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INTRODUCTION

The subject of soft scattering cross sections at exceedingly high energies and

the approach to saturation was re-kindled recently by Block and Halzen (BH),

following their analysis of σinel at AUGER 57 TeV.

The theoretical interest in this issue has been kept alive over the last 50 years

since the publication of Froissart bound. However, the road toward

a systematic phenomenological study of saturation has been blocked by the lack

of data. Very partial information is obtained from Cosmic Rays data on

p-Air cross sections, available, with large errors, up to 104 TeV.

In this presentation I wish to promote the non conventional idea that there is

a reasonable probability that saturation in p-p collisions IS NOT ATTAINED

up to the Planck scale.

Having no relevant data above AUGER57, I shall investigate the outputs of

BH, GLM and KMR models, aiming to identify model independent features.



KMR predictions go up to 100 TeV. BH and GLM go up to the Planck scale.

Recall that, model predictions at exceedingly high energies are based on the

reproduction of ISR-LHC7 data. Regardless, they may have diverging

predictions at higher energies.

The features of BH are relatively simple. It is a single channel eikonal model in

which only σtot, σel (and σinel) are calculated. The model is based on a logarithmic

parametrization supported by Finite Energy Sum Rules.

GLM and KMR are updated IP models, conceptually similar, but different

in the details of their assumptions and modellings. The models

have a multi-layered architecture which incorporates a super critical IP

trajectory. αIP (t) = 1 + ∆IP + α′
IP t, where, ∆IP ≃ 0.2 and α′

IP ≃ 0.

In conventional Regge models, ∆IP controls the amplitudes energy dependences

and α′
IP the shrinkage of the forward t-cones. In updated IP models these

features are controlled by s and t unitarity screenings.



Following are the elements of the updated IP models architecture relevant to

the goal of this presentation:

• GLM has 3 input IP exchange b-space elastic amplitudes of GW 2 channel

interaction matrix eigen states: A1,1(s, b), A2,2(s, b) and A1,2(s, b) = A2,1(s, b).

KMR is a 3 channel model.

• Eikonal screening secures that the scattering amplitudes are bounded by

the black s-channel unitarity bound. Ai,k(s, b) = i{1 − e−Ωi,k(s,b)/2} ≤ 1.

Ωi,k is real, equal to the imaginary part of the input (i,k) IP Born amplitude.

• t-channel unitarity is coupled to multi IP t-channel interactions leading to

non GW ”high mass” diffraction.

• S2, the survival probability factor, has an eikonal and a multi IP components.

It is a suppression factor induced by the screening of non GW diffraction.



FROISSART-MARTIN BOUND

Given Ω(s, b), the non screened total, elastic and inelastic cross sections are:

σtot = 2
∫

d2b
(

1 − e−Ω(s,b)/2
)

, σel =
∫

d2b
(

1 − e−Ω(s,b)/2
)2

, σinel =
∫

d2b
(

1 − e−Ω(s,b)
)

.

The figure above shows the effect of s-channel screening, securing that the

screened elastic amplitude is bounded by unity. The figure illustrates, also,

the bound implied by analyticity/crossing on the expanding b-amplitude.

Saturating s-channel unitarity and analyticity/crossing bounds, we get the

Froissart-Martin bound, σtot ≤ Cln2(s/s0). s0 = 1GeV 2, C = π/2m2
π ≃ 30mb.



C is too large to be of use. At W=100 TeV the bound is ≃ 1.6 · 104mb.

The Froissart-Martin ln2s behavior relates to the bound, NOT to the total

cross section which can grow more rapidly than ln2s as long as it is below the

unitarity bound.

In t-space, σtot is proportional to a single point, dσel/dt(t = 0).

σtot in b-space is obtained from a b2 integration of 2(1 − e−
1
2Ω(s,b)).

Consequently, saturation in b-space is a differential feature attained first at

b=0 and then expands slowly.

In a non GW single dimension representation, σel ≤
1
2
σtot and σinel ≥

1
2
σtot.

At saturation, regardless at what energy it is attained, σel = σinel = 1
2
σtot.

Two intriguing questions remain opened for investigation:

1) Are the bounds, just presented, significantly different in a GW model?

2) Is black disc saturation attainable below the Planck scale?



UNITARITY BOUNDS IN A MULTI CHANNEL GW MODEL

The elastic, SD and DD amplitudes in GLM GW model are:

ael(s, b) = i{α4A1,1 +2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1+ (α2 − β2)A1,2 + β2A2,2},

add(s, b) = iα2β2{A1,1 − 2A1,2 + A2,2}.

GW mixing parameters α2 + β2 = 1. GW Ai,k amplitudes are bounded by unity.

ael(s, b) reaches this bound, at a given (s,b), when and only when,

A1,1(s, b) = A1,2(s, b) = A2,2(s, b) = 1, independent of the GW mixing parameter.

Single channel models neglect the GW mechanism. In GW multi channel

models, we distinguish between GW and non GW diffraction.

In such models, we obtain the Pumplin bound: (σel + σGW
diff) ≤ 1

2σtot.

Consequently, σel ≤
1
2σtot − σGW

diff , σinel ≥
1
2σtot + σGW

diff , σGW
diff = σGW

sd + σGW
dd .

When, ael(s, b) = 1, asd(s, b) = add(s, b) = 0.

Accordingly, at saturation σGW
diff = 0 and σel = σinel = 1

2σtot.
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HIGH MASS DIFFRACTION

Mueller(1971) applied 3 body unitarity to equate the cross section of

a + b → M 2 + b to the triple Regge diagram a + b + b̄ → a + b + b̄.

The signature of this presentation is a triple vertex with a leading 3IP term.

The 3IP approximation is valid when
m2

p

M2 << 1 and M2

s
<< 1.

The leading energy/mass dependences are dσ3IP

dt dM2 ∝ s2∆IP ( 1
M2)

1+∆IP .

Mueller’s 3IP approximations for the non GW ”high mass” SD and DD are the

lowest order of multi IP interactions. This feature is compatible with t-channel

unitarity. The figure shows the SD and DD GLM diagrams. Multi IP vertexes

are reduced to chains of 3IP vertexes. Other IP models use different procedures.



The experimental signature of a IP exchanged reaction is a large rapidity gap

(LRG), devoid of hadrons in the η − φ Lego plot.

S2, the LRG survival probability, is a unitarity induced suppression factor of

non GW diffraction, soft or hard: S2 = σdiff(screened)/σdiff(non screened).

Denote the gap survival factor initiated by s-channel eikonalization S2
eik, and

the one initiated by t-channel multi IP interactions S2
enh. S2 is obtained from a

convolution of S2
eik and S2

enh, approximated by S2 ≃ S2
eik · S

2
enh.

Assume no screenings, ∆IP can be obtained from either the s dependence of

σtot, σel, σsd and σdd, or from the diffractive non GW ”high mass” distribution.

s and t screenings initiate a decrease in the effective output value of ∆IP with

growing s. It is denoted ∆eff
IP .

The M 2 dependence of S2 in non GW diffraction is much more moderate than

S2 dependence on s. Hence, the fitted value of ∆eff
IP from an ”high mass”

distribution is close to its input value.



The analysis of soft diffraction, is hindered by the lack of uniform

experimental and theoretical definitions of its signatures and bounds.

Commonly, the low mass bound of non GW ”high mass” diffraction

is 2-4.5 GeV and its high bound is 0.05s. It is not always consistent with

a LRG signature.

Following Kaidalov, it is common to bound the GW diffraction from above by

the lower bound of the non GW diffraction. The resulting ”low mass” cross

section is sensitive to the arbitrary choice of its upper bound.

In GLM, GW and non GW diffraction have the same upper bound at 0.05s.

Consequently, GLM diffraction is predominantly GW. Kaidalov diffraction is

predominantly non GW.

The complexity of IP diffractive diagrams leads to different summing

procedures. GLM and KMR multi-IP calculation validity is ≃100TeV.

Thus, I have omitted the ”high mass” diffraction from the forthcoming analysis.



IS SATURATION ATTAINABLE?

As the available data base is well below saturation, if it exists, I shall try to

offer a reasonable guess of its attainability based on an investigation of relevant

features in the outputs of GLM and KMR, which are IP models, and BH,

which is single channeled based on a logarithmic parametrization.

As it stands, model predictions at exceedingly high energies are based on the

analysis of ISR-LHC7 data.

Note, though, that models which have compatible outputs at ISR-LHC7, may

have diverging predictions at higher energies.



7TeV 14TeV 57TeV 100TeV 1.2 · 1016 TeV

GLM KMR BH GLM KMR BH GLM BH GLM KMR BH GLM BH

σtot 94.2 97.4 95.4 104.0 107.5 107.3 125.0 134.8 134.0 138.8 147.1 393 2067

σinel 71.3 73.6 69.0 77.9 80.3 76.3 92.2 92.9 98.5 100.7 100.0 279 1131

σinel

σtot
0.76 0.76 0.72 0.75 0.75 0.71 0.74 0.70 0.74 0.73 0.68 0.71 0.55

A) Total and Inelastic Cross Sections:

In the Table above, I am comparing σtot and σinel outputs of GLM, KMR and

BH in the energy range of 7 TeV up to Planck scale.

As can be easily seen, the 3 models have compatible outputs up to 100 TeV.

At Planck scale, the results of GLM and BH are different by factors of 3.5-5.

The critical observation is that σinel
σtot

> 0.5, up to the Planck scale.

i.e. IN THE MODELS CONSIDERED, SATURATION HAS NOT

BEEN ATTAINED.



TeV 1.8 → 7.0 7.0 → 14.0 14.0 → 57.0 57.0 → 100.0 14.0 → 100.0 100.0 → 1.22 · 1016

∆eff (GLM) 0.081 0.071 0.065 0.062 0.064 0.017

∆eff (KMR) 0.076 0.071 0.065

∆eff (BH) 0.088 0.085 0.081 0.078 0.080 0.041

B) σtot Dependence on Energy:

When compared with input ∆IP , ∆eff
IP serves as a simple measure of the

rate of cross section growth. The screenings of σtot, σel, σsd and σdd are not

identical. Hence, their ∆eff
IP values are different.

The cleanest determination of ∆eff
IP is from the energy dependence of σtot.

All other options require also a determination of α′
IP .

The table above compares ∆eff
IP values obtained by GLM, KMR and BH.

The continuous reduction of ∆eff
IP in all 3 models is a consequence of eikonal

screening disregarding the different inputs.

THE VALUES OF ∆eff
IP ARE INCOMPATIBLE WITH A ln2 s DEPENDENCE

UP TO THE PLANCK SCALE.



7TeV 14TeV 57TeV 100TeV 1.2 · 1016 TeV

GLM KMR GLM KMR GLM GLM KMR GLM

σtot 94.2 97.4 104.0 107.5 125.0 134.0 138.8 393

σel 22.9 23.8 26.1 27.2 32.8 35.5 38.1 114

σGW
sd 10.5 7.3 11.2 8.1 12.8 13.4 10.4 35.4

σGW
dd 6.0 0.9 6.6 1.1 7.7 8.1 1.6 0.7

σel+σGW
dif

σtot
0.42 0.33 0.42 0.34 0.43 0.43 0.36 0.38

C) GW Diffractive Cross Sections at Exceedingly High Energies:

Dynamic GW features in a IP model translate into 2 essential relations:

1) The Pumplin bound: (σel + σGW
diff) ≤

1
2σtot.

2) When, ael(s, b) = 1, asd(s, b) = add(s, b) = 0.

As seen, GLM GW σsd and σdd are larger than KMR. KMR σtot and σel outputs

are larger than GLM.

Both features are inbuilt depending on leverages given by the diffractive mass

bounds and number of eikonal channels. In our context, we observe that

σel+σGW
dif

σtot
< 0.5 up to the Planck scale. i.e. NON SATURATION IS SUPPORTED!
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I wish to point out a pathology induced by the weakness of the

analiticity/crossing bound on the expansion of the elastic b-space amplitude.

This is shown in the figure on the left.

The output elastic b-space amplitude, has a Gaussian like high b tail, which is

smaller than 1. This tail is aside or below the Froissart-Martin Rel bound in

b-space. This enables high b diffraction to survive.

Note that, the analyticity/crossing Rel bound is not effective even at the Planck

scale. This is shown in the right hand figure.


