

Leszek Zawiejski
Institute of Nuclear Physics PAN, Cracow
on behalf of ZEUS Collaboration

Motivation

DIS NC process

$$q = k - k'$$
, $Q^2 = -q^2 > 0$, $Q^2 > 1 GeV^2$

Hadronisation −
non pQCD →
process

Hadronic final state: reconstruction of K_{S}^{0} , Λ , $\bar{\Lambda}$

Particles production - two approaches in description:

Monte Carlo:

PDF, leading log parton shower and Lund string model

or

NLO QCD:

PDF, matrix elements of the partonic processes and fragmentation functions

- Comparison of the K_s^0 , $\Lambda / \overline{\Lambda}$ production in DIS with MC and NLO QCD calculations
- Test pQCD, factorization and quark universality fragmentation
- Analysis can yield results which can give additional constrains in description
 a quark, anti-quark and gluon fragmentation into the strange hadrons

Main mechanisms of strange quark production

QPM, hard scattering of

Boson-gluon fusion

Heavy quark decay

Hadronisation

Predictions

Single-inclusive hadron production - exploiting the factorization theorem:

Decomposed into convolutions of three ingredients

non-perturbative

proton partonic cross section

Hadronisation **Fragmentation Function (FF)**

perturbative QCD: matrix elements up to NLO accuracy non-perturbative

NLO QCD:

AKK + CYCLOPS : Albino, Kniehl, Kramer

PDF: CTEQ6M

FF: fit to e+e- data

DSS: De Florian, Sassot, Stratmann

PDF: MRST

FF: fit to e⁺e⁻ + pp + ep data

or

Monte Carlo:

ARIADNE - CDM color dipole mode LEPTO – MEPS model or

PDF: CTEQ5D

JETSET: Lund string model

Experiment

ZEUS at HERA: 1992 – 2007

Studies of e[±]p collisions
Data collected ~ 0.5 fb⁻¹

ZEUS Collaboration: about 450 people from eighteen countries

After 2007 shut down

Many very interesting results are still published

Experiment / Data

e[±] (27.5 GeV) p(820 GeV) collisions, \sqrt{s} ~ 318 GeV standard NC DIS events selection : 330 pb⁻¹ $10 < Q^2 < 40000 \text{ GeV}^2$, 0.001 < x < 0.75

K_{S}^{0} , Λ , $\overline{\Lambda}$ candidates:

two oppositely charged tracks associated with a secondary vertex.

with cuts on:

dca, effective mass distributions, collinearity angles, distances between candidates decay vertex and primary vertex, P_t variable (Armenteros-Podolanski).

(JHEP 03 (2012) 020)

Analysis: current region of the Breit frame (BF)

(BF: exchanged virtual boson is purely space-like with 3-momentum q = (0,0,-Q))

Distributions presented in $x_p = 2P^{Breit} / \sqrt{Q2}$ \rightarrow an estimator for z: the fraction of parton momentum carried by hadron after fragmentation

Scaled Momentum Distribution: K⁰_s (1)

- Scaling violation is observed:
 with increasing Q more soft gluons are radiated → more particles
 with low x_p are produced
- Calculations with
 the Fragmentation Functions
 based on e⁺e⁻ (AKK+CYCLOPS)
 or on e⁺e⁻ + pp + ep data (DSS)
 cannot describe
 x_p distributions.
 DSS do it a little better
 in mid-range of x_p
- MCs descriptions are reasonable

Scaled Momentum Distribution: K_s^0 (2)

Two different regions of Q²:

- For small Q²:
 AKK+CYCLOPS
 and DSS calculations
 predict too steep spectra
 with significant overestimation
 of the data at small x_p
- For high Q2:

 the similar tendency,
 AKK+CYCLOPS
 gives a little better
 description
- MCs still describe x_p distributions in a reasonable way.

Scaled Momentum Distribution: Λ / Λ (1)

- No DSS calculations are available
- Scaling violation is observed
- AKK+CYCLOPS prediction
 with FF based only on e⁺e⁻ data
 fail in data description
- Monte Carlo are still reasonable
- Poor statistics for the highest x_p bin

Scaled Momentum Distribution: $\Lambda / \overline{\Lambda}$ (2)

Two different regions of Q^2 :

- AKK+CYCLOPS with

 FF based on e⁺e⁻ data only
 predicts too steep spectrum
 in both Q² regions
- Monte Carlo predictions give a much better description of x_p distributions
- Not enough statistics at large x_o

x_p distributions: inclusive charged and neutral strange hadrons

Charged hadrons, ZEUS JHEP 6 (2010) 1 and JHEP 10 (2010) 1

 $1/N n^{\pm} / \Delta x_p$

Inclusive charged particles:

□ ZEUS 440 pb⁻¹
 ■ ZEUS 38 pb⁻¹

strange hadrons:

K_S⁰ ZEUS 330 pb⁻¹
 ▲ Λ

Similarity distributions - at small Q^2 and x_p mass effect is stronger for strange hadrons . Most of the charged particles are pions

AKK calculations with FF based only on e+e- also failed to describe the x_p distributions of charged hadrons

Summary

- Scaled momentum distributions for K⁰_S, Λ/Λ strange hadrons were measured for the first time in ep DIS
- The comparison of the data with NLO QCD calculations based on different parametrisations of the FFs show that FFs are still not constrained enough to describe the strange hadrons production
- It is hoped that the results will be useful for further improvement of the fragmentation functions for strange hadrons