

CMS results on soft QCD and multi-parton interactions

Sunil Bansal (Universiteit Antwerpen) on behalf of CMS Collaboration

> Low X Meeting Cyprus, June 27- July 1, 2012

CMS Experiment

Measurement of inelastic pp cross-section

CMS PAS-FWD-11-001 CMS PAS-QCD-11-002

 \rightarrow Important for luminosity estimate, cosmic ray physics, characterization of centrality in heavy ion collisions.

 \rightarrow Precise phenomenological description for low energy cross-section but large uncertainty in extrapolation.

→ Using forward calorimetry (HF), measurement is performed for limited $\xi \equiv M_x^2/s > 5E-06$.

$$\sigma_{\text{inel}}(\xi > 5 \times 10^{-6}) = \frac{N_{\text{inel}}(1 - f_{\xi})F_{\text{pileup}}}{\mathcal{L}\epsilon_{\xi}}$$

 \rightarrow Model dependent extrapolation to full ξ range.

→ An alternative approach based on assumption that pile-up events are distributed according to Poisson probability. $P(n) = \frac{(L \cdot \sigma)^n}{m!} e^{-L \cdot \sigma}$

 \rightarrow Number of Inelastic pile-up events measured at different lumi. and fitted to evaluate σ .

Measurement of inelastic pp cross-section

 $\sigma_{\text{inel}}(\xi > 5 \times 10^{-6}) = 60.2 \pm 0.2(\text{stat.}) \pm 1.1(\text{syst.}) \pm 2.4(\text{lumi.}) \text{ mb.}$

Extrapolated cross-section:

 $\sigma_{\rm inel} = 64.5 \pm 0.2 (\rm stat.) \pm 1.1 (\rm syst.) \pm 2.6 (\rm lumi.) \pm 1.5 (\rm extr.) \ \rm mb$

 \rightarrow Normalization vary widely for different models, but trend is similar for all models.

 \rightarrow Measured cross-section follow the increasing trend established by previous measurement.

 \rightarrow Results are in good agreement between different approach and experiments.

Single Charged Particle Spectra: $dN/d\eta$

JHEP 02 (2010) 041 PRL 105 (2010) 022002

06/28/12

Single Charged Particle Spectra: dN/dpT

JHEP 02 (2010) 041 PRL 105 (2010) 022002 IHEP 08 (2011) 086

→ Interpolated (x_T and p_T scaling) data provides a reference for PbPb studies of nuclear modification factors at LHC for $\sqrt{s_{NN}}=2.76$ TeV –

10

NLO rescaled CMS 7 TeV (F. Arleo et al.)

10

p_{_} [GeV/c]

LICE (scaled by σ

Charged Particle Multiplicities

JHEP 01 (2011) 079

(a)

CMS NSD

 $|\eta| < 2.4$

C. UA5

C NA22

C, CMS

UA5

- \rightarrow Large multiplicity tail observed at 7 TeV
- \rightarrow <p_T> vs n scale with energy: weekly dependent on \sqrt{s}
- \rightarrow No Monte Carlo is able to describe all multiplicities at all energies (but PYTHIA 8 better)
- \rightarrow Most MC/tunes can not describe simultaneously the multiplicity and the p_T dependence (again PYTHIA 8 better)

 \rightarrow MC produce too few particles with low transverse momentum; PYTHIA 8 compensate for this by producing too many particle with high pT (semi hard MPI modelling)

KNO scaling: violate for $|\eta| < 2.4$ hold for $|\eta| < 0.5$

Two-particles correlation in $\Delta\eta$ and $\Delta\phi$ JHEP 09 (2010) 091

$$R(\Delta\eta,\Delta\phi) = \left| (N-1) \left| \frac{S_N(\Delta\eta,\Delta\phi)}{B_N(\Delta\eta,\Delta\phi)} - 1 \right| \right|_N$$

MinBias, $p_T > 0.1$ GeV/c, 7 TeV

- K_{eff} increase with \sqrt{s} (more jets at high \sqrt{s} ?)
- δ constant with \sqrt{s} (isotropic cluster decay)
- CMS results follow trend from lower √s data
- PYTHIA (D6T) shows similar energy dependencies for K_{eff} and δ as data
- PYTHIA (D6T) predicts too low K_{eff}

- Clusters are produced independently and decay isotropically into hadrons in its own c.m.s.
- Short range correlations in $\Delta\eta$ can be characterized by 2 parameters:
- cluster size K \rightarrow # correlated particles
- cluster width δ \rightarrow $\Delta\eta$ correlation size

High Multiplicity Results at $\sqrt{s} = 7$ TeV

Intermediate $pT : 1 < p_T < 3$ GeV/c

"Ridge" maximal for high multiplicity and intermediate p_T : 1 < p_T < 3 eV/c

→ Observation of a Long-Range, Near-Side angular correlations at high multiplicity in pp events at intermediate p_T (Ridge at $\Delta \phi \sim 0$)

... not reproduced in PYTHIA 8 (and PYTHIA 6, HERWIG++, madgraph)

Strange Particle Production: K^0_{S} , Λ , Ξ^- JHEP 05(2010)064

5, ,

K0 , Λ , Ξ^- : long-lived particles ($c\tau > 1$ cm) identified from their decay products originating from a displaced

 the amount of strangeness suppression (w.r.t. u and d quarks) is an important component in MC models
interesting for new physics (e.g. strange enhancement in QGP formation)

Production yields in function of rapidity y and p_T :

- <pT> increasing with particle mass and $\sqrt{s}:$ agreement with predictions
- \sqrt{s} increase in production consistent with inclusive charged particles
- production ratios , Λ / K0 and Ξ^- / Λ (versus y and pT) independent of $\sqrt{s:no}$ clear sign of QGP formation

MC underestimating total yield (both \sqrt{s} 0.9 and 7TeV) and \sqrt{s} scaling

06/28/12

Spectra of charged pions, kaons and protons

 $\rightarrow\,$ charged pions, kaons and protons are identified by measuring energy loss in tracker

 $_{\rightarrow}$ Z2 tune describe the measurement (except at low $p_{_T}),$ D6T and 4C

systematically undershoot and overshoot the spectra.

 $\rightarrow p/\pi$ described by all tunes but there is substantial deviation for K/ π . Ratio of +ve and -ve particles is around one as expected.

 $\rightarrow\,p_{_T}$ spectra for pions is similar for different multiplicity and $\sqrt{s},$ whereas

for kaons and proton there is clear evolution with track multiplicity.

 \rightarrow K/ π and p/ π ratios are flat as a function track multiplicity and well described by D6T and Z2 tune.

 \rightarrow Ratios of +ve and -ve charged particle as a function of track multiplicity is also flat and is ~1.

Spectra of charged pions, kaons and protons

CMS PAS-FSQ-12-014

06/28/12

 \rightarrow <p_T> and particle ratios as a function of track multiplicity is independent of \sqrt{s} .

→ \sqrt{s} dependence of dN/dy is well described by Z2 tune whereas $< p_{T} >$ evolution with \sqrt{s} is not described by any of the tune for all particles simultaneously.

 \rightarrow There is nice agreement with ALICE measurement at 0.9 TeV but small difference for protons.

The Underlying Event

EPJ C70 (2010) 555 JHEP09 (2011) 109 arXiv:1204.1411 CMS PAS-FWD-11-003

Everything except the hard scattering: UE = MPI +BBR (+ ISR and FSR contamination)

 \rightarrow Need to "tune" soft interactions MC model(s) to UE: previous and LHC data

The Underlying Event

Everything except the hard scattering: UE = MPI +BBR (+ ISR and FSR contamination)

Identify in the event an energy scale (and direction) reflecting the hard scattering:

- \rightarrow Di-jet events: Leading track-jet (cluster of tracks with highest pT)
- → Drell-Yan: di-muon final state

- \rightarrow away ($|\Delta \phi| > 120^{\circ}$): hard scattering and radiation
- → transverse (60° < $|\Delta \phi|$ < 120°): suited for UE studies
- → towards ($|\Delta \phi| < 60^{\circ}$): same as "away" for track-jet approach suited for UE studies in DY process

Observables built from charged particles: $d^2 N_{chg} / d\eta \ d(\Delta \phi)$: charged multiplicity density $d^2 \Sigma p_T / d\eta d (\Delta \phi)$: scalar p_T sum density

UE transverse region: charge and Σp_T density

7 TeV and 900 GeV results for the reference charged multiplicity density and Σp_T density profiles including Z1 (solid) and 4C (dashed) predictions.

– Fast rise for pT < 8 GeV/c (4 GeV/c), attributed mainly to the increase of MPI activity, followed by a plateau-like region with \approx constant average number of selected particles and a slow increase of Σ pT, in a saturation regime.

– Increase of the activity with \sqrt{s} also corroborates MPIs (growth with PDFs).

- PYTHIA nicely re-tuned to describe the data, still differences of the order of 5 to 20% for different versions and tunes (even very recent PYTHIA8 tune 4C).

06/28/12

Comparison between 7 TeV and 900 GeV

– In the presence of a large energy scale, UE grows significantly with \sqrt{s}

- A factor 2 going from 900 GeV to 7 TeV to be compared with 1.7 for MB.
- MPI growth with \sqrt{s} well described by Z1 and 4C, too pronounced in D6T.

Charge and Σp_T density : Drell-Yan Events

Activity as a function of $M_{\mu\mu}$: for events with small recoil activity by requiring $p_T^{\mu\mu} < 5$ GeV/c \rightarrow close to true UE

- Monte-Carlo without MPIs fails to describe measurement.
- No dependence on energy scale ($M_{\mu\mu}$), as MPI saturates at these scale (also known from track-jet analysis).
- Pythia and Herwig tunes derived from leading track/track-jet topology describe measurement in DY well → certain universality of the UE activity

06/28/12

Charge and Σp_T density : Drell-Yan Events

Activity as a function of $p_T^{\mu\mu}$: for events with $81 < M_{\mu\nu} < 101 \text{ GeV/c}^2$

– MPI saturates and $p_{T}^{\mu\mu}$ dependence gives radiation evolution (mainly initial state radiation).

– Transverse region: qualitatively similar as towards but has higher activity due to spill-over contribution from away side hard component.

– Pythia and Herwig prediction describe the particle density well but underestimate the energy density.

06/28/12

Comparison with UE activity using Track-jet

 \rightarrow For $p_T^{\mu\mu}$ and $p_T^{\text{leading jet}} > 10$ GeV/c DY events have a smaller particle density with a harder pT spectrum as compared to that in hadronic events.

 \rightarrow This is due to the nature of radiation in hadronic and Drell-Yan events. Drell-Yan events only have initial state QCD radiation initiated by quarks, whereas hadronic events have both initial and final state QCD radiation predominantly initiated by gluons.

Underlying Event at Forward Rapidity

- $_{\rightarrow}$ UE measured in forward rapidity (5.2 < η < 6.6) using CASTOR located ~ z = 14.3 m from IP.
- → Energy density (dE/dη) is measured inclusively and in presence of jet in central region for different centre-of-mass energies 0.9, 2.76 and 7 TeV.

 \rightarrow At 7 TeV, UE shows similar feature as in case of measurement in central region.

 \rightarrow For 2.76 and 0.9 TeV rising effect is not visible: kinematic effect where central jet with high UE depletes the energy of proton remnant which fragment into CASTOR for low COM energies.

 \rightarrow Pythia6 Z2* and Pythia8 4C gives overall good agreement with measurement.

Underlying Event at Forward Rapidity $(\sqrt{s} \text{ dependence})$

None of the Pythia and Herwig++ tune describe perfectly the energy dependence with Pythia6 D6T and Pythia8 4C being the closest.

Underlying Event using jet area approach

 \rightarrow Alternative measurement based on jet area using variable which is not sensitive to hard outlier

 $\rho' = \operatorname{median}_{j \in physical jets} \left[\left\{ \frac{p_{T,j}}{A_j} \right\} \right] * C$

G. Salam et. al JHEP 04 (2010) 065

with $C = \frac{\sum_{j} A_{j}}{A_{tot}}$ $A_{j} = \frac{N_{j}^{ghosts}}{N_{total}^{ghosts}} A_{tot}$

→ Require exact shape and size of jet area and should be sensitive to soft hadronic activity; K_T algorithm is suitable.

 \rightarrow Same behavior as in conventional approach for UE measurement.

 \rightarrow Activity increase by factor of ~2 as \sqrt{s} increase from 0.9 to 7 TeV.

 \rightarrow None of the tune describe \sqrt{s} and scale dependence completely.

Summary

- Extensive program on soft QCD and MPI measurements in CMS
- Identified and unidentified charged particle spectra are studied at different energies.
- Strangeness is observed to be underestimated by MCs.
- Unexpected long range correlation (similar to heavy-ion collisions). MCs don't describe this observation.
- Underlying event is measured at various energies and with different processes in central and forward rapidity region.
- Different MCs describe one or another measurement but none of the model describe measurements all together.