{\pi} \rightarrow m_{\pi}$, $M_{s\bar{s}} \rightarrow m_{s\bar{s}}$
- *ii*) by noting that $m_{s\bar{s}}$, the "empirical" mass of the unphysical $s\bar{s}$ pseudoscalar bound state, is given in terms of masses of physical particles as $m_{s\bar{s}}^2 \approx 2m_K^2 m_\pi^2$. Then,

$$\hat{m}_{\exp}^2 = \begin{bmatrix} m_{\pi}^2 + 2\beta & \sqrt{2}\beta X \\ \sqrt{2}\beta X & 2m_K^2 - m_{\pi}^2 + \beta X^2 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} m_{\eta}^2 & 0 \\ 0 & m_{\eta'}^2 \end{bmatrix}$$

Finally, fix anomalous contribution to η **-** η **':**

igsquire the trace of the empirical $\hat{m}^2_{ ext{exp}}$ demands the 1^{st} equality in

$$\beta(2+X^2) = m_{\eta}^2 + m_{\eta'}^2 - 2m_K^2 = \frac{2N_f}{f_{\pi}^2} \chi_{\rm YM} \quad (2^{\rm nd} \text{equality} = WV \text{ relation})$$

- requiring that the experimental trace $(m_{\eta}^2 + m_{\eta'}^2)_{exp} \approx 1.22$ GeV² be reproduced by the theoretical \hat{M}^2 , yields $\beta_{\text{fit}} = \frac{1}{2+X^2} [(m_{\eta}^2 + m_{\eta'}^2)_{exp} - (M_{u\bar{u}}^2 + M_{s\bar{s}}^2)]$
- Or, get β from lattice χ_{YM} ! Then no free parameters!
- then, can calculate the NS-S mixing angle ϕ

$$\tan 2\phi = \frac{2M_{\eta_S\eta_{NS}}^2}{M_{\eta_S}^2 - M_{\eta_{NS}}^2} = \frac{2\sqrt{2}\beta X}{M_{\eta_S}^2 - M_{\eta_{NS}}^2} \quad \text{and}$$

$$P_{NS} = M_{u\bar{u}}^2 + 2\beta = M_{\pi}^2 + 2\beta, \quad M_{\eta_S}^2 = M_{s\bar{s}}^2 + \beta X^2 = M_{s\bar{s}}^2 + \beta \frac{f_{\pi}^2}{f_{s\bar{s}}^2} \dots$$

• The diagonalization of the NS-S mass matrix then finally gives us the *calculated* η and η' masses:

$$M_{\eta}^{2} = \cos^{2} \phi M_{\eta_{NS}}^{2} - \sqrt{2}\beta X \sin 2\phi + \sin^{2} \phi M_{\eta_{S}}^{2}$$
$$M_{\eta'}^{2} = \sin^{2} \phi M_{\eta_{NS}}^{2} + \sqrt{2}\beta X \sin 2\phi + \cos^{2} \phi M_{\eta_{S}}^{2}$$

Equivalently, from the secular determinant,

$$\begin{split} M_{\eta}^{2} &= \frac{1}{2} \left[M_{\eta_{NS}}^{2} + M_{\eta_{S}}^{2} - \sqrt{(M_{\eta_{NS}}^{2} - M_{\eta_{S}}^{2})^{2} + 8\beta^{2}X^{2}} \right] \\ &= \frac{1}{2} \left[M_{\pi}^{2} + M_{s\bar{s}}^{2} + \beta(2 + X^{2}) - \sqrt{(M_{\pi}^{2} + 2\beta - M_{s\bar{s}}^{2} - \beta X^{2})^{2} + 8\beta^{2}X^{2}} \right] \\ M_{\eta'}^{2} &= \frac{1}{2} \left[M_{\eta_{NS}}^{2} + M_{\eta_{S}}^{2} + \sqrt{(M_{\eta_{NS}}^{2} - M_{\eta_{S}}^{2})^{2} + 8\beta^{2}X^{2}} \right] \\ &= \frac{1}{2} \left[M_{\pi}^{2} + M_{s\bar{s}}^{2} + \beta(2 + X^{2}) + \sqrt{(M_{\pi}^{2} + 2\beta - M_{s\bar{s}}^{2} - \beta X^{2})^{2} + 8\beta^{2}X^{2}} \right] \end{split}$$

Separable model results on η and η' mesons (at T = 0)

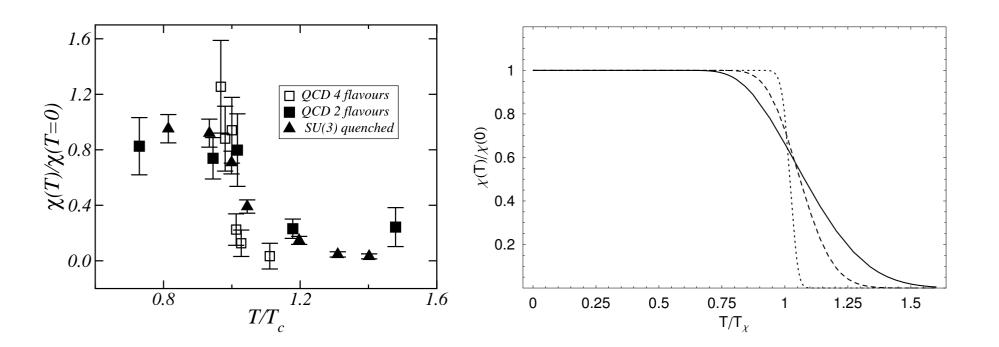
	$eta_{ ext{fit}}$	$\beta_{\text{latt.}}$	Exp.
θ	-12.22°	-13.92°	
M_{η}	548.9	543.1	547.75
$M_{\eta'}$	958.5	932.5	957.78
$X^{'}$	0.772	0.772	
3eta	0.845	0.781	

- masses are in units of MeV, 3β in units of GeV² and the mixing angles are dimensionless.
- $\beta_{\text{latt.}}$ was obtained from $\chi_{\text{YM}}(T=0) = (175.7 \text{ MeV})^4$
- $X = f_{\pi}/f_{s\bar{s}}$ as well as the whole \hat{M}_{NA}^2 (consisting of M_{π} and $M_{s\bar{s}}$) are calculated model quantities.

	S mou	13. 301	illiai y Ul	$\underline{I} = 0 \mathbf{I} \mathbf{C}$		_ • • •
from Ref.	J-M&WV	A^2 &WV	separab&WV	orig. Shore	Experiment	
M_{π}	137.3	135.0	140.0		$(138.0)^{isospin}_{average}$	
M_K	495.7	494.9	495.0		$(495.7)^{isospin}_{average}$	
$M_{s\bar{s}}$	700.7	722.1	684.8			
f_{π}	93.1	92.9	92.0		92.4 ± 0.3	
f_K	113.4	111.5	110.1		113.0 ± 1.0	
$f_{sar{s}}$	135.0	132.9	119.1			
M_{η}	568.2	577.1	542.3		547.75 ± 0.12	
$M_{\eta'}$	920.4	932.0	932.6		957.78 ± 0.14	
ϕ	41.42^{o}	39.56^{o}	40.75^{o}	38.24^{o}		
heta	-13.32^{o}	-15.18^{o}	-13.98^{o}	-16.5^{o}		
$ heta_0$	-2.86^{o}	-5.12^{o}	-6.80^{o}	-12.3^{o}		
$ heta_8$	-22.59^{o}	-24.14^{o}	-20.58^{o}	-20.1^{o}		
f_0	108.8	107.9	101.8	106.6		
f_8	122.6	121.1	110.7	104.8		
f_η^0	5.4	9.6	12.1	22.8		
$f^0_{\eta'}$	108.7	107.5	101.1	104.2		
f_η^8	113.2	110.5	103.7	98.4		
$f^8_{\eta'}$	-47.1	-49.5	-38.9	η' mu ltigify and Witten	Veneziano relation at finite tempera	ature a – p. 31/49

For three DS models: summary of T = 0 results from WV

$\chi,$ topological susceptibility of QCD vacuum, at T>0

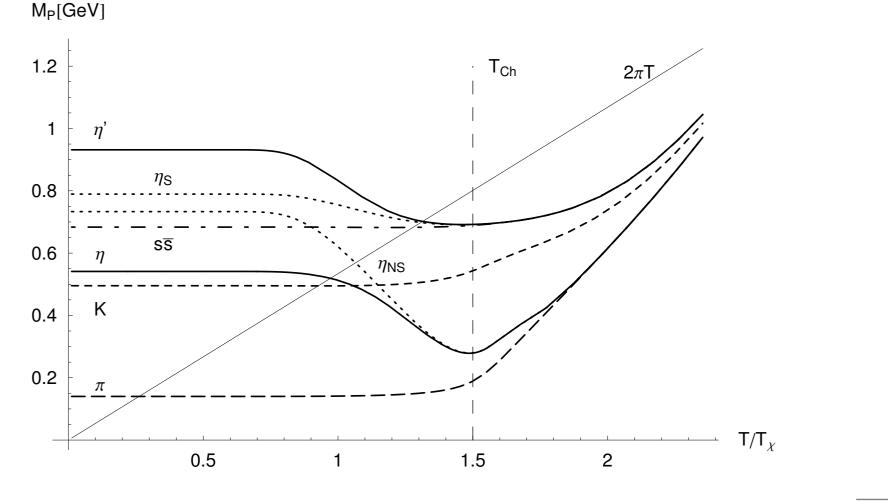


$$\chi = \int d^4x \; ; \langle q(x)q(0)\rangle \; , \qquad q(x) = \frac{g^2}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu}(x) F^a_{\rho\sigma}(x) \;$$

- q(x) = topological charge density operator
- In WV rel., χ is the pure-glue, YM one, $\chi_{YM} \leftrightarrow \chi_{quench}$.

Relative temperature (T/T_{χ}) dependence of meson masses

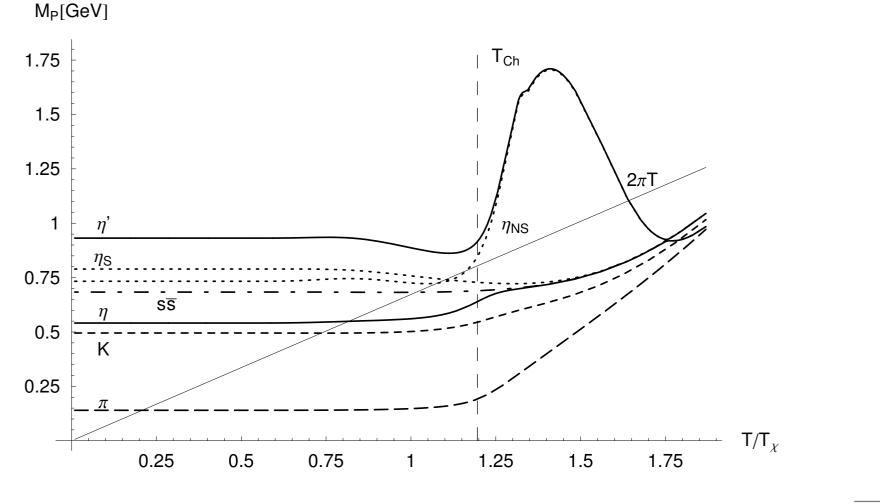
 $\chi = \chi_{YM} \Rightarrow$ The required drop (~ 200 MeV) of $M_{\eta'}$ only for very unrealistically low $T_{\chi}/T_{\rm Ch}$ ratio, where $\chi_{\rm YM}(T)$ melts before $f_{\pi}(T)$ diminishes much.



Extremely low $T_{\chi} = 2/3 T_{\rm Ch}$ (Tutiplety and Witten-Vereziand regation at finite temperature^a - p. 33/49

Relative temperature (T/T_{χ}) dependence of meson masses

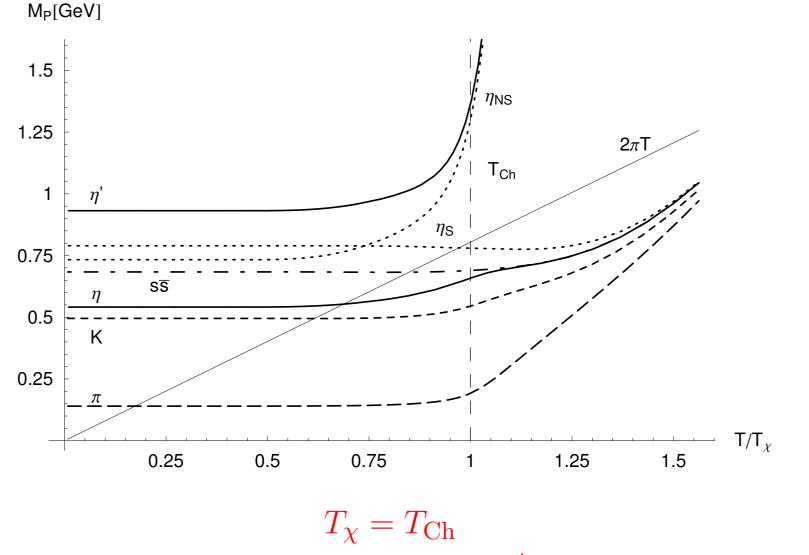
 $-\chi_{\rm YM}/f_{\pi}^2$ implies η' mass increase \rightarrow suppression of the η' multiplicity already for still unrealistically low topological susceptibility-melting temperature $T_{\chi} \gtrsim 0.8 T_{\rm Ch}$. Failure of WV relation at $T \gtrsim T_{\rm Ch}$.



Still unrealistically low $T_{\chi} = 0.836 T_{\text{Cyl}multiplicity}} \left(T_{\text{Cyl}multiplicity}} - 1.20 T_{\text{Cyl}multiplicity}} \right)$

Obviously WV relation fails as *T* **approaches** $T_{\chi} \sim T_{\rm Ch}$:

 χ_{YM}/f_{π}^2 implies a huge η' mass increase, to 5 GeV for $T_{\chi} = T_{Ch}$, \Rightarrow total suppression of the η' multiplicity, instead of enhancement



Solution: another connection of different theories

Early work by Di Vecchia & Veneziano ... Leutwyler & Smilga [Phys. Rev. D46 (1992) 5607] derived, up to $O(\frac{1}{N_c})$,

$$(\text{at }T=0), \qquad \chi_{\mathbf{YM}} = \frac{\chi}{1+\chi \frac{N_f}{m \langle \bar{q}q \rangle_0}} \equiv \widetilde{\chi}$$

 \Rightarrow relates χ_{YM} to the full-QCD topological susceptibility χ , chiral condensate $\langle \bar{q}q \rangle_0$ and $m \equiv N_f \times$ the reduced mass. Presently $N_f = 3$, *i.e.*, $N_f/m = \sum_{q=u,d,s} (1/m_q)$.

• in the limit of very heavy quarks, $m_q, m \to \infty$, it confirms expectations that $\chi_{\rm YM}$ = value of topolog. susceptibility in *quenched* QCD, $\chi_{\rm YM} = \chi(m_q = \infty)$

• It shows $\chi \leq \min(-m \langle \bar{q}q \rangle_0 / N_f, \chi_{\rm YM})$

LS relation also holds in the oposite limit!

This (presently pertinent!) limit of light quarks = still a problem to get the full-QCD topol. susceptibility χ on lattice. Fortunately (Di Vecchia, Veneziano), there is the analytic result for small m_q :

$$\chi = -\frac{m \langle \bar{q}q \rangle_0}{N_f} + \mathcal{C}(m) \,,$$

- C(m) = small corrections of higher orders in small m_q , ... but C(m) should not be neglected, since C(m) = 0 would imply that $\chi_{YM} = \infty$.
- LS relation fixes the value of the correction at T = 0:

$$\frac{1}{\mathcal{C}(m)} = \frac{N_f}{m \langle \bar{q}q \rangle_0} - \chi_{\rm YM}(0) \left(\frac{N_f}{m \langle \bar{q}q \rangle_0}\right)^2$$

$T\text{-}\mathbf{dependence}$ of $\widetilde{\chi}$

- LS relation must break down as T rises towards the (pseudo)critical temperatures of full QCD ($\sim T_{\rm Ch}$) since the YM quantity, $\chi_{\rm YM}$, is much more T-resistant than RHS.
- RHS $\equiv \tilde{\chi}$ consists of the full-QCD quantities χ and $\langle \bar{q}q \rangle_0$, the quantities of full QCD with quarks, characterized by $T_{\rm Ch}$, just as $f_{\pi}(T)$.
- Thus, the troublesome mismatch in *T*-dependences of $f_{\pi}(T)$ and the pure-gauge $\chi_{\rm YM}(T)$ is expected to disappear if $\chi_{\rm YM}(T)$ is replaced by $\widetilde{\chi}(T)$, the *T*-extended RHS of LS relation
- The usual, successful zero-*T* WV relation is thereby retained, since $\chi_{\rm YM} = \widetilde{\chi}$ at T = 0.

$T\text{-dependence of }\chi \text{ and }\widetilde{\chi}$

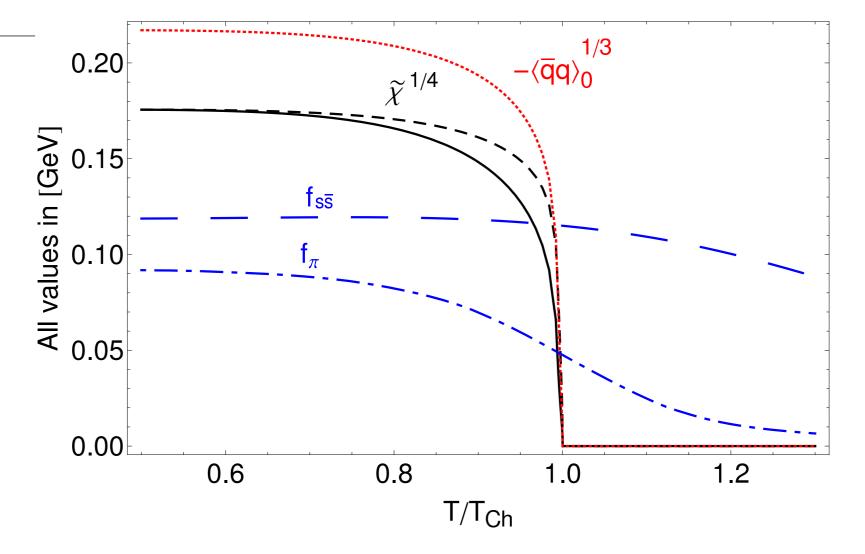
- Extending the light-quark full-QCD topol. susceptibility χ is somewhat uncertain, as there is no guidance from lattice [unlike for $\chi_{YM}(T)$].
- The leading term in Di Vecchia-Veneziano relation $\propto \langle \bar{q}q \rangle_0(T)$ very plausibly, but for the correction term we have to explore a range of Ansätze, i.e.,

$$\chi(T) = -\frac{m \langle \bar{q}q \rangle_0(T)}{N_f} + \mathcal{C}(m) \left[\frac{\langle \bar{q}q \rangle_0(T)}{\langle \bar{q}q \rangle_0(T=0)} \right]^{\delta}, \quad (0 \le \delta < 2).$$

Then, $\widetilde{\chi}(T) =$

$$= \frac{\langle \bar{q}q \rangle_0(T)}{\sum_{q=u,d,s} \left(\frac{1}{m_q}\right)} \left\{ 1 - \frac{\langle \bar{q}q \rangle_0(T)}{\sum_{q=u,d,s} \left(\frac{1}{m_q}\right)} \frac{1}{\mathcal{C}(m)} \left[\frac{\langle \bar{q}q \rangle_0(T=0)}{\langle \bar{q}q \rangle_0(T)} \right]^{\delta} \right\}.$$

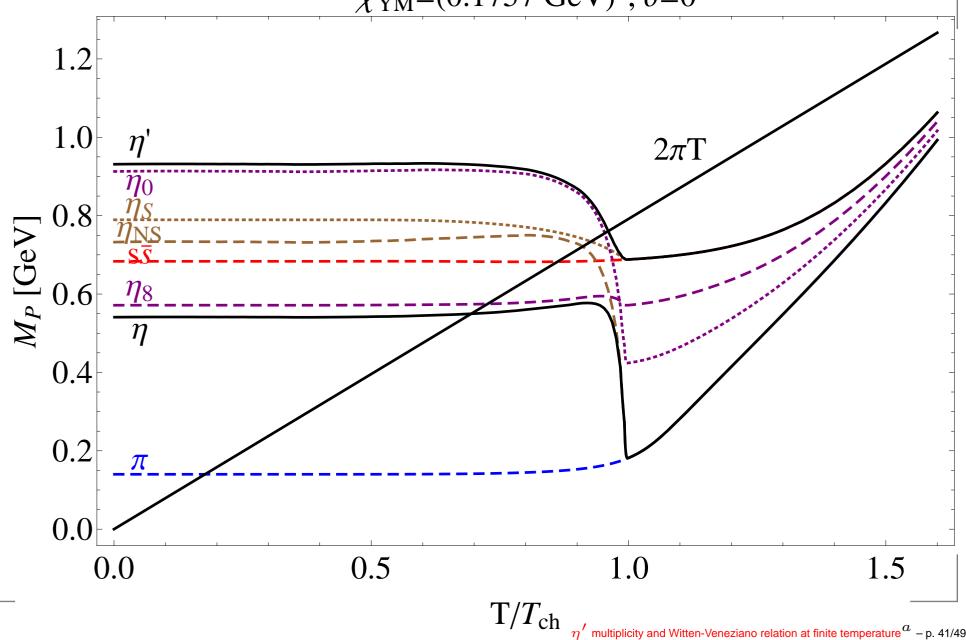
T-dependence of $\tilde{\chi}$ follows the chiral condensate $\langle \bar{q}q \rangle_0(T)$:



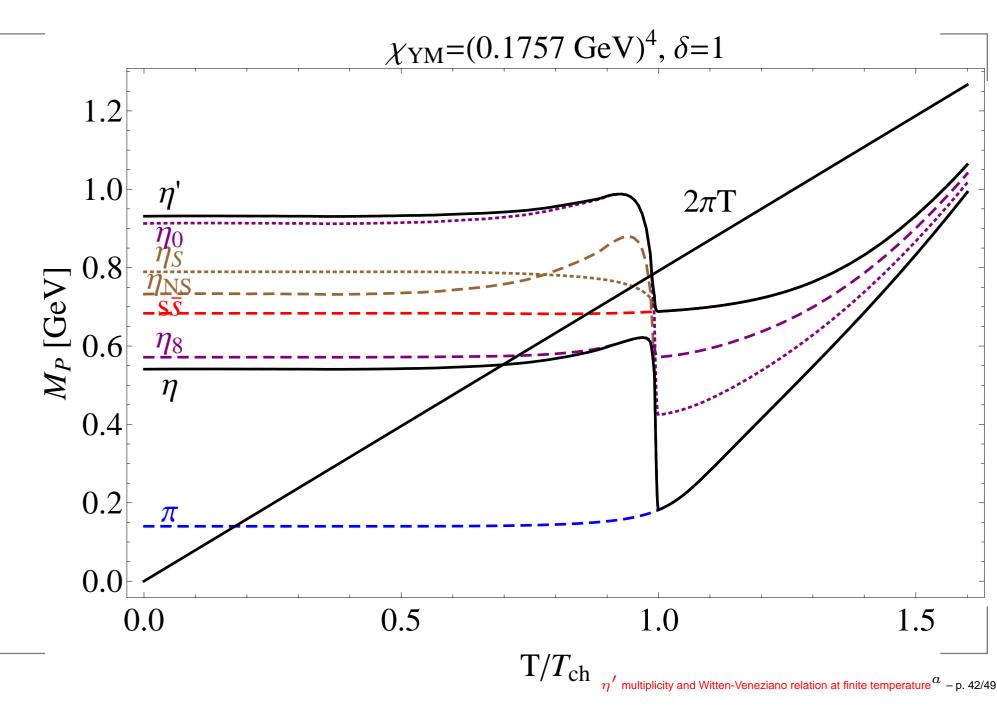
 $\rightarrow T$ -dependence of the anomalous mass contribution will also follow the chiral condensate $\langle \bar{q}q \rangle_0(T)!$

Case 1: *T***-independent correction term in** χ

 $\chi_{\rm YM} = (0.1757 \text{ GeV})^4, \delta = 0$



Case 2: Strongly *T***-dependent correction term** $\propto \langle \bar{q}q \rangle_0(T)$



Summary

- η' enhanced multiplicity shows that WV relation cannot be straightforwardly extended to T's close to T_{Ch} , because the T-dependence of the ratio $\chi_{\text{YM}}(T)/f_{\pi}(T)^2$ starts failing as $T \to T_{\text{Ch}}$. Rescalings of T_{YM} useless!
- Leutwyler-Smilga and Di Vecchia-Veneziano relations 1.) enable one to retain unchanged WV relation, with χ_{YM} , for T = 0 (in fact, any T sufficiently below T_{Ch}) and 2.) to replace the T-dependence of χ_{YM} by that of the chiral condensate. This achieves consistency of the WV relation with the data on η' multiplicities, and indicates how chiral restoration may be linked with the $U_A(1)$ one.
- Further work: Extension to finite density for η' experiments, e.g., at NICA, as $\langle \bar{q}q \rangle_0(\mu) \rightarrow 0$ for $\mu \rightarrow \mu_{crit}$. – What happens in Shore's generalization of WV relation?

Shore's generalization of WV valid to all orders in $1/N_c$

Inclusion of gluon anomaly in DGMOR relations \rightarrow

 $(f^{0\eta'})^2 m_{\eta'}^2 + (f^{0\eta})^2 m_{\eta}^2 = \frac{1}{3} \left(f_\pi^2 m_\pi^2 + 2 f_K^2 m_K^2 \right) + 6A \quad (1)$

$$f^{0\eta'} f^{8\eta'} m_{\eta'}^2 + f^{0\eta} f^{8\eta} m_{\eta}^2 = \frac{2\sqrt{2}}{3} \left(f_\pi^2 m_\pi^2 - f_K^2 m_K^2 \right)$$
(2)

$$(f^{8\eta'})^2 m_{\eta'}^2 + (f^{8\eta})^2 m_{\eta}^2 = -\frac{1}{3} (f_\pi^2 m_\pi^2 - 4f_K^2 m_K^2) mber$$
 (3)

 $A = \chi_{YM} + \mathcal{O}(\frac{1}{N_c}) = \text{full QCD topological charge.}$ (1)+(3)

 $(f^{0\eta'})^2 m_{\eta'}^2 + (f^{0\eta})^2 m_{\eta}^2 + (f^{8\eta})^2 m_{\eta}^2 + (f^{8\eta'})^2 m_{\eta'}^2 - 2f_K^2 m_K^2 = 6A$

• Then, large N_c limit and $f^{0\eta}, f^{8\eta'} \to 0$ as well as $f^{0\eta'}, f^{8\eta}, f_K \to f_{\pi}$ recovers the standard WV.

η' and η have 4 independent decay constants

$f^{0}_{\eta'}, f^{8}_{\eta}, f^{0}_{\eta}, f^{8}_{\eta'}: \quad \langle 0|A^{a\,\mu}(x)|P(p)\rangle = if^{a}_{P}\,p^{\mu}e^{-ip\cdot x}, \ a = 8, 0; \ P = \eta, {\eta'}^{|A|}.$

Equivalently, one has 4 related but different constants $f_{\eta'}^{NS}$, f_{η}^{NS} , $f_{\eta'}^{S}$, $f_{\eta'}^{S}$, $f_{\eta'}^{S}$, if instead of octet and singlet axial currents (a = 8, 0) one takes this matrix element of the nonstrange-strange axial currents (a = NS, S)

$$A_{NS}^{\mu}(x) = \frac{1}{\sqrt{3}} A^{8\,\mu}(x) + \sqrt{\frac{2}{3}} A^{0\,\mu}(x) = \frac{1}{2} \left(\bar{u}(x) \gamma^{\mu} \gamma_5 u(x) + \bar{d}(x) \gamma^{\mu} \gamma_5 d(x) \right) ,$$

$$A_{S}^{\mu}(x) = -\sqrt{\frac{2}{3}} A^{8\,\mu}(x) + \frac{1}{\sqrt{3}} A^{0\,\mu}(x) = \frac{1}{\sqrt{2}} \bar{s}(x) \gamma^{\mu} \gamma_{5} s(x) ,$$
$$\begin{bmatrix} f_{\eta}^{NS} & f_{\eta}^{S} \\ f_{\eta'}^{NS} & f_{\eta'}^{S} \end{bmatrix} = \begin{bmatrix} f_{\eta}^{8} & f_{\eta}^{0} \\ f_{\eta'}^{8} & f_{\eta'}^{0} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & -\sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} ,$$

 $a, P = NS, S: \quad \langle 0 | A_{NS}^{\mu}(x) | \eta_{NS}(p) \rangle = i f_{NS} \, p^{\mu} e^{-ip \cdot x} \,, \quad \langle 0 | A_{NS}^{\mu}(x) | \eta_{S}(p) \rangle = 0 \,,$

a, P = NS, S: $\langle 0|A_{S}^{\mu}(x)|\eta_{S}(p)\rangle = if_{S} p^{\mu} e^{-ip \cdot x},$ $\langle 0|A_{S}^{\mu}(x)|\eta_{NS}(p)\rangle = 0,$

Note: in our approach, $f_{NS} = f_{u\bar{u}} = f_{d\bar{d}} = f_{\pi}$, $f_{S} = f_{s\bar{s}}$ are calculated quantities

Two Mixing Angles and FKS one-angle scheme

- Any 4 η - η' decay constants conveniently parametrized in terms of two decay constants and two angles:
- $\begin{aligned} f_{\eta}^{8} &= \cos \theta_{8} f_{8} , \qquad f_{\eta}^{0} &= -\sin \theta_{0} f_{0} , \qquad \qquad f_{\eta}^{NS} &= \cos \phi_{NS} f_{NS} , \qquad f_{\eta}^{S} &= -\sin \phi_{S} f_{S} , \\ f_{\eta'}^{8} &= \sin \theta_{8} f_{8} , \qquad f_{\eta'}^{0} &= \cos \theta_{0} f_{0} , \qquad \qquad f_{\eta'}^{NS} &= \sin \phi_{NS} f_{NS} , \qquad f_{\eta'}^{S} &= \cos \phi_{S} f_{S} \end{aligned}$

- Big practical difference between 0-8 and NS-S schemes:
- while θ_8 and θ_0 differ a lot from each other and from $\theta \approx (\theta_8 + \theta_0)/2$, FKS showed that $\phi_{NS} \approx \phi_S \approx \phi$.

$$\begin{bmatrix} f_{\eta}^{NS} & f_{\eta}^{S} \\ f_{\eta'}^{NS} & f_{\eta'}^{S} \end{bmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} f_{NS} & 0 \\ 0 & f_{S} \end{bmatrix}$$

For four decay constants, can use FKS one-angle scheme!

• we can relate
$$\{f_{\eta}^{8}, f_{\eta'}^{8}, f_{\eta}^{0}, f_{\eta'}^{0}\}$$
 with $\{f_{NS}, f_{S}\} = \{f_{\pi}, f_{s\bar{s}}\}$:

$$\begin{bmatrix} f_{\eta}^8 & f_{\eta}^0 \\ f_{\eta'}^8 & f_{\eta'}^0 \end{bmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} f_{NS} & 0 \\ 0 & f_S \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \sqrt{\frac{2}{3}} \\ -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

Some other useful relations between quantities of NS-S (FKS) and 0-8 schemes:

$$\begin{split} f_8 &= \sqrt{\frac{1}{3}f_{\rm NS}^2 + \frac{2}{3}f_{\rm S}^2} , \qquad \theta_8 &= \phi - \arctan\left(\frac{\sqrt{2}f_{\rm S}}{f_{\rm NS}}\right) , \\ f_0 &= \sqrt{\frac{2}{3}f_{\rm NS}^2 + \frac{1}{3}f_{\rm S}^2} , \qquad \theta_0 &= \phi - \arctan\left(\frac{\sqrt{2}f_{\rm NS}}{f_{\rm S}}\right) . \end{split}$$

For 3 DS models: T = 0 results of Shore's generalization Published by D. Horvatić et al., Eur. Phys. J. A 38 (2008) 257. Jain-Munczek $\langle A^2 \rangle$ -induced separable

XYM	191^{4}	175.7^{4}	191^{4}	175.7^{4}	191^{4}	175.7^4
M_{η}	499.8	485.7	496.7	482.8	526.2	507.0
$M_{\eta'}$	931.4	815.8	934.9	818.4	983.2	868.7
ϕ	52.01^{o}	46.11^{o}	51.85^{o}	46.07^{o}	47.23^{o}	40.86°
θ	-2.72^{o}	-8.62^{o}	-2.89^{o}	-8.67^{o}	-7.51^{o}	-13.87^{o}
θ_0	7.74^{o}	1.84^{o}	7.17^{o}	1.39^{o}	-0.33^{o}	-6.69^{o}
θ_8	-12.00^{o}	-17.90^{o}	-11.85^{o}	-17.6^{o}	-14.12^{o}	-20.47^{o}
f_0	108.8	108.8	107.9	107.9	101.8	101.8
f_8	122.6	122.6	121.1	121.1	110.7	110.7
f_{η}^{0}	-14.7	-3.5	-13.5	-2.6	0.6	11.9
$f^0_{\eta'}$	107.9	108.8	107.1	107.9	101.8	101.1
f_{η}^{8}	119.9	116.7	118.5	115.4	107.4	103.7
$f_{\eta'}^8$	-25.5	-37.7	-2.49	-37.6	-27.0	-38.7

For T > 0, the substitution $A \to \widetilde{\chi}(T)$ leads to similar successful results as in the WV case!

Summary 2

- The results of the approach through Witten-Veneziano relation and Shore's approach are (qualitatively) quite similar.
- Data on η' enhanced multiplicity in RHIC experiments \Rightarrow neither the original Witten-Veneziano relation nor Shore's scheme can be straightforwardly extended to T close to $T_{\rm Ch}$, because the the ratio $6\chi_{\rm YM}(T)/f_{\pi}(T)^2$ tends to blow up as $T \to T_{\rm Ch}$.
- We find that the Leutwyler-Smilga relation enables one

1.) to retain unchanged Witten-Veneziano relation, with χ_{YM} , for T = 0 (in fact, for any T sufficiently below T_{Ch}) but also 2.) to replace the T-dependence of χ_{YM} by that of the chiral condensate. This ties the U_A(1) symmetry restoration with the chiral symmetry restoration, and achieves consistency of both Witten-Veneziano and Shore's approach with the data on η' multiplicity.