Leszek Zawiejski Institute of Nuclear Physics PAN, Cracow on behalf of ZEUS Collaboration ## **Motivation** #### DIS NC process $$q = k - k'$$, $Q^2 = -q^2 > 0$, $Q^2 > 1 GeV^2$ Hadronisation − non pQCD → process Hadronic final state: reconstruction of K_{S}^{0} , Λ , $\bar{\Lambda}$ Particles production - two approaches in description: #### Monte Carlo: PDF, leading log parton shower and Lund string model or **NLO QCD:** PDF, matrix elements of the partonic processes and fragmentation functions - Comparison of the K_s^0 , $\Lambda / \overline{\Lambda}$ production in DIS with MC and NLO QCD calculations - Test pQCD, factorization and quark universality fragmentation - Analysis can yield results which can give additional constrains in description a quark, anti-quark and gluon fragmentation into the strange hadrons # Main mechanisms of strange quark production # QPM, hard scattering of ### Boson-gluon fusion # Heavy quark decay #### Hadronisation ### **Predictions** Single-inclusive hadron production - exploiting the factorization theorem: Decomposed into convolutions of three ingredients non-perturbative proton partonic cross section Hadronisation **Fragmentation Function (FF)** perturbative QCD: matrix elements up to NLO accuracy non-perturbative #### NLO QCD: AKK + CYCLOPS : Albino, Kniehl, Kramer PDF: CTEQ6M FF: fit to e+e- data DSS: De Florian, Sassot, Stratmann PDF: MRST FF: fit to e⁺e⁻ + pp + ep data or #### Monte Carlo: ARIADNE - CDM color dipole mode LEPTO – MEPS model or PDF: CTEQ5D JETSET: Lund string model # **Experiment** ZEUS at HERA: 1992 – 2007 Studies of e[±]p collisions Data collected ~ 0.5 fb⁻¹ ZEUS Collaboration: about 450 people from eighteen countries After 2007 shut down Many very interesting results are still published # **Experiment / Data** e[±] (27.5 GeV) p(820 GeV) collisions, \sqrt{s} ~ 318 GeV standard NC DIS events selection : 330 pb⁻¹ $10 < Q^2 < 40000 \text{ GeV}^2$, 0.001 < x < 0.75 ## K_{S}^{0} , Λ , $\overline{\Lambda}$ candidates: two oppositely charged tracks associated with a secondary vertex. #### with cuts on: dca, effective mass distributions, collinearity angles, distances between candidates decay vertex and primary vertex, P_t variable (Armenteros-Podolanski). (JHEP 03 (2012) 020) #### Analysis: current region of the Breit frame (BF) (BF: exchanged virtual boson is purely space-like with 3-momentum q = (0,0,-Q)) Distributions presented in $x_p = 2P^{Breit} / \sqrt{Q2}$ \rightarrow an estimator for z: the fraction of parton momentum carried by hadron after fragmentation # Scaled Momentum Distribution: K⁰_s (1) - Scaling violation is observed: with increasing Q more soft gluons are radiated → more particles with low x_p are produced - Calculations with the Fragmentation Functions based on e⁺e⁻ (AKK+CYCLOPS) or on e⁺e⁻ + pp + ep data (DSS) cannot describe x_p distributions. DSS do it a little better in mid-range of x_p - MCs descriptions are reasonable # Scaled Momentum Distribution: K_s^0 (2) #### Two different regions of Q²: - For small Q²: AKK+CYCLOPS and DSS calculations predict too steep spectra with significant overestimation of the data at small x_p - For high Q2: the similar tendency, AKK+CYCLOPS gives a little better description - MCs still describe x_p distributions in a reasonable way. # Scaled Momentum Distribution: Λ / Λ (1) - No DSS calculations are available - Scaling violation is observed - AKK+CYCLOPS prediction with FF based only on e⁺e⁻ data fail in data description - Monte Carlo are still reasonable - Poor statistics for the highest x_p bin # Scaled Momentum Distribution: $\Lambda / \overline{\Lambda}$ (2) ### Two different regions of Q^2 : - AKK+CYCLOPS with FF based on e⁺e⁻ data only predicts too steep spectrum in both Q² regions - Monte Carlo predictions give a much better description of x_p distributions - Not enough statistics at large x_o ### x_p distributions: inclusive charged and neutral strange hadrons Charged hadrons, ZEUS JHEP 6 (2010) 1 and JHEP 10 (2010) 1 $1/N n^{\pm} / \Delta x_p$ Inclusive charged particles: □ ZEUS 440 pb⁻¹ ■ ZEUS 38 pb⁻¹ strange hadrons: K_S⁰ ZEUS 330 pb⁻¹ ▲ Λ Similarity distributions - at small Q^2 and x_p mass effect is stronger for strange hadrons . Most of the charged particles are pions AKK calculations with FF based only on e+e- also failed to describe the x_p distributions of charged hadrons # **Summary** - Scaled momentum distributions for K⁰_S, Λ/Λ strange hadrons were measured for the first time in ep DIS - The comparison of the data with NLO QCD calculations based on different parametrisations of the FFs show that FFs are still not constrained enough to describe the strange hadrons production - It is hoped that the results will be useful for further improvement of the fragmentation functions for strange hadrons