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DY —uu cross-section measured down to 5 GeV.

LHCb Preliminary, Ys=7TeV
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DY—uW cross-sectior

FEWZ predictions to 7GeV

DYNNLO to 12 GeV.
Surpising that predictions differ
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The factorization scale -

do/d*p = /ff,rrlff,rrg PDF(xy, pup) |M(p; pr. ug)|* PDF (29, pir)

[

parton virtuality (% < }u% qz < pﬂ%

At low x, the PDFs strongly depend on choice of .
Worse, dominance of g at low x (i.e. low M) means
LO qg—>v* overshadowed by NLO gg—->qy* subproc.

At low X, prob. to emit new parton a.Ne
In Au- enhanced: mean number-> (n) ~ —

M

In(1/x) Alnps

but |MNLO)2 can emit only one =  so no compensation
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Large uc
dependence
u:= M/2, M, 2M




Renormalization scale u, dependence

-4 -2

-0



ldea: use NLO to fix ug for LO part, and to show results
stable to variations of p. in remaining NLO part

Start with LO:| o(ur) = PDF(ur) ® C*° @ PDF(ur)

Changing scale from m to .

7(jir) = PDF(m) @ (f—*m + 5ol ( o ) (ReC™© 4 YO8, ) ) & PDE(m)

im2

Py = I, aq T I e I right — F qq T F qg
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This is a, corr™ in LO DGLAP

collinear approach, Pagreeee Py
Leading Log Approx (LLA)
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Now NLO expression:

o(pp) = PDF(up) @ (CH° 4+ a,CN9) @ PDF(jur)

T corr

CNLO means qg—->gy* and gg—>qy* calc better than LLA accuracy,
but part already included to LLA accuracy --- subtract it off.
At this stage CNL© becomes dependent on pg --- CNLO(,)

S rem

Changing ug redistributes o, contribution between two terms
(PDF @ C'° @ PDF) <= (PDF ® a,CN-© @ PDF)

“rem

The trick is to choose pr-=p, so as to minimize CYLO (1)

T rem

Choose pur so as much as possible of “real” NLO ladder-like form is
Included in LO part (where large a.n(1/x) terms are collected in PDFs)



ag term from

LO DGLAP main NLO subprocess

2 l 2 1

Hp { HE {
/ dt E((’.k S, LLf\) — / dt —[ ’ (g q — qf:’f*)e}{a{:t.
J 2 ([f JC 2 (if_

20 1 5

adjust p- until equality achieved
g = jtg = 1.4M

so (LO DGLAP®CLO) well reproduces NLO term

minimizes Chi©(up) for pe = 1.4M

“rem
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Impact on global PDFs

D-Y data make a direct measurement of g, g at u=1.4M,
with little scale ambiguity

In pure DGLAP most of the g, g at low x come from
g = qqg splitting

Indeed, o(gq =2 qy*) > 90% (DY)



allows parton k;
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For Y > 3, pure DGLAP PDF extrapolations become unreliable
due to absence of absorptive, In(1/x),...modifications
LHCDb data provide direct measure of PDFs in this low x domain



study revealed an inconsistency
By-product of <:> In the conventional procedure
D-Y study to remove infrared divergence,

arxiv:1205.6108 not only in D-Y, but in DIS....
arXiv:1206.2223

Take Drell-Yan as example:

main NLO subprocess

o

do(gq — av*) _ a’ogz 1 (1= 2) 4 22) 4 22 e
1] OM? [t A VTR V P

To calculate do/dM? need to integrate over t from t=0

Starting with the gluon, subtraction of the LO DGLAP,
with the P, o term, exactly removes infrared divergence



Consistent treatment of infrared region

ds® oy d0eg 0 o
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DGLAP o, term accounts for all virtualities |t| < pg?,
where [t| < Q42 is hidden in input PDF

After subtraction of this LO generated term

~NLO 2. .
Ao a‘ogz 1

dit| — 9M? i

(1=2+ 2 Ot = 1) +

which has no singularity as t = O.
Non-singular terms vanish as Qg%/ug2.




Conventional treatment of infrared region

Integral is regularised by working in 4+2¢ dimensions.
Contribution at small t gives 1/¢ pole, which is absorbed

In incoming PDF. Also DGLAP generated term is integrated
In same 4+2¢ dimensions. Dimensional regularisation
makes, unnecessary and unwarranted, assumption that

1/t singular pQCD behaviour is valid below Aqcp.

After 1/e-1/¢ subtraction,
It leaves a
non-vanishing
Infrared contribution
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Second example:

Correction to the y*g coefficient function, C,, in DIS

® The conventional e-regularistion treatment of the infrared
singularity gives

., 1
C, = 1Thg 1—2)+2°]In= + 62(1—2) — 1
g A

fad

® \Whilst the consistent explicit subtraction of the term
generated by LO DGLAP evolution gives

o d

=4 82(1—2) — 1)

C, = Tkr ([(1 — 2+ 2 In

rd
Il

® The correction, AF,, arising from the difference -



Correction to F, arising from “consistent” C,
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To account for a proper treatment of the infrared region
It it Is necessary to perform a global analysis with a
complete set of corrected coefficient and splitting functs.



