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Outline

• The measurement of the pp total cross-section by the TOTEM collaboration at W = 7 TeV

(σtot = 98.3 ± 0.2stat ± 2.8syst) caused an ”upheaval”, since most models which prior to

this were successful in describing ”soft” p-p and p̄-p interactions at energies ≤ 1.8 TeV,

predicted a lower result.

• IS THERE A CHANGE IN THE BEHAVIOUR OF σtot FOR W > 1.8 TEV?

• The dilemma facing the different groups was:

A) Does one just attempt to change the POMERON’S parameters ?

OR

B) Does one make a comprehensive revision of the underlying structure of POMERON models,

for high energy soft interactions ?

• GLM chose path A) , some other groups chose B)

I will discuss our revised parametrization, and compare with the approach and results of other

models on the market.
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Good-Walker Formalism

The Good-Walker (G-W) formalism, considers the diffractively produced
hadrons as a single hadronic state described by the wave function ΨD, which is

orthonormal to the wave function Ψh of the incoming hadron (proton in the
case of interest) i.e. < Ψh|ΨD >= 0.

One introduces two wave functions ψ1 and ψ2 that diagonalize the 2x2
interaction matrix T

Ai,k =< ψiψk|T|ψi′ ψk′ >= Ai,k δi,i′ δk,k′.

In this representation the observed states are written in the form

ψh = αψ1 + β ψ2 ,
ψD = −β ψ1 + αψ2

where, α2 + β2 = 1
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Good-Walker Formalism-2

The s-channel Unitarity constraints for (i,k) are analogous to the single channel
equation:

ImAi,k (s, b) = |Ai,k (s, b) |2 +Gin
i,k(s, b),

Gin
i,k is the summed probability for all non-G-W inelastic processes, including

non-G-W ”high mass diffraction” induced by multi-IP interactions. A simple

solution to the above equation is:

Ai,k(s, b) = i

(

1 − exp

(

−Ωi,k(s, b)

2

))

, Gin
i,k(s, b) = 1 − exp (−Ωi,k(s, b)) .

The opacities Ωi,k are real, determined by the Born input.
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Good-Walker Formalism-3

Amplitudes in two channel formalism are:

ael(s, b) = i{α4A1,1 + 2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1 + (α2 − β2)A1,2 + β2A2,2},

add(s, b) = iα2β2{A1,1 − 2A1,2 +A2,2}.

With the G-W mechanism σel , σsd and σdd occur due to elastic scattering
of ψ1 and ψ2, the correct degrees of freedom.
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Examples of Pomeron diagrams

leading to diffraction NOT included in G-W mechanism
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Examples of the

Pomeron diagrams that lead to a different source of the diffractive dissociation that cannot be described in the framework of the

G-W mechanism. (a) is the simplest diagram that describes the process of diffraction in the region of large mass Y − Y1 = ln(M2/s0).

(b) and (c) are examples of more complicated diagrams in the region of large mass. The dashed line shows the cut Pomeron, which

describes the production of hadrons.
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Example of enhanced and semi-enhanced diagram

a) b)

Different contributions to the Pomeron Green’s function
a) examples of enhanced diagrams ;

(occur in the renormalisation of the Pomeron propagator)
b) examples of semi-enhanced diagrams

(occur in the renormalisation of the IP -p vertex )
Multi-Pomeron interactions are crucial for the production of LARGE MASS

DIFFRACTION
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Our Formalism 1

The input opacity Ωi,k(s, b) corresponds to an exchange of a single bare Pomeron.

Ωi,k(s, b) = gi(b) gk(b) P (s).

P (s) = s∆ and gi(b) is the Pomeron-hadron vertex parameterized in the form:

gi (b) = gi Si(b) =
gi

4π
m3

i b K1 (mib) .

Si(b) is the Fourier transform of 1

(1+q2/m2
i
)2

, where, q is the transverse momentum carried by

the Pomeron.

The Pomeron’s Green function that includes all enhanced diagrams is approximated using the

MPSI procedure, in which a multi Pomeron interaction (taking into account only triple Pomeron

vertices) is approximated by large Pomeron loops of rapidity size of ln s. The Pomeron’s Green

Function is given by

GIP (Y ) = 1 − exp

„

1

T (Y )

«

1

T (Y )
Γ

„

0,
1

T (Y )

«

,

where T (Y ) = γ e∆IP Y and Γ (0, 1/T ) is the incomplete gamma function.
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Our Formalism 2

Summing the net diagrams , we replace gi(b) by a more complicated vertex
function which, together with the enhanced diagrams, results in the following

expression for Ωi,k(s, b):

Ωi,k
IP (Y ; b) =

∫

d2b′
gi

(

~b′
)

gk

(

~b−~b′
) (

1/γ GIP (T (Y ))
)

1 + (G3IP/γ)GIP

(

T (Y )
) [

gi

(

~b′
)

+ gk

(

~b−~b′
)].

G3IP is the triple Pomeron vertex

and γ = low energy amplitude of the dipole-target interaction

E. Gotsman 8



Our Formalism 3: Diffractive Processes
2

a)

Y

Ym

0

G3P
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Q(Y  ; ...)mQ(Y  ; ...)m

2

b)

Y

0

Y1

1

Q(Y − Y  ; ...)m

Q(Y  ; ...)m

ee

For diffraction production we introduce an additional contribution due to the
Pomeron enhanced mechanism which is non GW.

As shown in fig-a, for (single diffraction) we have one cut Pomeron,

and in fig-b, for (double diffraction) we have two cut Pomerons

we express the cut Pomerons through a Pomeron without a cut, using the AGK
cutting rules.

E. Gotsman 9



Fits GLM1 and GLM2

GLM1 [EPJ C71,1553 (2011)]

The parameters of GLM1 (prior to LHC) were determined by fitting to data

20 ≤ W ≤ 1800 GeV.

We had 58 data points and obtained a χ2/d.f. ≈ 0.86.

This fit yields a value of σtot = 91.2 mb at W = 7 TeV.

Problem is that most data is at lower energies (W ≤ 500 GeV) and these have small errors, and

hence have a dominant influence on the determination of the parameters.

GLM2 [Phys.Rev. D85, 094007 (2012)]

To circumvent this we made a new fit GLM2 to data for energies W > 500 GeV (including

LHC), to determine the Pomeron parameters. We included 35 data points.

We then tuned the values of the Pomeron-proton vertex and the G3IP coupling, to give smooth

cross sections over the complete energy range 20 ≤ W ≤7000 GeV.
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Values of Fit Parameters for GLM2 and (GLM1)

∆IP β α′
IP (GeV −2) g1 (GeV −1) g2 (GeV −) m1 ( GeV) m2 (GeV)

0.21(0.2) 0.46(0.388) 0.028(0.02) 1.89(2.53) 61.99(88.87) 5.045(2.648 ) 1.71(1.37)

∆IR γ α′
IR (GeV −2) gIR

1 (GeV −1) gIR
2 (GeV −1) R2

0,1 (GeV −1) G3IP (GeV −

- 0.47(-0.466) 0.0045(0.0033) 0.4(0.4) 13.5(14.5) 800(1343) 4.0(4.0) 0.03(0.0173)

• g1(b) and g2(b) describe the vertices of interaction of the Pomeron with state
1 and state 2

• The Pomeron trajectory is 1 + ∆IP + α
′
IP t

• γ denotes the low energy amplitude of the dipole-target interaction

• β denotes the mixing angle between the wave functions

• G3IP denotes the triple Pomeron coupling
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Comparison of the Impact Parameter Dependence of GLM Amplitudes
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The solid lines are associated with GLM2 while the dotted lines with GLM1
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Comparison of Results of GLM1 and GLM2

√
s TeV 1.8 7 8

σtot mb 75.6 (74.4) 94.2 (91.3) 96.1

σel mb 18.2 (17.5) 22.9 (23) 23.5

σsd(M ≤ M0) mb 10.5 + (2.6)nGW (10.2) 10.6 + (2.64)nGW

σsd(M
2 < 0.05s)mb 8.97+ (1.95)nGW (8.87) 10.5 + (3.94)nGW (10.2) 10.6 + (4.04)nGW

σdd mb 5.56 + (0.369)nGW (4.46) 5.98 + (1.166)nGW (6.46) 6.08 + (1.2)nGW

Bel GeV −2 17.6 (16.1) 19.8 (19.3) 20.0

BGW
sd GeV −2 6.36 8.01 8.15

σinel mb 57.4 71.7 72.6

√
s TeV 14 57 100

σtot mb 104.0(101.) 125.0 134.0

σel mb 26.1(26.1) 32.8 35.5

σsd(M
2 < 0.05s) mb 11.2 +(5.58)nGW (10.8) 12.8 + (8.19)nGW 13.4 ++

σdd mb 6.55 + (1.5)nGW (6.65) 7.68 + (4.9)nGW 8.13 +

Bel GeV −2 21.2(20.5) 24.1 25.3

σinel mb 77.9 92.9 98.5

Predictions of our model for different energies W . M0 is taken to be equal to 200GeV as ALICE measured the

cross section of the diffraction production with this restriction.
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Comparison of the predictions of GLM2 and LHC data at 7 TeV

W σmodel
tot (mb) σ

exp
tot (mb) σmodel

el (mb) σ
exp
el

(mb)

7 TeV 94.2 TOTEM: 98.3 ±0.2st ±2.8syst 22.9 TOTEM: 24.8±0.2st ± 1.2syst

W σmodel
in (mb) σ

exp
in (mb) Bmodel

el (GeV −2) B
exp
el

(GeV −2)

7 TeV 71.7 CMS: 68.0±2syst ± 2.2lumi ± 4extrap 19.8 TOTEM: 20.1±0.2st ± 0.3sy

ATLAS: 69.4±2.4exp ± 6.9extrap

ALICE: 72.7 ±1.1model ± 5.1extrap

TOTEM: 73.5 ±0.6st ± 1.8syst

W σmodel
sd (mb) σ

exp
sd

(mb) σmodel
dd (mb) σ

exp
dd

(mb)

7 TeV 10.5GW + 2.6nGW ALICE : 14.16 ± 3 5.98GW + 1.166nGW ALICE: 8.86 ± 3
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Comparison of the Energy Dependence of GLM2 and Experimental Data
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From Donnachie and Landshoff arXiv:1112.2485

D and L use an eikonalized Regge pole model with Pomerons and Reggeons:

The values of the parameters are determined by making a simultaneous fit to pp scattering data

and to DIS lepton scattering for low x.

Their results can be summarized:

SOFT POMERON HARD POMERON

αIP
S = 1.093 + 0.25t αIP

H= 1.362 + 0.1t

Coupling strength: X1 = 243.5 X0 =1.2

At 7 TeV σtot(soft) = 91 mb σtot(hard + soft) = 98 mb

E. Gotsman 16



From Donnachie and Landshoff arXiv:1112.2485
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From Ciesielski and Goulianos ”MBR MC Simulation” arXiv:1205.1446

The σp±p
tot (s) cross sections at a pp center-of-mass-energy

√
s are calculated as

follows:

σp±p
tot =







16.79s0.104 + 60.81s−0.32 ∓ 31.68s−0.54 for
√
s < 1.8 TeV,

σCDF
tot + π

s0

[

(

ln s
sF

)2

−
(

ln sCDF

sF

)2
]

for
√
s ≥ 1.8 TeV,

The energy at which ”saturation ” occurs
√
sF = 22 GeV, and

s0 = 3.7 ± 1.5GeV 2.
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Block and Halzen’s Parametrization of σtot and σinel

Bloch and Halzen (P.R.L. 107,212002 (2011) and arXiv:1205.5514) claim that the experimental

data from LHC (at 7 Tev) and Auger (at 57 Tev), ”saturate” the Froissart bound of ln2s.

By ”saturation” they mean that σtot ≈ ln2s.

Using Analyticity constraints and in the spirit of FESR’s they propose the following

parametrization for the pp and pp̄ cross sections:

σtot = 37.1( ν
m)−0.5) + 37.2 − 1.44ln( ν

m) + 90.2817ln2( ν
m)

σinel = 62.59( ν
m)−0.5) + 24.09 + 0.1604ln( ν

m) + 0.1433ln2( ν
m)

where ν denotes the lab energy, and at high energies ν = s/(2m).

W (Tev) 7 8 14 57

σtot mb 95.1 ± 1.1 97.6 ± 1.1 107.3 ± 1.2 134.8 ± 1.5

σinel mb 69.0 ± 1.3 70.3 ± 1.3 76.3 ± 1.4 92.9 ± 1.6
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From Alan Martin’s talk Trento Sept 2011 arXiv:1202.4966

and KMR Eur.Phys.J. C72(2012) 1937

KMR model KMR 3-ch eikonal

energy σtot σel σSD
lowM σDD

lowM σtot σel Bel σSD
lowM σDD

lowM

1.8 72.7 16.6 4.8 0.4 79.3 17.9 18.0 5.9 0.7

7 87.9 21.8 6.1 0.6 97.4 23.8 20.3 7.3 0.9

14 96.5 24.7 7.8 0.8 107.5 27.2 21.6 8.1 1.1

100 122.3 33.5 9.0 1.3 138.8 38.1 25.8 10.4 1.6

Some results of the complete KMR model prior to the LHC data (left-hand Table), and results obtained from a

simpler approach, based on a 3-channel eikonal description of all elastic (and quasi-elastic) pp and pp̄ data,

including the TOTEM LHC data (right-half of the Table). σtot, σel and σ
SD,DD
lowM

are the total, elastic and

low-mass single and double dissociation cross sections (in mb) respectively. The cross section σSD is the sum of

the dissociations of both the ‘beam’ and ‘target’ protons. Bel is the mean elastic slope (in GeV −2),

dσel/dt = eBelt, in the region |t| < 0.2 GeV 2. The collider energies are given in TeV. The former (latter)

analysis fit to the CERN-ISR observations that σSD
lowM=2(3) mb at

√
s = 53 GeV, with low mass defined to be

M < 2.5(3) GeV.
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Comparison of results obtained in GLM, Ostapchenko, K-P and KMR models

Ostapchenko (Phys.Rev.D81,114028(2010)) has made a comprehensive calculation in the

framework of Reggeon Field Theory based on the resummation of both enhanced and

semi-enhanced Pomeron diagrams.

To fit the total and diffractive cross sections he assumes TWO POMERONS: ”SOFT

POMERON” αSoft = 1.14 + 0.14t ”HARD POMERON” αHard = 1.31 + 0.085t

The Durham Group (Khoze, Martin and Ryskin),(Eur.Phys.J.,C72(2012), 1937), in order to be

consistent with the Totem result, have a new model, based on a 3-channel eikonal description,

with 3 diffractive eigenstates of different sizes, but with ONLY ONE POMERON.

∆IP = 0.14; α
′
IP = 0.1 GeV −2

Kaidalov-Poghosyan have a model which is based on Reggeon calculus, they attempt to describe

data on soft diffraction taking into account all possible non-enhanced absorptive corrections to 3

Reggeon vertices and loop diagrams. It is a single IP model and with secondary Regge poles,

they have

∆IP = 0.12; α
′
IP = 0.22GeV −2.
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Comparison of results of various models

W = 1.8 TeV GLM2 KMR2 Ostap BMR∗ KP BH

σtot(mb) 75.6 79.3 73.0 81.03 76.8

σel(mb) 18.2 17.9 16.8 19.97 20.53

σSD(mb) 10.77 5.9(LM) 9.2 10.22 10.1

σDD(mb) 5.93 0.7(LM) 5.2 7.67 5.8

Bel(GeV −2) 17.6 18.0 17.8 16.8

W = 7 TeV GLM2 KMR2 Ostap BMR KP BH

σtot(mb) 94.2 97.4 93.3 98.3 95.4

σel(mb) 22.9 23.8 23.6 27.2 26.4

σSD(mb) 14.44 7.3(LM) 10.3 10.91 12.6

σDD(mb) 7.15 0.9(LM) 6.5 8.82 6.0

Bel(GeV −2) 19.8 20.3 19.0 18.3

W = 14 TeV GLM2 KMR2 Ostap BMR KP BH

σtot(mb) 104.0 107.5 105. 109.5 107.3

σel(mb) 26.1 27.2 28.2 32.1 31.0

σSD(mb) 16.78 8.1(LM) 11.0 11.26 14.0

σDD(mb) 8.05 1.1(LM) 7.1 9.47 6.2

Bel(GeV −2) 21.2 21.6 21.4 19.4
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Conclusions

• Changes in parameter values between GLM1 and GLM2 are not dramatic,
BUT three parameters m1, γ and G3IP increase by 2-3 times in GLM2, driven
by the LHC data.

• Increase of γ and G3IP is a direct consequence of the large diffractive cross-
section measured at LHC.

• If the TOTEM results for σtot and σel are not amended,
GLM will have to go back to the ”drawing board”.

• I don’t believe that there is a ”threshold” at W = 7 TeV,
but the jury is still out.
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GLM2 Differential cross section and Experimental Data at 1.8 and 7 TeV
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dσel/dt versus |t| at Tevatron (blue curve and data)) and LHC ( black curve and data) energies (W = 1.8 TeV

and 7 TeV respectively) The solid line without data shows our prediction for W = 14 TeV .
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Guiding criteria for GLM Model

• The model should be built using Pomerons and Reggeons.

• The intercept of the Pomeron should be relatively large. In AdS/CFT correspondence we

expect ∆IP = αIP(0) − 1 = 1 − 2/
√

λ ≈ 0.11 to 0.33. The estimate for λ from the cross

section for multiparticle production as well as from DIS at HERA is λ = 5 to 9;

• α′
IP(0) = 0;

• A large Good-Walker component is expected, as in the AdS/CFT approach the main

contribution to shadowing corrections comes from elastic scattering and diffractive production.

• The Pomeron self-interaction should be small (of the order of 2/
√

λ in AdS/CFT

correspondence), and much smaller than the vertex of interaction of the Pomeron with

a hadron, which is of the order of λ;
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Diffraction

For double diffraction we have (see Fig.1b):

A
dd
i,k =

Z

d
2
b
′
4 gi

“

~b −~b
′
, mi

”

ggk

“

~b
′
, mk

”

× Q
“

gi, mi,~b −~b′, Y − Y1

”

e2∆ δY Q
“

gk, mk,~b
′, Y1 − δY

”

.

This equation is illustrated in fig-b, which displays all ingredients of the equation. We express

each of two cut Pomerons through the Pomeron without a cut, using the AGK cutting rules. For

single diffraction, Y = ln
`

M2/s0

´

, where, M is the SD mass. For double diffraction,

Y − Y1 = ln
`

M2
1/s0

´

and Y1 − δY = ln
`

M2
2/s0

´

, where M1 and M2 are the masses of

two bunches of hadrons produced in double diffraction.

The integrated cross section of the SD channel is written as a sum of two terms: the GW term,

which is equal to

σGW
sd =

Z

d2b
˛

˛

˛

αβ{−α2 A1,1 + (α2 − β2) A1,2 + β2 A2,2}
˛

˛

˛

2

.

E. Gotsman 27



Diffraction 2

The second term describes diffraction production due to non GW mechanism:

σ
nGW
sd = 2

Z

dYm

Z

d
2
b (1)

n

α
6
A

sd
1;1,1 e

−Ω1,1(Y ;b)
+ α

2
β

4
A

sd
1;2,2 e

−Ω1,2(Y ;b)
+ 2 α

4
β

2
A

sd
1;1,2 e

−1
2(Ω1,1(Y ;b)+Ω1,2(Y ;b))

+ β
2
α

4
A

sd
2;1,1 e

−Ω1,2(Y ;b)
+ 2 β

4
α

2
A

sd
2;1,2 e

−1
2(Ω1,2(Y ;b)+Ω2,2(Y ;b)) + β

6
A

sd
2;2,2 e

−Ω2,2(Y ;b)
o

.

The cross section of the double diffractive production is also a sum of the GW contribution,

σ
GW
dd =

Z

d
2
b α

2
β

2
˛

˛

˛

A1,1 − 2 A1,2 + A2,2

˛

˛

˛

2

,

to which we add the term which is determined by the non GW contribution,

σ
nGW
dd =

Z

d
2
b

n

α
4
A

dd
1,1 e

−Ω1,1(Y ;b)
+ 2α

2
β

2
A

dd
1,2 e

−Ω1,2(Y ;b)
+ β

4
A

dd
2,2 e

−Ω2,2(Y ;b)
o

.

In our model the GW sector can contribute to both low and high diffracted mass, as we do not

know the value of the typical mass for this mechanism, on the other hand, the non GW sector

contributes only to high mass diffraction (MnGW
0 ≥ 20 GeV).
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