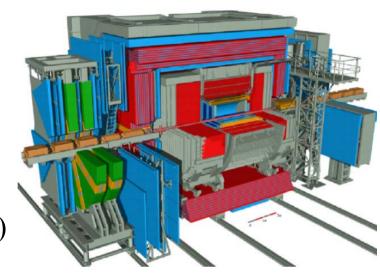
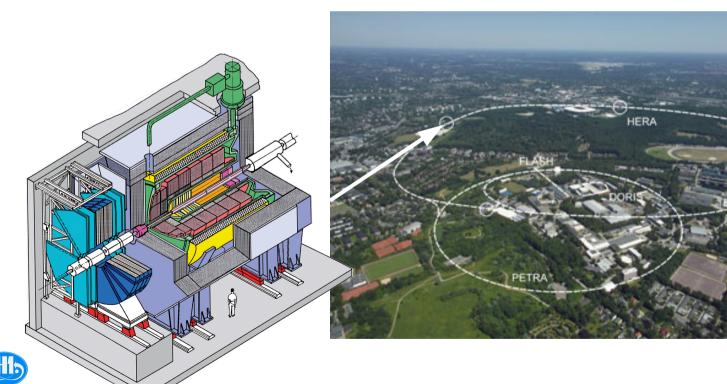


The HERA ep collider (1992 - 2007) at DESY in Hamburg

• ep collider:


• e[±] energy: 27.6 GeV


• p energy: 920 GeV

• Center of mass energy: 319 GeV

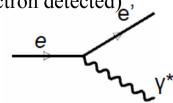
• 2 collider experiments: H1 and ZEUS

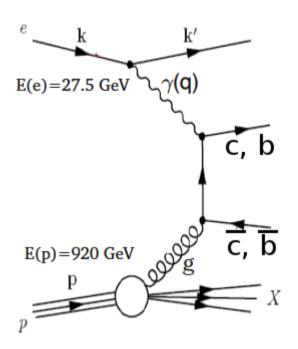
• Integrated luminosity: $\sim 0.5 \text{ fb}^{-1}$ (per experiment)

Motivation to measure heavy flavour production

Charm and Beauty quarks at HERA are mainly produced in Boson-Gluon-Fusion.

- Photon virtuality:
$$Q^2 = -q^2 = -(k-k')^2$$


- Inelasticity:
$$y = (q \cdot p) / (k \cdot p)$$

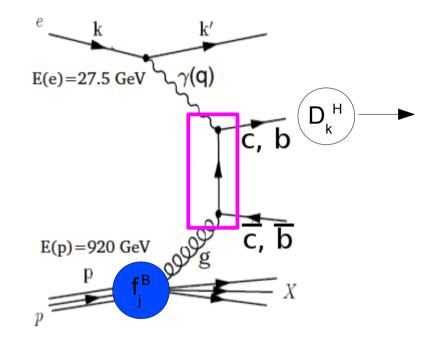

- Bjorken x:
$$x = Q^2/(2 p \cdot q)$$

- Two kinematic regimes:
 - $Q^2 \approx 0 \text{ GeV}^2$ - Photoproduction:

Deep Inelastic Scattering: $Q^2 > 1 \text{ GeV}^2$ (scattered electron detected),

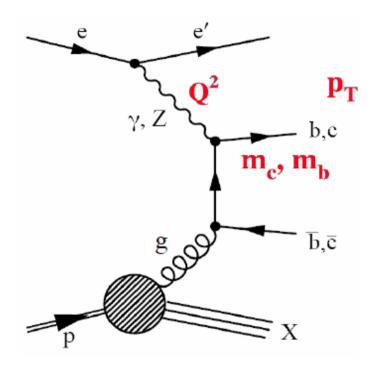
Motivation to measure heavy flavour production

Heavy Flavour cross sections can be calculated via the <u>factorization ansatz</u>:


$$d\sigma = \sum_{ijk} \mathbf{f}_{j}^{B}(\mathbf{x}, \, \boldsymbol{\mu}_{f}) \otimes d\sigma_{ij \to kX} \otimes D_{k}^{H}(\boldsymbol{\mu}_{f})$$

Parton density function (from global fits)

pQCD matrix element

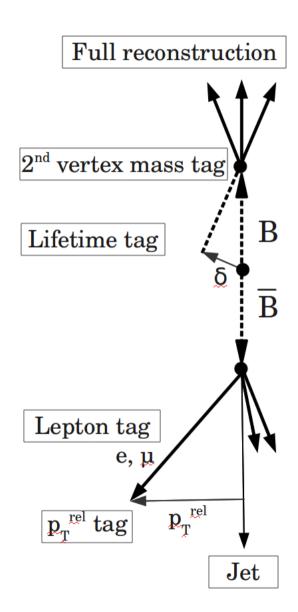

Fragmentation function (from ee data)

- Interpretation of Heavy Flavour measurements:
 - Use the pQCD calculations and constrain the gluon density of the proton.
 - Take the gluon density from elsewhere and test the consistency of the pQCD calculation.

Motivation to measure heavy flavour production

- Hard scales for perturbative QCD:
 - $m_{ch}^{2}, p_{T}^{2}, Q^{2}$
 - > multi-scale problem.
- Massive—Fixed flavour number scheme (FFNS):
 - c and b quarks generated dynamically via bosongluon-fusion.
 - c and b quarks treated massive.
 - Expected to be valid for small scales $\mu^2 \approx m_{\rm h.c}^{2}$
- Massless- Zero mass variable flavour number scheme (ZM-VFNS)
 - c and b quarks treated as massless partons in the proton and photon.
 - Expected to be valid for large scales $\mu^2 \gg m_{hc}^{2}$
- Variable Flavour Number Scheme (GM-VFNS)
 - Interpolation between massive and massless model.
 - Massive at low scales.
 - Massless at high scales.

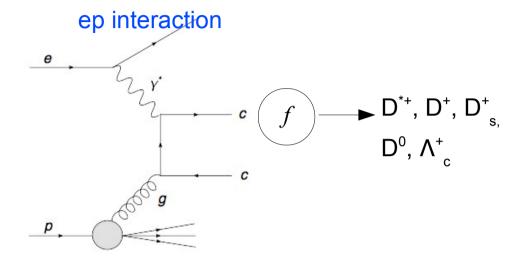
Monte Carlo generators

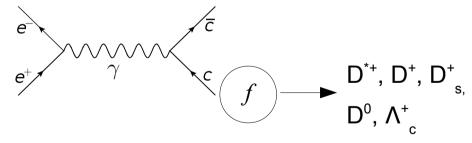

- QCD LO + Parton Shower MC:
 - Collinear factorization, DGLAP evolution (PYTHIA for photoproduction and RAPGAP for DIS).
 - $k_{_{\mathrm{T}}}$ factorization, CCFM evolution (CASCADE).
 - Used for data corrections and model comparisons.

QCD NLO

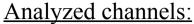
- Massive scheme, NLO(α_s^2):
 - FMNR, MC@NLO: Photoproduction.
 - HVQDIS: DIS.
- Massless scheme, NLO(α_s^2):
 - ZM-VFNS
- Used for comparisons and extrapolations to full heavy quark cross sections.

Tagging methods for heavy flavour physics at HERA


- Rates at HERA behaved like $\sigma(b)$: $\sigma(c)$: $\sigma(uds) \approx 1:50:2000$
- Charm and beauty enrichment is possible with:
 - 1) Full reconstruction
 - Only possible for charm at HERA, eg. $D^* \rightarrow K\pi\pi$. No suitable beauty decay channels with high statistics.
 - 2) Lepton tagging
 - Use semileptonic b/c decay channels:
 - > look for μ or e, high BR(c,b \rightarrow lepton + anything)
 - 3) p_{T}^{rel} tagging
 - b/c quark have large masses:
 - look for decay leptons with a high transverse momentum w.r.t the b quark flight direction.
 - 4) Lifetime tagging
 - b/c quark have long lifetimes:
 - look for displaced vertices.
 - > look for tracks with large impact parameters δ.
 - 5) Secondary vertex mass tagging
 - Use high b quark mass and long lifetimes:
 - look for high secondary vertex masses.
 - Combination of different tagging methods.


Charm Fragmentation fraction

Is the charm fragmentation fraction f universal?

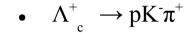

ee interaction

 $f \rightarrow$ Probability of c-quark to hadronize into particular charm meson:

$$f(c \rightarrow D, ..., \Lambda_c) = \frac{\sigma_{D, \Lambda_c}}{\sigma_{\sigma c}}$$

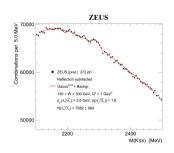
ZEUS-prel-12-003
$$\sigma_{gs} = \sigma^{eq}(D^+) + \sigma^{eq}(D^0) + \sigma(D_s^+) + \sigma(\Lambda_c^+) \cdot 1.14$$

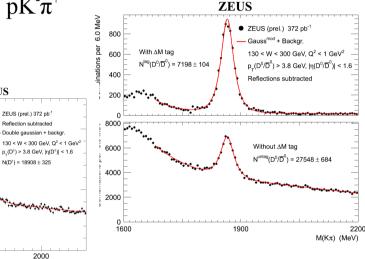
- $D^+ \rightarrow K^-\pi^+\pi^+$
- $D^{*^+} \rightarrow K^-\pi^+\pi^+$
- $D^0 \rightarrow K\pi$
- $D_s^+ \rightarrow K^+K^-\pi^+$

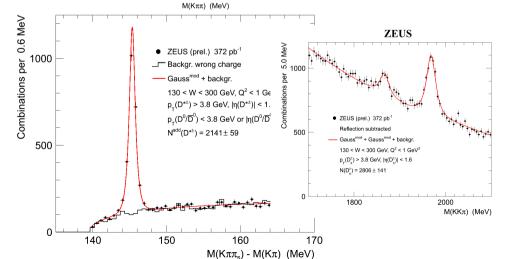

ZEUS

ZEUS (prel.) 372 pb⁻¹

 $N(D^{\pm}) = 18908 + 325$

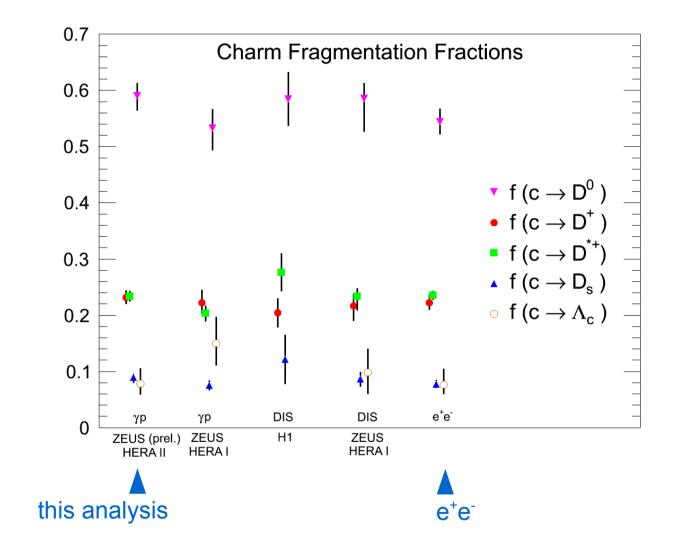

Double gaussian + backgr


2000



1800

2000



Charm Fragmentation fraction

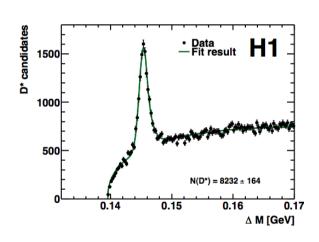
ZEUS-prel-12-003

Charm fragmentation universality confirmed.

Scales of the other measurements discussed in this talk:

7 new measurements test different scales relevant for perturbative QCD.

All references are listed in the backup.



Data sample: $\mathcal{L}=93 \text{ pb}^{-1}$

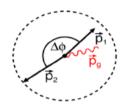
Phase Space
$$Q^2 < 2 \text{ GeV}^2$$
, $p_T^{D*} > 1.8 \text{GeV}$

Charm tagging D* meson reconstruction via:

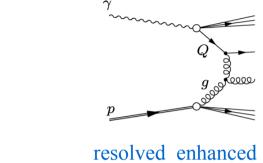
$$D^{*_{\pm}} \longrightarrow \ D^0 \, \pi^{_{\underline{}}}_{\ slow} \longrightarrow K^{\mp} \, \pi^{^{\pm}} \, \pi^{^{\pm}}_{\ slow}$$

- Very high precision of the data, compared to the uncertainties of the NLO predictions.
- NLO predicted shapes less sensitive to theoretical uncertainties, generally show a reasonable agreement with the data.

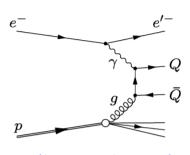
Photoproduction of D* and two jets


hard scales: p_T of jets, m

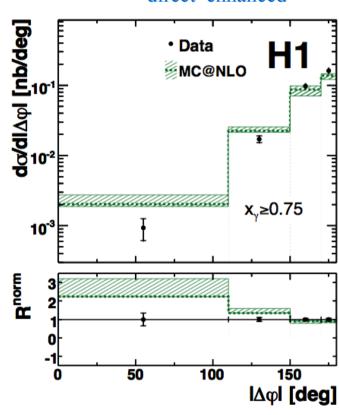
Data sample: $\mathcal{L}=93 \text{ pb}^{-1}$


Phase Space $Q^2 < 2GeV^2$, $p_T^{D*} > 2.1GeV$ 2 jets with: $p_T^{jet \ 1} > 3.5 GeV$

• Azimuthal correlation between the two jets, $\Delta\Phi$:

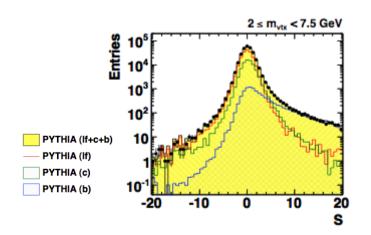


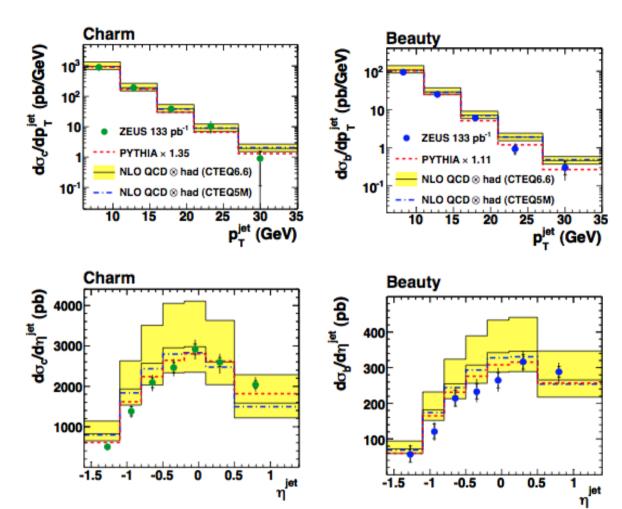
• Fraction of the photon energy entering the hard interaction (direct vs resolved), x_y^{obs} :


$$x_{\gamma}^{\text{obs}} = \frac{\sum_{J\text{et1}}(E - p_z) + \sum_{J\text{et2}}(E - p_z)}{\sum_{h}(E - p_z)}$$

direct enhanced

• MC@NLO predictions below the data for resolved photons, direct contribution reasonably well-described in normalization, shape not well described.



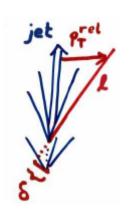

Data sample: $\mathcal{L}=130 \text{ pb}^{-1}$

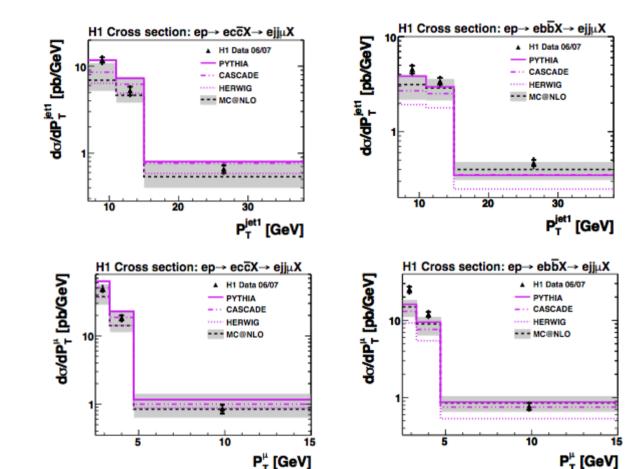
Phase Space Events with 2 jets with: $p_{T}^{\text{jet 1(2)}} > 7 (6) \text{ GeV}$

Heavy Quark tagging Reconstruction of secondary vertices:

- Decay length significance $S = DL / \sigma(DL)$
- Mass of tracks associated with the secondary vertex, m_{vtx}
- 2d template fit

- Simultaneous measurement of c- and b-jets.
- Good agreement with LO MC (Pythia, scaled) and NLO QCD calculation (FMNR).




Data sample: $\mathcal{L}=179 \text{ pb}^{-1}$

Phase Space $Q^2 < 2.5~GeV^2~,~1~muon~p_{_T}^{~\mu} > 2.5~GeV,~2~jets~p_{_T}^{~jet~1(2)} > 7~(6)~GeV$

Heavy Quark tagging Reconstruction of a muon with:

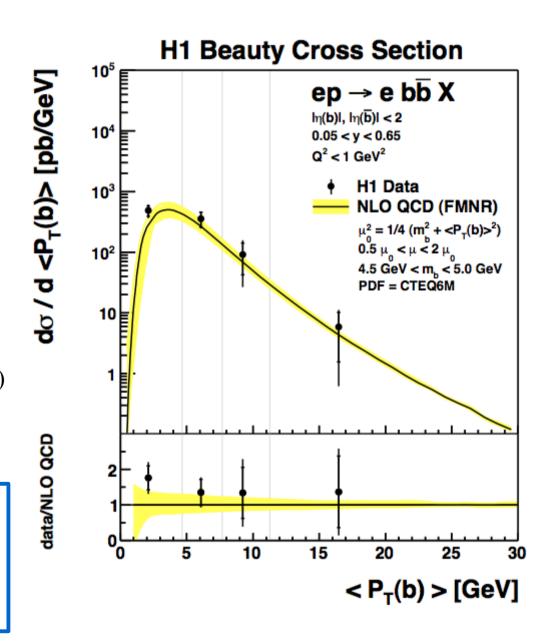
- Large momentum relative to the jet, p_T^{rel} .
- Large impact parameter δ .
- 2d template fit

- Simultaneous measurement of c- and b-jets.
- The data are in agreement with NLO calculation (MC@NLO).

Data sample: $\mathcal{L}=48 \text{ pb}^{-1}$

Phase Space

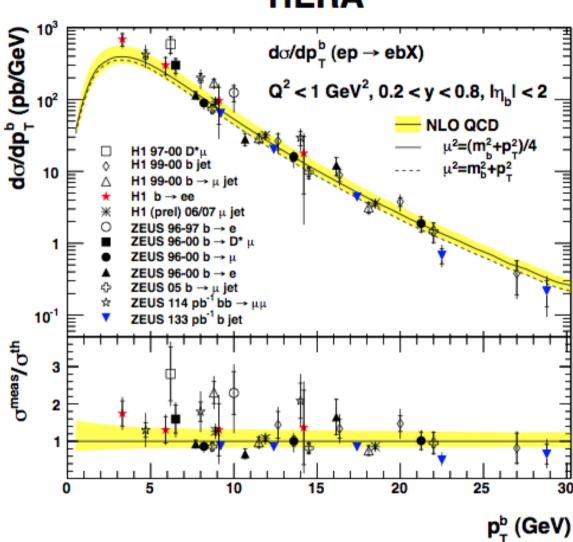
Events with 2 low p_T-electrons with


 $p_{T}(e) \approx 1 \text{GeV}$

Beauty tagging

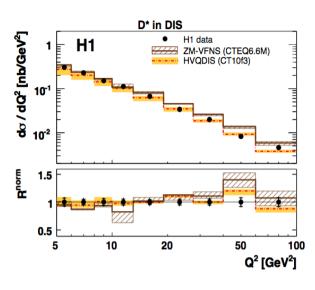
Two low $p_{_{\mathrm{T}}}$ electrons from semileptonic decays:

- Exploit di-electron correlations:
 - Invariant mass m_{ee}
 - Azimuthal correlation $\Delta\Phi_{ee}$
 - di-electron charge product: q(e1)*q(e2)

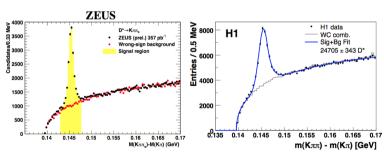

- Access to lowest $p_{T}(b)$ values ever measured in ep.
- Agreement between data and NLO calculation (FMNR).

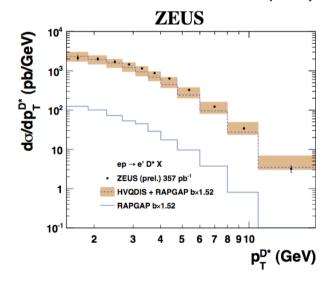
- Many measurements confirming each over a wide $p_{T}(b)$ range.
- General good agreement between data and NLO calculation (FMNR).

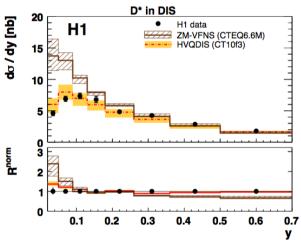
D* production in DIS



Data Samples: $\mathcal{L} \sim 350 \text{ pb}^{-1}$


$$\begin{array}{lll} Phase \; Spaces \; (H1 \, / \, ZEUS) \\ Q^2 \, : & 5\text{-}100 \; GeV^2 \quad 5\text{-}1000 \; GeV^2 \\ P_T^{\; D*} & > 1.25 \; GeV \quad > 1.5 \; GeV \\ |\; \eta^{D*}| & < 1.8 & < 1.5 \end{array}$$


ZEUS d σ /d ${\sf Q}^2$ (pb/GeV 2) ep → e' D* X ZEUS (prel.) 357 pb⁻¹ HVQDIS + RAPGAP bx1.52 RAPGAP b×1.52 10 10^{2} 10 Q² (GeV²)

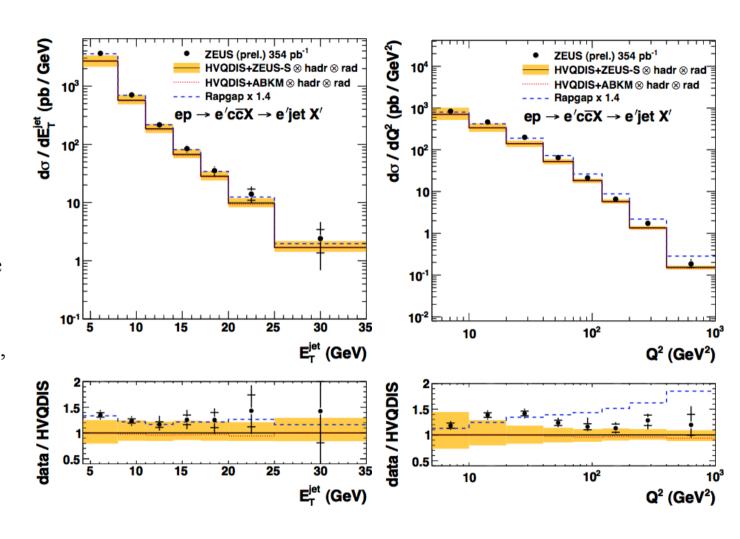


Charm tagging Reconstruction of a D* meson decaying in the golden channel:

$$D^{*_{\pm}} \longrightarrow \ D^0 \, \pi^{_{\underline{}}}_{\ slow} \longrightarrow K^{\mp} \, \pi^{^{\pm}} \, \pi^{_{\underline{}}}_{\ slow}$$

- General good agreement with massive NLO calculation (HVQDIS) over a wide range in y and Q^2 .
- The ZM-VFNS calculation overshoots the data at low y.

DESY-11-066, Phys.J.C71 (2011) 1769 ZEUS-prel-11-012

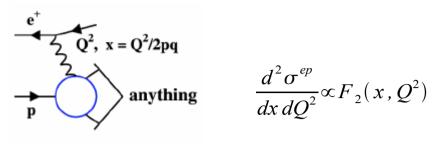

Phase Space $5 \text{GeV}^2 < Q^2 < 100 \text{ GeV}^2$

Events with ets with:

 $E_{T}^{\text{ jet 1(2)}} > 4.2 \text{ GeV}$

Heavy Quark tagging Reconstruction of secondary vertices:

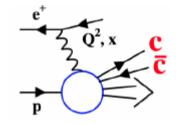
- Decay length significance
 S = DL / σ(DL)
- Mass of tracks associated with the secondary vertex,
 m_{vtx}



 Good agreement between data and NLO QCD calculation (HVQDIS) observed in different kinematical regions.

F₂ bb and F₂ contributions to the proton structure function F₂

F₂ structure function of the proton:


$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\,\alpha^2}{x\,Q^4} \cdot \left[(1 + (1-y)^2)F_2 - y^2F_L \right]$$

$$\frac{d^2\sigma^{ep}}{dx\,dQ^2} \propto F_2(x,Q^2)$$

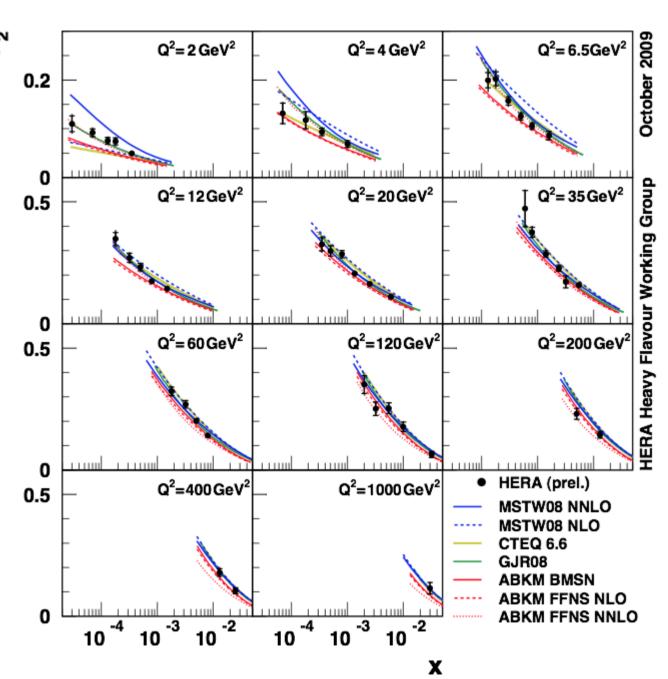
• F_2^{cc} structure function of the proton: (identical for F₂^{bb})

$$\frac{d^2 \sigma^{c\bar{c}}}{dx \, dQ^2} = \frac{2\pi \, \alpha^2}{x \, Q^4} \cdot \left[(1 + (1 - y)^2) F_2^{c\bar{c}} - y^2 F_L^{c\bar{c}} \right]$$

$$\frac{d^2 \sigma^{ep \to c \, \bar{c} \, x}}{dx \, dQ^2} \propto F_2^{c \, \bar{c}}(x, Q^2)$$

The good agreement of the data and NLO calculations in the visible phase (given by the heavy quark tagging) allow to extrapolate to the full phase space and to measure F_2^{cc} (and identical F_2^{bb}):

$$F_2^{c\tau, meas}(x, Q^2) = \sigma_{vis, bin}^{meas} \frac{F_2^{c\tau, model}(x, Q^2)}{\sigma_{vis, bin}^{model}}$$



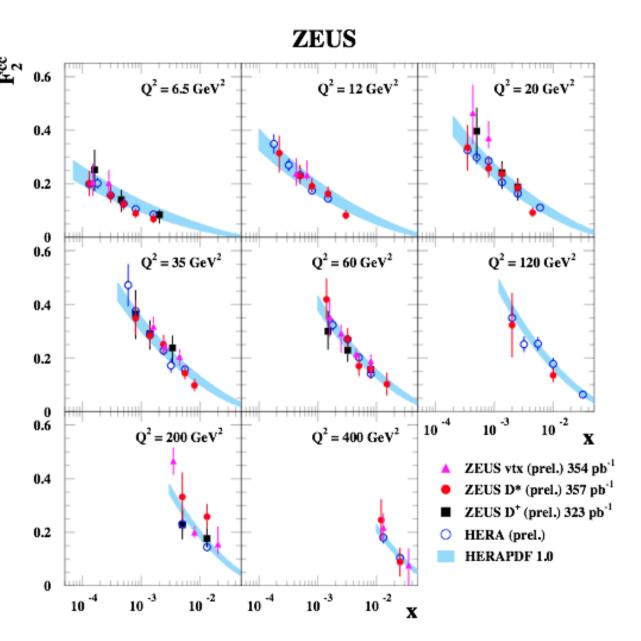
Combination of charm measurements at HERA to common (x,Q^2) points allow highest precision in the data.

Comparison to different pQCD predictions, based on different PDFs give a consistent picture:

The data can be used to further constrain the gluon density.

H1prelim-09-171, ZEUS-prel-09-015

F₂ from recent preliminary ZEUS measurements (HERAII)



Comparison to combined F_2^{cc} and HERAPDF 1.0.

Comment:

• The combined F_2^{cc} does not contain prelim. ZEUS D*, D⁺ and vertex data for HERAII.

H1prelim-09-171, ZEUS-prel-09-015, ZEUS-prel-11-012, ZEUS-prel-12-002

Summary and Conclusions

- Selection of recent HERA heavy flavour measurements presented:
 - Charm fragmentation
 - Beauty photoproduction near threshold
 - D* in photoproduction and DIS
 - Beauty and charm jets in photoproduction and DIS
 - Structure function F₂^{cc}
- In general a good agreement with NLO pQCD predictions is observed.

Heavy Flavor Measurements discussed in this talk:

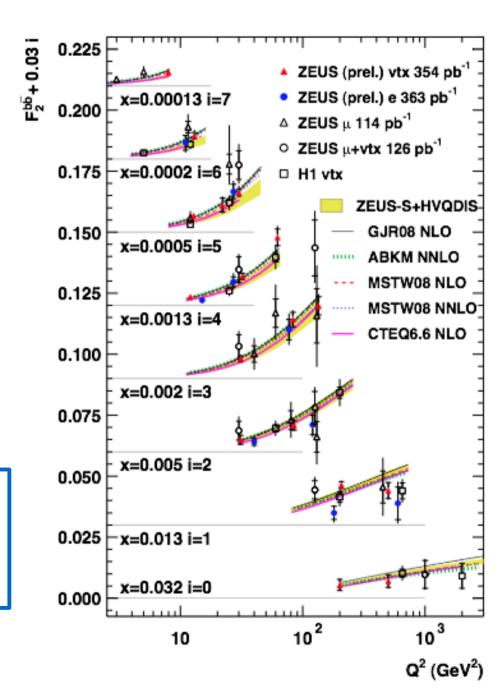
Photoproduction:

- "Measurement of Inclusive and Dijet D* Meson Cross Sections in Photoproduction at HERA" DESY-11-248, H1 Collab., F.D. Aaron et al., Eur. Phys. J. C72 (2012) 1995
- "Measurement of heavy-quark jet photoproduction at HERA" DESY-11-067, ZEUS Collaboration; H. Abramowicz et al., Eur. Phys. J C72 (2011) 1659
- "Measurement of Beauty and Charm Photoproduction using Semi-muonic Decays in Dijet Events at HERA" DESY-12-059, H1 Collab., F.D. Aaron et al., Accepted by EPJC
- "Measurement of Beauty Photoproduction near Threshold using Di-electron Events with the H1 Detector at HERA" DESY-12-072, H1 Collab., F.D. Aaron et al., Submitted to EPJC

Deep Inelastic Scattering:

- "Measurement of D* Meson Production and Determination of F2cc at low Q2 in Deep-Inelastic Scattering at HERA " DESY-11-066, H1 Collab., F.D. Aaron et al., Eur. Phys.J.C71 (2011) 1769
- "Measurement of charm production in DIS with D* mesons" ZEUS-prel-11-012, http://www-zeus.desy.de/public results/functiondb.php?id=ZEUS-prel-11-012
- "Charm production in DIS using inclusive secondary vertices and extraction of F2cc" ZEUS-prel-12-002, http://www-zeus.desy.de/public results/functiondb.php?id=ZEUS-prel-12-002
- "Combination of F2cc from DIS measurements at HERA" H1prelim-09-171, ZEUS-prel-09-015, http://www-h1.desy.de/publications/H1preliminary.short list.html

Charm Fragmentation


"Charm fragmentation fractions in Photoproduction" ZEUS-prel-12-003, http://www-zeus.desy.de/public_results/functiondb.php?id=ZEUS-prel-12-003

- Summary of H1 and ZEUS F₂^{bb} measurements.
- Comparison with different pQCD predictions.

- Data are compatible within uncertainties.
- NLO predictions able to describe the data.

