INELASTIC DIFFRACTION AT THE LHC – RECENT TOTEM MEASUREMENTS

29.7.2012 -

Phaphos

Image from "The Daily Galaxy"

Risto Orava

Low x 2012

Leading Protons measured at -220m from IP1 & IP5

cms-calorimetry + totem-tracking: unique fwd physics spectrometer for forward physics at the lhc

Experimental Setup

TOTEM⊕CMS measurements

 Total pp cross section & Elastic pp scattering (see the talk by Frigi Nemes)

3. Leading particles: $2 \times 10^{-2(3?)} < \xi < 2 \times 10^{-1}$

Particle flows, "rap gaps": ...3.1 < η < 4.7 and 5.3 < η < 6.5...

⇒ Measure sd, dd , ced cross sections
 ⇒ Investigate diffractive & forward phenomena together with CMS⁺
 (=CMS+Castor+FCS+ZDC+fp420m?)

LHC Experiments: p_T-η coverage

CMS fwd calorimetry up to $|\eta| \approx 5 + Castor + ZDC$

Forward detectors can be deployed as diffractive mass selectors.

+ fp420m?

©R. Orava Diffraction 2006 Milos Island

TOTEM Collaboration

Spokesman: Simone Giani

V. Berardi, F. Cafagna, M. Calicchio, M.G. Catanesi, E. Radicioni

INFN Sezione di Bari and Politecnico di Bari, Bari, Italy

C. Taylor

Case Western Reserve University, Dept. of Physics, Cleveland, OH, USA

G. Antchev, P. Aspell, V. Avati, J. Bächler, M. Deile, S. Giani, F. Haug, F. Lucas Rodriguez, H. Niewiadomski, E. Radermacher, F. Ravotti, L. Ropelewski, G. Ruggiero, W. Snoeys, J. Wu

CERN, Geneva, Switzerland

M. Bozzo, A. Buzzo, F. Capurro, S. Cerchi, F. Ferro, M. LoVetere, M. Macri, S. Minutoli, A. Morelli, P. Musico, M. Negri, E. Robutti, A. Santroni, G. Sette

Università di Genova and Sezione INFN, Genova, Italy

E. Brücken, J. Heino, F. Garcia, T. Hilden, J. Kalliopuska, K. Kurvinen, R. Lauhakangas, F. Oljemark, R. Orava, K. Österberg, H. Saarikko, N. van Remortel

Helsinki Institute of Physics HIP and Department of Physical Sciences, University of Helsinki, Helsinki, Finland

J. Kašpar, V. Kundrát, M. Lokajíček

Institute of Physics of the ASCR, v.v.i. (Academy of Sciences of the Czech Republic), Praha, Czech Republic

U. Bottigli, M.A. Ciocci, S. Lami, G. Latino, M. Meucci, E. Oliveri, R. Paoletti, G. Sanguinetti, A. Scribano, F. Spinella, N. Turini

Università di Siena and Sezione INFN-Pisa, Italy

E. Lippmaa, A. Rummel, A. Trummal

Estonian Academy of Sciences, Tallinn, Estonia

K. Eggert, J. Whitmore

Penn State University, Dept. of Physics, University Park, PA, USA

T. Csorgo, M. Csanad, F. Nemes, A. Soter, A. Ster, J. Sziklai

MTA KFKI RMKI, Budapest, Hungary

TOTEM DETECTORS

Horizontal Pot

Vertical Pot BPM

FORWARD SHOWER COUNTERS - FSCs

CORRELATION WITH THE CMS SIGNATURES

- e, γ , μ , τ , and b-jets:
 - tracking: $|\eta| < 2.5$
 - calorimetry with fine granularity: $|\eta| < 2.5$
 - muon: |η| < 2.5
- Jets, E_T^{miss}
 - calorimetry extension: $|\eta| < 5$
- High p_T Objects
 - Higgs, SUSY,...
- Precision physics (cross sections...)
 - energy scale: e & µ 0.1%, jets 1%
 - absolute luminosity vs. parton-parton luminosity via "well known" processes such as W/Z production?

Leading Proton Measurements

Measure the <u>deviation</u> of the leading proton location from the nominal beam axis ($\Rightarrow \xi$) and the angle between the two measurement locations (\Rightarrow -t) within a doublet.

Acceptance is limited by the <u>distance</u> of a detector to the beam. Resolution is limited by the <u>transverse vx location</u> (small ξ) and by <u>beam energy spread</u> (large ξ).

Diffractive forward protons @ RPs

$$y(s) = v_y(s) \cdot y^* + L_y(s) \cdot \Theta_y^*$$

$$x(s) = v_x(s) \cdot x^* + L_x(s) \cdot \Theta_x^* + \xi \cdot D(s)^*$$

Dispersion shifts diffractive protons in the horizontal direction

- For low- β^* optics L_x, L_y are low
- v_x, v_y are not critical because of small IP beam size
- $\xi = \Delta p/p \sim x$, uncertainty due to (x*,y*)

- L_x=0, L_v is large
- beam σ = 212 µm \rightarrow v_x, v_y important (deterioration of rec. resolution)
- measure p through $\Theta_y \propto p_T \approx \sqrt{|t_y|}$
- sensitivity to x* measure elastics

TOTEM ⊕ CMS RUN SCENARIOS

TOTEM + CMS run scenarios

S. Giani

COMMON DATA WITH CMS

TRIGGER INFORMATION EXCHANGE – EVENTS FIRST COMBINED BY USING BEAM ORBIT SYNCHRONIZATION

2011 Heavy Ion run: validation of the trigger exchange, data combination T2-CASTOR

2012 Alignment of Roman Pots: CMS jet trigger to TOTEM, events (low statistics) collected

2012 Low pile-up data: 8M events collected, complete trigger menu, exchange of triggers TOTEM ⇔ CMS (CMS jet trigger, TOTEM min bias, RPs not in)

COMMON DATA WITH CMS

Foreseen in 2012:

- $\beta^* = 90$ m, 156 bunches, expect $\int L \sim 6nb^{-1}/h$
- Leading protons for the full range in $\xi \sim 0$, $|-t| > 0.02 \text{ GeV}^2$
- Triggers vs. Physics aims: min bias, elastic /TOTEM stot), di-jets, leptons,...
- Standard LHC optics, some 1400 bunches, full lumi
- Leading protons for the full range in |-t|, $\xi > 2-3\%$
- CMS triggers include jet, μ , ϵ , γ , p combinations with the TOTEM RP trigger
- Data taking asap after aligning the RPs & allowed to be inserted at high lumi

Single Diffraction (sd)

Central Exclusive Diffraction (ced):

Forward multiplicities

Forward Detectors – Mass Selectors

Calculate using the rap gap:

 $\ln M_{\chi^2} = \Delta \eta$

Access to small M_X iff forward detectors at $|\eta| > 5$.

T1, T2 and the FSCs see diffractive systems with decreasing masses – a natural way to select.

EFFICIENCY OF DETECTING sd EVENTS

Single diffraction low ξ

Correlation between leading proton and forward detector T2

run: 37280003, event: 3000

 $x \pmod{x}$

 $x \pmod{(\mathbf{m})}$

Single diffraction large ξ

correlation between leading proton and forward detector T2

run: 37280006, event: 9522

$d\sigma_{SD}/dt \& \sigma_{SD}$

Raw distribution

Preliminary

(to be corrected for acceptance, ...)

Central Exclusive Diffraction (ced)

correlation between leading protons and forward detector T2

run: 37220007, event: 9904

Example of ced Mass Reconstruction

Low-β RP vertical RP horizontal T2

A historical note....

ced mass measurement at 420m...

Workshop on Diffractive Physics 4. – 8. February 2002 Rio de Janeiro, Brazil 5.13

Forward Multiplicities

Forward Multiplicities – Event Selection

- Low luminosity runs
- Trigger by T2 at least 1 rec track
- Primary particles: $t > 0.3 \cdot 10^{-10} s$, $p_t > 40 MeV$
- Use impact parameter (z) for primary/sec
- Evaluate primary track reconstruction efficiency event-by-event $\Rightarrow \sim 80\%$

Charged particles vs. pseudorapidity

The experimental points (black squares) - the average of 4 T2 quarters. Bars include both statistical and systematic errors.

Red triangles, blue circles, green

circles and orange diamonds: the Phojet, Pythia8, Pythia6 and Sherpa predictions for charged particles with $p_ > 40$ MeV/c in events with at least one charged particle within the range 5.3 < $|\eta| < 6.5$

EPL 98(2012)31002

dN/dh from ALICE, ATLAS, CMS, LHCb & TOTEM-T2

Event Classification by the T2s

See the talk by Tuula Mäki!

Tracks in both T2s: dd & nd

Tracks in ±T2: mostly sd (M* > 3.4 GeV)

Event Classification by the T1s&T2s

Tracks in both ±T2s No Tracks in ±T1s : Clean dd! - See the talk by **Tuula Mäki**

Tracks in either +T2 or -T2 No Tracks in T1s: Mostly sd (M* > 3.4 GeV), - But not so clean

CROSS SECTION σ_{inel}

 trigger efficiency: measured from zero bias data vs. track multiplicity for each event category 	~2.3%
 track reconstruction efficiency, based on MC tuned to data 	~1%
 beam-gas background, measured with non-colliding bunch data 	~0.54%
• pile-up (μ ~0.03), measured by zero bias data	~1.5%

 σ_{inel} (visible in T2; M_{fwd} > 3.4 GeV) = 69.7 ± 0.1(stat.) ± 0.7(syst.) ± 2.8(lumi) mb

CROSS SECTION σ_{inel}

Contribution from the unseen low mass (diffractive) systems below $M \approx 3.4$ GeV, estimated (preliminary) to be abot 3.7%.

- Low mass component will be measured independently.

 $\sigma_{inel} = 73.7 \pm 0.1 (stat.) \pm 1.7 (syst.) \pm 2.9 (lumi) mb$

Fwd Analysis Plans

- Charged multiplicities & Correlations for a maximal Δη
- Proton-proton σ_{inel} revisited at 8 TeV
- Event Classification" Pile-Up, Underlying Events, sd, dd, ced, ...
- Central Exclusive Production
 Ambitious plans for 2012 & beyond!

STATUS OF THE MULTIDIMENSIONAL EVENT CLASSIFICATION

-Good & Walker inspired approach

- Classifier algorithms implemented
- Integrated cross sections: σ(sdl,sdr,dd,nd) obtained
- Effects of (theoretical) prior cross sections obtained
- Being worked on: Experimental sample selection

Diffraction:

fluctuations in impact parameter, no. of contributing entities (wees), rapidity

Mikael Mieskolainen & RO

SOFT EVENT CLASSIFICATION - AN EXAMPLE PLOT

Normalized to: $\sigma_{inel}(CDF) = 58.96 \text{ mb}$

SDL	SDR	DD	ND
5.42	5.42	4.97	43.15 [mb]