The ATLAS Forward Proton Programme

Maciej Trzebiński

on behalf of the ATLAS Collaboration

Institute of Nuclear Physics Polish Academy of Sciences

Service de Physique des Particules Institut de Recherche Fondamentale sur l'Univers CEA Saclay

Low-x Meeting 2012

28th June 2012

Introduction

- **Motivation**: detect intact protons from hard interaction scattered at very small angles (into the LHC beam pipe).
- Detector located close to the beam (Movable Beam Pipe).
- Protons must leave beam envelope.

- Proton position measurement (3-D Pixel detectors).
- Precise time of flight measurement (QUARTIC timing detector).

AFP Acceptance

 $200 GeV < M_X < 2000 GeV$

Pile-up

Minimum bias pile-up protons may fake hard diffractive signature.

AFP detectors will give a possibility to extend ATLAS Physics Programme by studies of:

- QCD studies:
 - hard single diffraction (eg. jets, W/Z),
 - hard central diffraction (eg. DPE jets, DPE W/Z),
 - central exclusive production (eg., jets, $\gamma\gamma$),
- exploratory physics:
 - anomalous quartic gauge couplings (γ , W, Z):
 - effective approach for testing BSM,
 - extra dimensions, higgsless models,
 - SUSY,
 - magnetic monopoles.

Exclusive Jet Production

Exclusive Jet Production

Signature: two jets in central region + two intact protons + gap in rapidity between jet and proton (no remnants).

Exclusive Production

- Theoretical description KMR model.
- No Pomeron remnants.
- Measurement constrain theoretical models.
- Limits on exclusive Higgs production.

Very challenging measurement – all potential that AFP offers have to be used.

Background

Initial Cross-Section

Cuts: Rapidity Difference and Mass Fraction

Difference, $y_{jj} - y_X$, of the rapidity of the jet system (y_{jj}) and the rapidity of the proton system $y_X = 0.5 \cdot \ln\left(\frac{\xi_1}{\xi_2}\right)$

Ratio of the jet system mass to the missing mass $M_X = \sqrt{s \cdot \xi_1 \cdot \xi_2}$

Discriminating Power

Additional selection:

- At least one proton tagged in each AFP station.
- Number of tracks outside the jet system < 4.
- Angle between two leading jets 2.9 $<\Delta\phi<$ 3.3.
- Missing mass $M_x < 550 \text{ GeV}/\text{c}^2$.
- The distance between hard vertex reconstructed by ATLAS and from the AFP time measurement $|\Delta z| < 3.5$ mm;

Number of Events ($< \mu >=$ 23)

Improvement of uncertainties coming from the Tevatron CDF measurements by about one order of magnitude!

Anomalous Couplings

Anomalous Couplings

Motivation: provide stringent test of the electroweak symmetry breaking mechanism.

Additional contribution from BSM Largangian:

$$\mathcal{L}_{\text{eff}}^{\text{BSM}} = - \frac{e^2}{8} \frac{a_0^W}{\Lambda^2} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^2}{16} \frac{a_C^W}{\Lambda^2} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^2}{16 \cos^2 \theta_W} \frac{a_0^Z}{\Lambda^2} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha} - \frac{e^2}{16 \cos^2 \theta_W} \frac{a_C^Z}{\Lambda^2} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

E. Chapon, O. Kepka, C. Royon, Phys. Rev. D81 (2010) 074003

Signal and Backgrounds

Signal: QED WW SM, with a QGC.

W's decays leptonically (but semi-hadronic decays are also promising).

Backgrounds:

- non-diffractive (+ pile-up):
 - WW,
 - WZ,
 - ZZ,
 - Drell-Yan,
 - W/Z + jet,
 - ttbar,
 - single top.

Generators: FPMC, HERWIG++, PYTHIA.

- diffractive:
 - QED //,
 - SD WW,
 - DPE WW,
 - DPE //,

Selection Cuts

- AFP acceptance $0.014 < \xi < 0.2$,
- leading lepton $p_T > 300$ GeV, sub-leading lepton $p_T > 20$ GeV,
- $M_{II} > 300 \text{ GeV}$,
- number of tracks from hard vertex < 3,
- $\Delta \phi_{II} < 3.1$ rad,
- $M_X > 800 \text{ GeV}.$

- the measurement of couplings at the highest luminosities is possible,
- \bullet precision of $\sim 10^{-6}~\text{GeV}^{-2}$ where the BSM effect are expected:

	a_0^W/Λ^2 Sensitivity	
	5σ	95% C.L.
$\mathcal{L} = 40 \ fb^{-1}, \mu = 23$	$5.5 \ 10^{-6}$	$2.4 \ 10^{-6}$
$\mathcal{L} = 300 \ fb^{-1}, \mu = 46$	3.2 10 ⁻⁶	$1.3 \ 10^{-6}$

Additional topics

Additional topics

- Main idea: production of objects in which background can be extremely reduced by kinematical constraints coming from AFP proton measurements (high mass),
- Many new anomalous couplings to be studied if Higgs boson exists new dimension 8 operators appearing leading to anomalous production of WW, ZZ, $\gamma\gamma$,
- Production of magnetic monopoles:

- SUSY sparticle production: precise mass measurement,
- Any production of new objects (with mass up to 2 TeV) via photon or gluon exchanges: KK resonances, black holes, *etc.*
- Other topics (special runs): jet-gap-jet in diffraction (tests of BFKL dynamics) see talk by Christophe Royon, diffraction mechanism, Pomeron structure.

W Asymmetries

Test different diffraction mechanisms. Probe Pomeron structure.

Double Pomeron Exchange

Quarks from Pomeron Charge and flavour symmetry: u=d=s=ubar=dbar=sbar

$$A = \frac{N_+ - N_-}{N_+ + N_-}$$

DPE: A = 0SCI: A = 0.14

K. GolecBiernat, C. Royon, L. Schoeffel, R. Staszewski, Phys. Rev. **D84** (2011) 114006

Quarks from protons Diffractive signature due to colour

rearrangements

Summary

- Quartic anomalous couplings measurement at µ = 46 and a total luminosity of 300 fb⁻¹ is possible. The full AFP simulation in presence of pile-up confirms the gain in sensitivity between one and two orders of magnitude with respect to the standard (non-AFP) ATLAS methods. The use of the AFP allows reaching the values expected in Higgs-less or extra-dimension models.
- The production of exclusive dijet for $\mu = 23$ and a total luminosity of 40 fb⁻¹ the measurement is possible and interesting due to the huge model uncertainties at present level of the theory understanding.
- For all physics cases, AFP capabilities in terms of proton tagging and timing resolution are key and unique features unprecedented sensitivity to quartic anomalous coupling or novel QCD measurements.