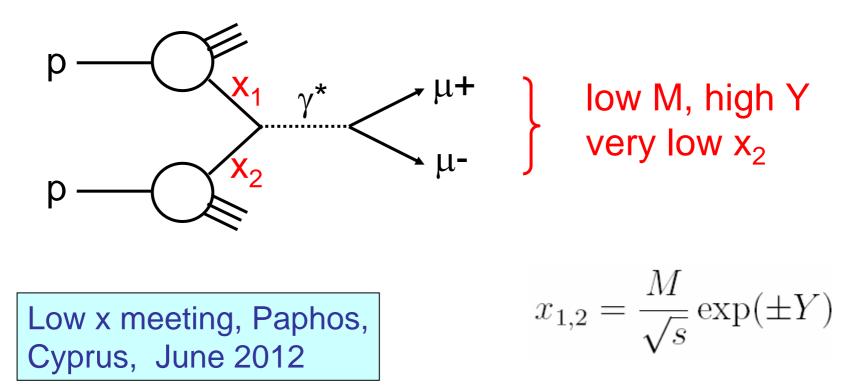
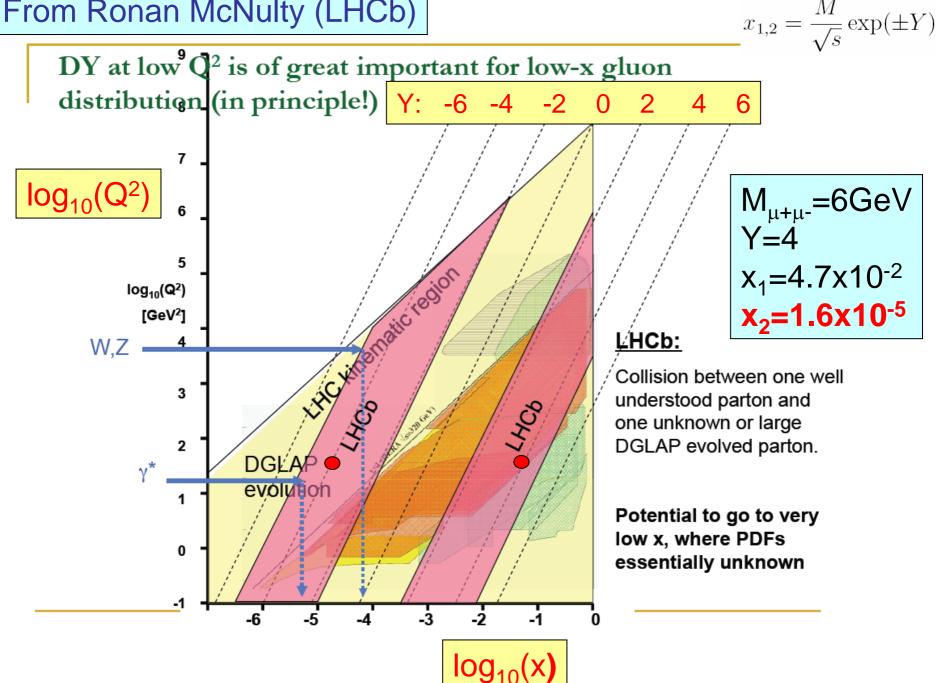
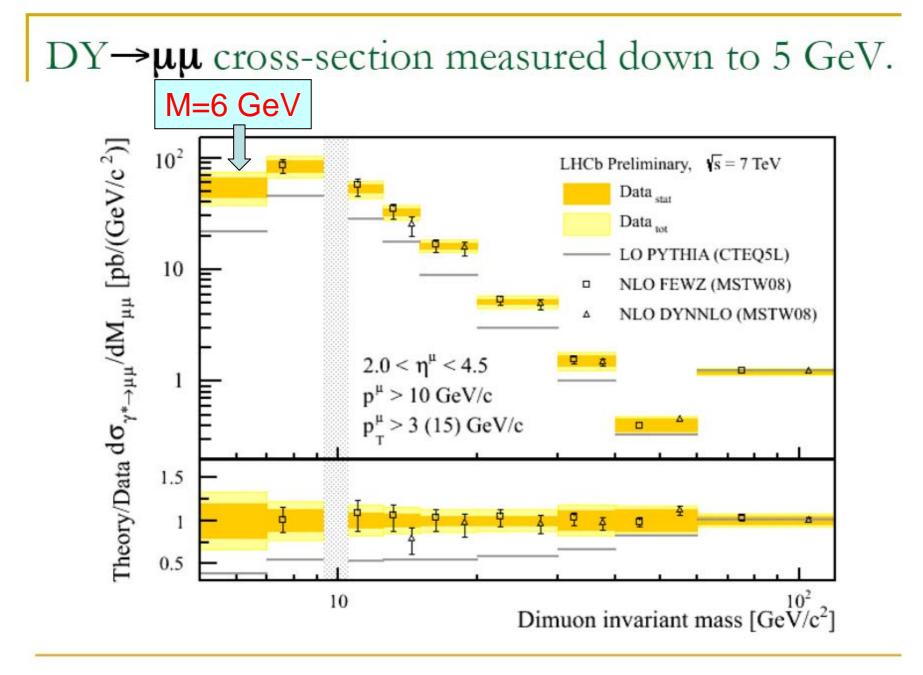
Low mass (low x) Drell-Yan production at the LHC

Emmanuel de Oliveira, Alan Martin, Misha Ryskin

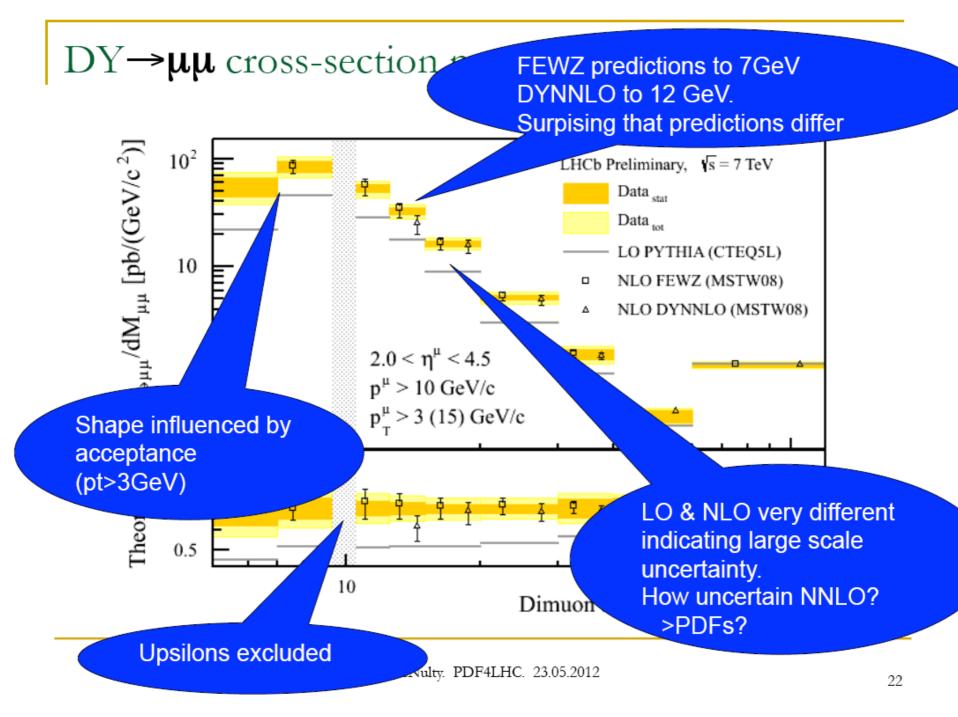


From Ronan McNulty (LHCb)

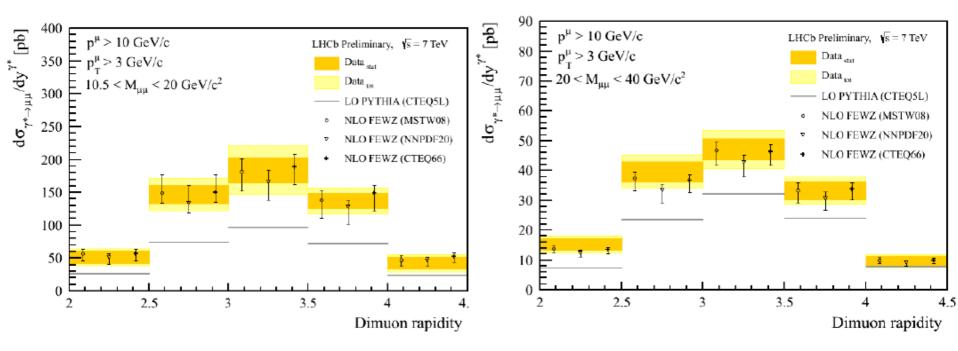




Ronan McNulty. PDF4LHC. 23.05.2012



Differential distributions for two mass bins.



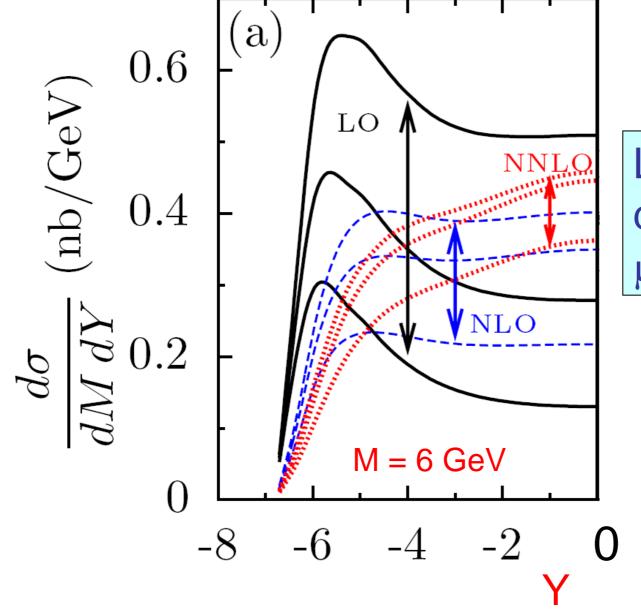
Fully double differential distributions possible with 2011 data

The factorization scale μ_F

$$d\sigma/d^3p = \int dx_1 dx_2 \operatorname{PDF}(x_1, \mu_F) |\mathcal{M}(p; \mu_F, \mu_R)|^2 \operatorname{PDF}(x_2, \mu_F)$$
parton virtuality $q^2 < \mu_F^2$ $q^2 > \mu_F^2$

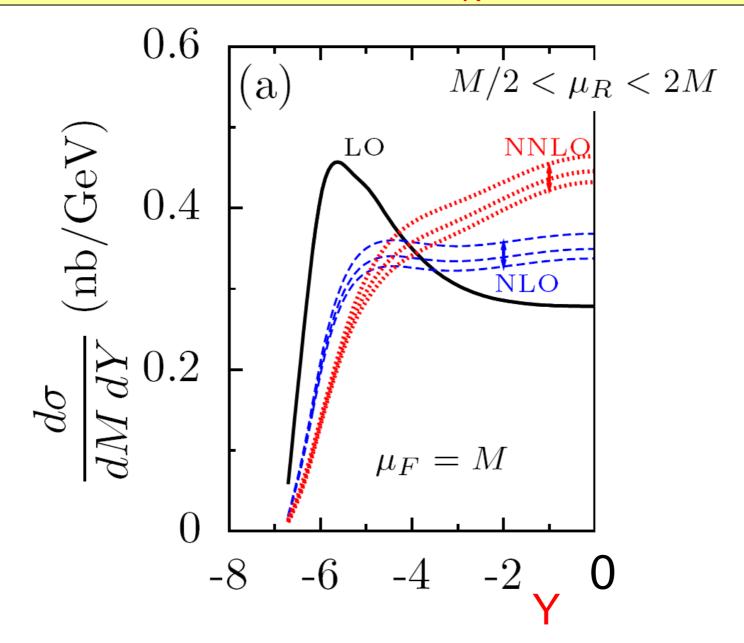
At low x, the PDFs strongly depend on choice of μ_F . Worse, dominance of g at low x (i.e. low M) means LO $q\overline{q} \rightarrow \gamma^*$ overshadowed by NLO $gq \rightarrow q\gamma^*$ subproc.

At low x, prob. to emit new parton in $\Delta \mu_{\mathsf{F}}$ enhanced: mean number \rightarrow $\langle n \rangle \simeq \frac{\alpha_s N_C}{\pi} \ln(1/x) \Delta \ln \mu_F^2$ but $|\mathcal{M}^{\mathsf{NLO}}|^2$ can emit only one \rightarrow so no compensation



Large μ_F dependence $\mu_F = M/2, M, 2M$

Renormalization scale μ_R dependence



Idea: use NLO to fix μ_F for LO part, and to show results stable to variations of μ_F in remaining NLO part

$$LO: \quad \sigma(\mu_F) = PDF(\mu_F) \otimes C^{LO} \otimes PDF(\mu_F)$$

Changing scale from m to μ_{F}

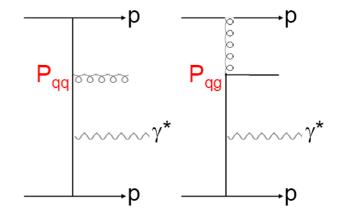
Start with

$$\sigma(\mu_F) = \text{PDF}(m) \otimes \left(C^{\text{LO}} + \frac{\alpha_s}{2\pi} \ln \left(\frac{\mu_F^2}{m^2} \right) (P_{\text{left}} C^{\text{LO}} + C^{\text{LO}} P_{\text{right}}) \right) \otimes \text{PDF}(m)$$

$$P_{\text{left}} = P_{\bar{q}\bar{q}} + P_{\bar{q}g}$$

$$P_{\text{right}} = P_{qq} + P_{qg}$$

This is
$$\alpha_{s} \operatorname{corr}^{n}$$
 in LO DGLAP
collinear approach,
Leading Log Approx (LLA)
$$\int_{m^{2}}^{\mu_{F}^{2}} \frac{dk_{T}^{2}}{k_{T}^{2}} = \ln\left(\frac{\mu_{F}^{2}}{m^{2}}\right)$$



Now NLO expression:

 $\sigma(\mu_F) = \text{PDF}(\mu_F) \otimes (C^{\text{LO}} + \alpha_s C^{\text{NLO}}_{\text{corr}}) \otimes \text{PDF}(\mu_F)$

C^{NLO} means q \bar{q} →g γ^* and gq→q γ^* calc better than LLA accuracy, but part already included to LLA accuracy --- subtract it off. At this stage C^{NLO} becomes dependent on μ_F --- $C_{rem}^{NLO}(\mu_F)$

Changing μ_{F} redistributes α_{s} contribution between two terms (PDF $\otimes C^{\text{LO}} \otimes \text{PDF}$) \iff (PDF $\otimes \alpha_{s} C_{\text{rem}}^{\text{NLO}} \otimes \text{PDF}$)

The trick is to choose $\mu_F = \mu_0$ so as to minimize $C_{rem}^{NLO}(\mu_F)$

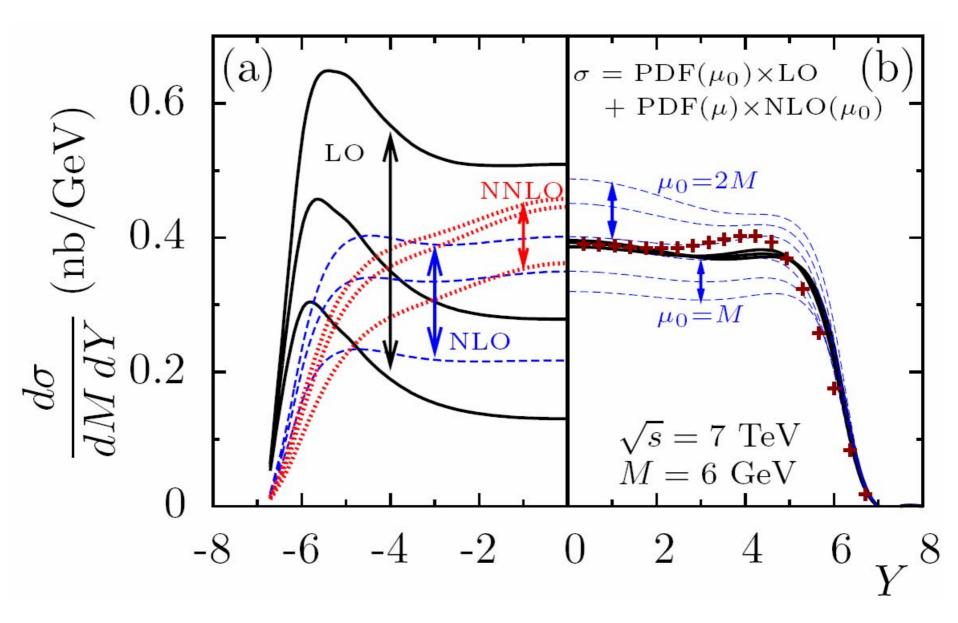
Choose μ_F so as much as possible of "real" NLO ladder-like form is included in LO part (where large $\alpha_s ln(1/x)$ terms are collected in PDFs)

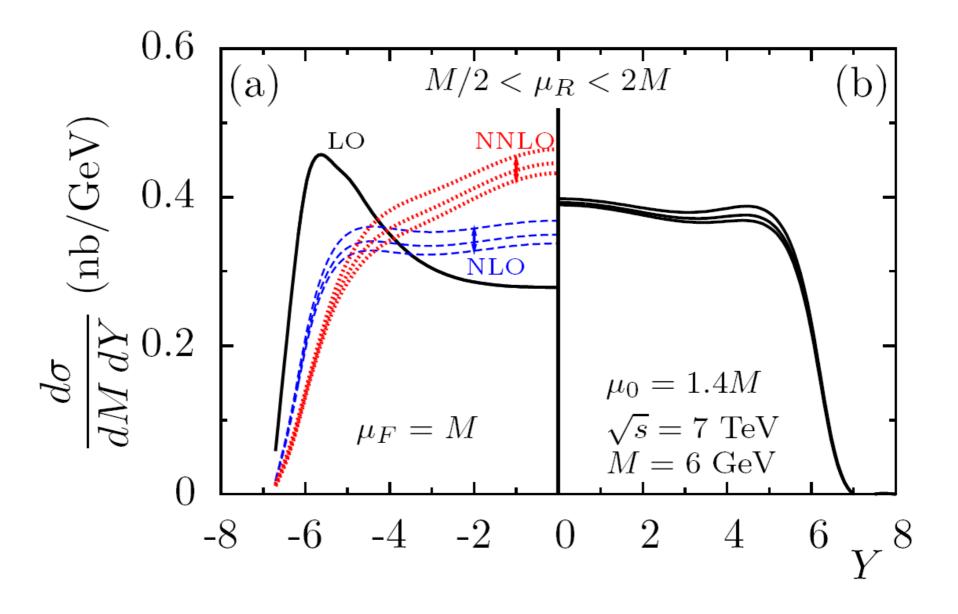
$$\int_{Q_0^2}^{\mu_F^2} dt \frac{d\sigma}{dt} (\alpha_S, \text{LLA}) = \int_{Q_0^2}^{\mu_F^2} dt \frac{d\sigma}{dt} (gq \to q\gamma^*)_{\text{exact}}$$

$$\int_{Q_0^2}^{\mu_F^2} dt \frac{d\sigma}{dt} (gq \to q\gamma^*)_{\text{exact}}$$

$$\int_{Q_0^2}^{\mu_F^2} dt \frac{d\sigma}{dt} (gq \to q\gamma^*)_{\text{exact}}$$

so (LO DGLAP \otimes C^{LO}) well reproduces NLO term minimizes $C_{\rm rem}^{\rm NLO}(\mu_F)$ for $\mu_{\rm F}$ = 1.4M





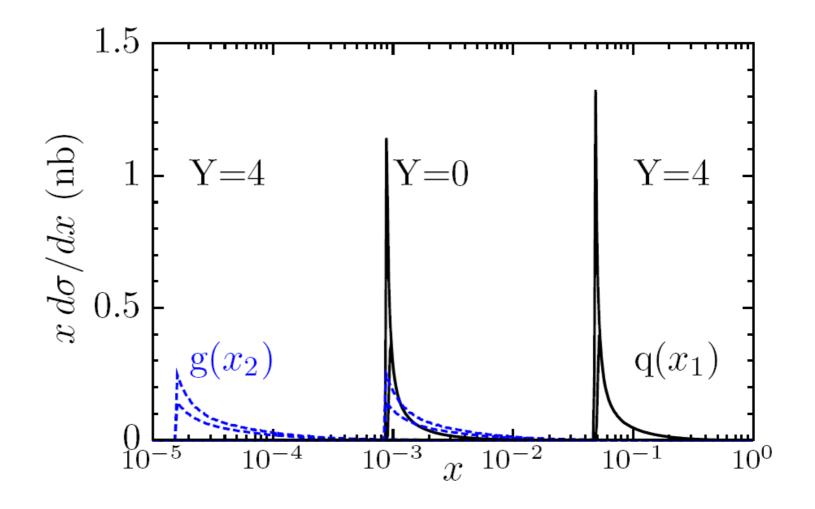
D-Y data make a direct measurement of q, \overline{q} at μ =1.4M, with little scale ambiguity

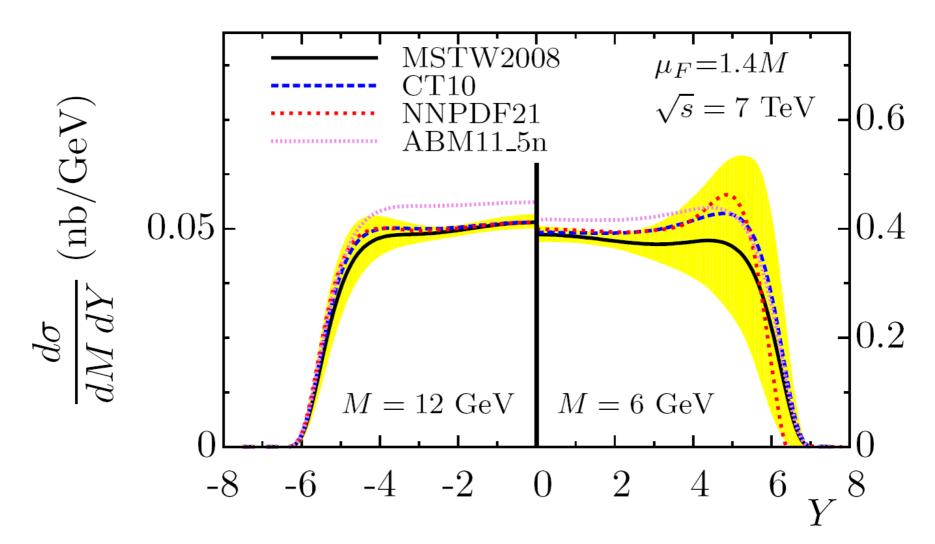
In pure DGLAP most of the q, \overline{q} at low x come from $g \rightarrow q\overline{q}$ splitting

Indeed, $\sigma(qq \rightarrow q\gamma^*) > 90\% \sigma(DY)$

Take $g(x_2) q(x_1) \rightarrow q \gamma^*$

allows parton k_t $x_{1,2} = \frac{\sqrt{M^2 + k_t^2}}{\sqrt{s}} \exp(\pm Y)$





For Y > 3, pure DGLAP PDF extrapolations become unreliable due to absence of absorptive, ln(1/x),...modifications LHCb data provide direct measure of PDFs in this low x domain By-product of D-Y study arXiv:1205.6108 study revealed an inconsistency in the conventional procedure to remove infrared divergence, not only in D-Y, but in DIS.... arXiv:1206.2223

Take Drell-Yan as example:

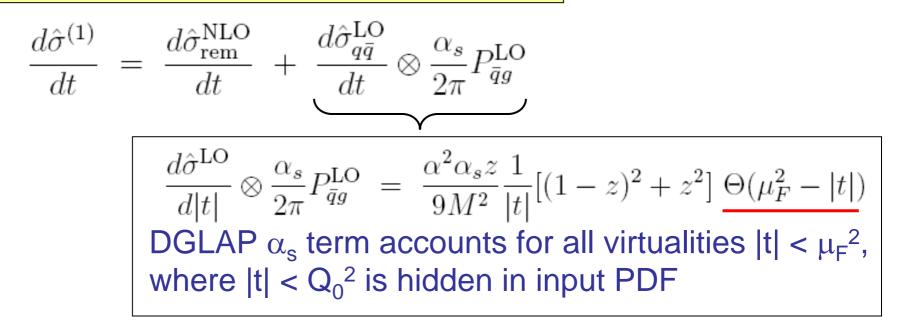
main NLO subprocess

$$\frac{d\hat{\sigma}(gq \to q\gamma^*)}{d|t|} = \frac{\alpha^2 \alpha_s z}{9M^2} \frac{1}{|t|} \left[((1-z)^2 + z^2) + z^2 \frac{t^2}{M^4} - 2z^2 \frac{t}{M^2} \right]$$

To calculate $d\sigma/dM^2$ need to integrate over t from t=0

Starting with the gluon, subtraction of the LO DGLAP, with the $P_{aa} \alpha_s$ term, exactly removes infrared divergence

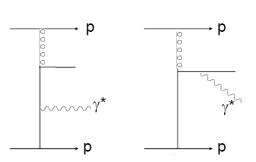
Consistent treatment of infrared region



After subtraction of this LO generated term

$$\frac{d\hat{\sigma}_{\rm rem}^{\rm NLO}}{d|t|} = \frac{\alpha^2 \alpha_s z}{9M^2} \frac{1}{|t|} \left[\left[(1-z)^2 + z^2 \right] \underline{\Theta(|t| - \mu_F^2)} + z^2 \frac{t^2}{M^4} - 2z^2 \frac{t}{M^2} \right]$$

which has no singularity as t $\rightarrow 0$. Non-singular terms vanish as Q_0^2/μ_F^2 .

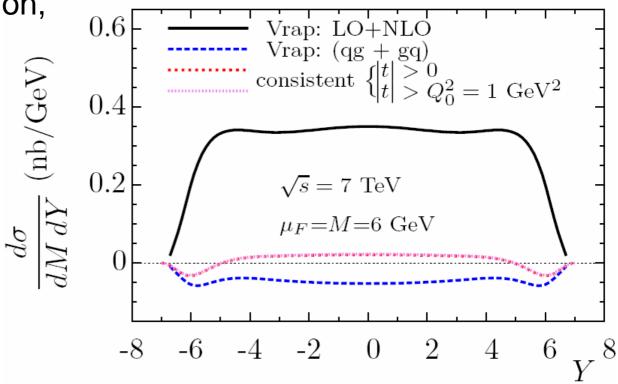


Conventional treatment of infrared region

Integral is regularised by working in $4+2\varepsilon$ dimensions. Contribution at small t gives $1/\varepsilon$ pole, which is absorbed in incoming PDF. Also DGLAP generated term is integrated in same $4+2\varepsilon$ dimensions. Dimensional regularisation makes, unnecessary and unwarranted, assumption that 1/t singular pQCD behaviour is valid below Λ_{QCD} . After $1/\varepsilon-1/\varepsilon$ subtraction,

it leaves a non-vanishing infrared contribution

> Error is difference between red and blue curves



Second example:

Correction to the γ^* g coefficient function, C_a, in DIS

 The conventional ε-regularisation treatment of the infrared singularity gives

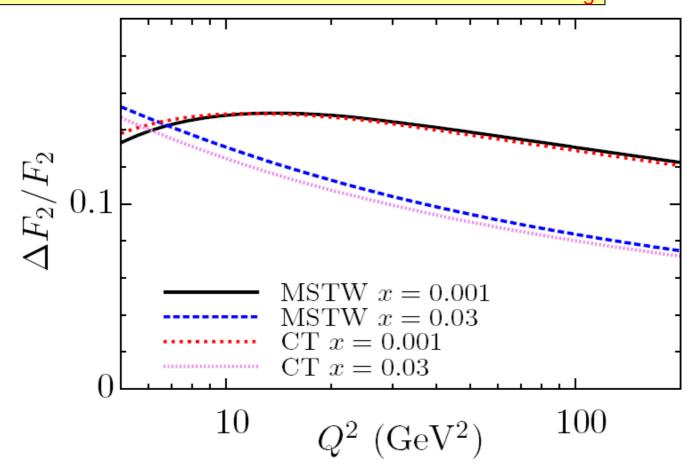
$$C_g = T_R \left(\left[(1-z)^2 + z^2 \right] \ln \frac{1}{z} + 6z(1-z) - 1 \right)$$

 Whilst the consistent explicit subtraction of the term generated by LO DGLAP evolution gives

$$C_g = T_R \left(\left[(1-z)^2 + z^2 \right] \ln \frac{1-z}{z} + 8z(1-z) - 1 \right)$$

• The correction, ΔF_2 , arising from the difference \rightarrow

Correction to F₂ arising from "consistent" C_a



To account for a proper treatment of the infrared region it it is necessary to perform a global analysis with a complete set of corrected coefficient and splitting funct^s.