Diffraction with STAR (a selection)

J. Chwastowski CUT & INP, Cracow On behalf of the STAR Collaboration

STAR@RHIC

Relatively large acceptance detector – runs since 2000

High resolution tracking with TPC: $-1 < \eta < 1$ Excellent particle id: TPC dE/dx, ToF counters

Possible forward rapidity gap veto BBC: $3.8 < |\eta| < 5.2$

J. Chwastowski

RHIC polarised proton-proton collider

N – protons fully polarised along normal to the scatt. plane

S – protons fully polarised along a vector in the scatt. plane and perp. to the beam

$$\langle P_Y + P_B \rangle = 1.224 \pm 0.038$$

 $\langle P_Y - P_B \rangle = -0.016 \pm 0.054$ Group@RHIC CNI Polarimeter Group@RHIC

elastic scattering

non – flip: $\varphi_1(s,t) = \langle ++ | M | ++ \rangle$ double flip: $\varphi_2(s,t) = \langle ++ | M | -- \rangle$ non – flip: $\varphi_3(s,t) = \langle +- | M | +- \rangle$ double flip: $\varphi_4(s,t) = \langle +- | M | -+ \rangle$ single flip: $\varphi_5(s,t) = \langle ++ | M | +- \rangle$

> A_N comes from interference of: spin flip and non-flip amplitudes

$$A_N \frac{d\sigma}{dt} = -\frac{4\pi}{s^2} \operatorname{Im} \left\{ \phi_5^*(\phi_1 + \phi_2 + \phi_3 - \phi_4) \right\}$$
$$A_N \frac{d\sigma}{dt} = -\frac{8\pi}{s^2} \operatorname{Im} \left(\phi_5^{\operatorname{em}*} \phi_+^{\operatorname{had}} + \phi_5^{\operatorname{had}*} \phi_+^{\operatorname{em}} \right)$$

$$A_{N} = \frac{\sigma^{\uparrow\uparrow} - \sigma^{\downarrow\downarrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\downarrow\downarrow}} \qquad A_{NN} = \frac{\sigma^{\uparrow\uparrow+\downarrow\downarrow} - \sigma^{\uparrow\downarrow+\downarrow\uparrow}}{\sigma^{\uparrow\uparrow+\downarrow\downarrow} + \sigma^{\uparrow\downarrow+\downarrow\uparrow}}$$

Also possible: A_{NN} (s,t), A_{SS} (s,t), A_{SL} (s,t), A_{LL} (s,t)

Elastic pp - pp2pp@STAR

•LHC (> 2015) H, WW, ...

• TEVATRON: high mass region < 100 GeV : heavy mesons production, perturbative QCD

Spectroscopy :

• understanding of scalar meson spectrum. CEP advantage: spin and isospin filter simplifies PWA

 \bullet general agreement that lightest glueball should be a scalar with mass in the range 1-2 GeV. In DPE its formation might be enhanced

Non-perturbative aspects of meson production:

- L. A. Harland-Lang et al., The phenomenology of CEP at hadron colliders arXiv:1204.4803
- P. Lebiedowicz et al., Exclusive $pp \rightarrow pp\pi^+\pi^-$ reaction: From the threshold to LHC, Phys. Rev. D81(2010)036003
- R. Staszewski et al. Exclusive $\pi^+\pi^-$ Production at the LHC with

Data selection:

1. Pots:

RP trigger on each side (East, West) – two protons (~100 GeV) Non-collinear tracks (difference of scattering angles)

$$\Delta \theta = \sqrt{\left(\theta_x^W - \theta_x^E\right)^2 + \left(\theta_y^W - \theta_y^E\right)^2} > 0.15 \text{ mrad}$$

- 2. STAR central detector: two unlike sign charge tracks in the TPC - $|\eta| < 1$, primary vertex, more than 14 hits/track track $p_T > 150$ MeV/c
- 3. Transverse momentum balance for an event:

$$p_T^{miss} = \left| (\overrightarrow{p_E} + \overrightarrow{p_W} + \overrightarrow{\pi^+} + \overrightarrow{\pi^-})_T \right| < 0.02 \text{ GeV/c} \quad \text{with } |p_E|, |p_W| \approx 100 \text{ GeV/c}$$

- partially selected sample: pp + two charged tracks (no $\Delta \theta$ > 0.15 mrad cut)
- contains elastic pp→pp events with TPC track not belonging to the same interaction vertex, characterized by large fraction of like-sign tracks (red curve)
- these ``overlap'' events can be removed by requirement of TOF signal within a bunch for central tracks at the cost of statistics
- transverse momentum balance cut very efficient in reduction of the ``overlap'' events as well as the non-exclusive background
- $\Delta \theta > 0.15$ mrad cut still needed to remove cosmics

Exclusive non-back-to-back pion pairs

- p_T^{miss} < 0.02 GeV
- $\Delta \theta$ > 0.15 mrad
- $|dE/dx (dE/dx)_{\pi}| < 3\sigma$

Spectrum similar to the one published by AFS at ISR (1985):

- almost no like-sign background
- dominated by low invariant mass pairs < 1 GeV
- characteristic cross section drop ~1 GeV due to $f_0(980)$ in final state interaction

Heavy Ion Ultraperipheral Collisions

$$\gamma\gamma \rightarrow \rho^0 \rho^0, \pi^+\pi^-, l^+l^-, Q\bar{Q}$$

• Physics processes:

$$\gamma I\!\!P \to \rho^0, \pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, J/\Psi$$

Large impact parameter (coherence) – separation of electromagnetic and hadron interactions

$$b > 2R_A \rightarrow p_T < \frac{h}{2R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{2R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{2R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{2R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{2R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{2R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \approx 7 \, fermi \rightarrow p_T < 90 \, MeV / c$$

$$\frac{Au}{r} = \frac{h}{R_A} \Rightarrow R_{Au} \Rightarrow R_$$

*

Coherent ρ^0 , J/ Ψ photoproduction in AuAu UPC – 2010 run

Background: like sign pairs

• Background subtracted data

Incoh. part

0.8

-t [(GeV/c)²)]

STAR Preliminary

0.6

^{tp}N10⁸

107

10⁶

10⁵

104

10³

Data selection: Each ZDC – 1n Vertex connected to ToF trig. Particles with TPC dE/dx 2 tracks from the vertex

2.8 million ρ candidates

Diffraction pattern

d³/dydt [mb/GeV ²] 50 10 10

10

10⁻¹

10⁻²

10⁻³

0

Sartre: T. Ullrich&T.Toll: Impact parameter dependent dipole model

data

0.1 0.12 0.14

Sartre 100% coherent Feb29

STAR Preliminary

0.16 0.18

-t [(GeV/c)²)]

 $\Delta t/t = 0.01 + 0.008\sqrt{t}$

0.4

0.2

Low x Meeting, Paphos, 2012

0.02 0.04 0.06 0.08

Coherent ρ^0 , J/ Ψ photoproduction in AuAu UPC – 2010 run

Gluon distribution (x ≈ 0.015 , Q² = m²_{J/Ψ}) Probing short distance scales

Gaussian J/Ψ signal Polynomial background

About 113 events in the peak area

Summary

RHIC demonstrates a wide diffraction programme in the AA and pp modes.

Roman Pots + Central detector:

Unique opportunity to measure spin dependent quantities in polarised pp scattering A_N consistent with no hadronic spin-flip models

Central exclusive production of $\pi^+\pi^-$ pairs in pp collisions at 200 GeV:

- feasible measurement,
- very low non-exclusive background estimated with like sign combinations,
- work in progress.

Possible extension of the program to Phase-II:

 \sqrt{s} = 510 GeV 1 < -t < 1.5 GeV²/c² with standard beam optics, very large statistics, RPs@15-17m

various studies of non-perturbative QCD e.g. instanton and glueball searches, J/ Ψ , χ_C

Central detector+ZDCs:

Photoproduction signals in UPC of heavy ions: coherent and incoherent ρ signals – diffractive pattern clear J/ Ψ signal

Backup transparencies

Coherent ρ^0 , J/ Ψ photopproduction in AuAu UPC

125 J/ Ψ events

Low x Meeting, Paphos, 2012

Coherent ρ^0 production in AuAu UPC $\sqrt{s_{_{NN}}}$ = 62.4 GeV

Acceptance for $pp \rightarrow pp\pi^+\pi^-$

- acceptance for small p_T diffractive protons (unlike ISR AFM experiment)
- acceptance (TPC+protton tagger) is ~flat in two-pion invariant mass

Acceptance studies for $pp \rightarrow pp\pi\pi$

AFS ISR 62 GeV CEP $\pi^+\pi^-$ inv. mass

ALICE LHC 7.0 TeV CEP $\pi^+\pi^-$ inv. mass

Fig. 1. Modulus of the pion scalar form factor Γ_1^n (solid line), obtained in our fit using the NLO a_i^p with $\kappa = 2$ GeV and for which the fitted parameter $c = (19.5 \pm 4.2)$ GeV⁻⁴, compared to that calculated in Ref. [37] using the Muskhelishvili-Omnès equations (double-dash dot line). The dash-dot line (for c = 15.3 GeV⁻⁴) and the dashed one (for c = 23.7 GeV⁻⁴) represent the variation of the Γ_1^n modulus when c varies within its error band.

Roman Pots at STAR

- roman pots with silicon strip detector for forward proton tagging
- staged implementation to cover wide kinematic range:
 - phase I (present data, 200 GeV, low momentum transfer ~0.003 < -t < ~0.03)</p>

➢ phase II (500 GeV, larger t coverage ~0.1 < -t < ~1.5, standard optics, large data samples)</p>

RP Phase I (2009) at STAR detector

Horizontal and vertical RP for full φ coverage