

Monte Carlo studies

Vlastimil Kůs, Marek Taševský, Oldřich Kepka

Institute of Physics Academy of Sciences of the Czech Republic

28th June 2012

Low-x Meeting, Cyprus

Diffractive dijets

- Single diffraction processes of the form ... pp->pX Exchange of colourless object with vacuum quantum numbers (Pomeron) => only dissociated-proton's remnants, no other hadronic activity in large areas of η
- typical signature \rightarrow <u>rapidity gaps</u> ($\Delta \eta_{\rm F}$)

A bigger distance from the edge of the detector (η =4.9) to the closest cluster or track with p_r>200 MeV.

• low pile-up required

Vlasta Kůs

Goals and motivations

The aim

- to study <u>hard single diffraction in di-jet events</u> of 7 TeV LHC data; measure cross-section as a function of size of gaps

Main motivation

Diffraction first observed at HERA (ep collisions). Diffractive PDF measured.

Then studied at Tevatron (*pp*_bar collisions). Structure function measured ~10x smaller than HERA's dPDFs predictions for *pp*_bar collisions (rescattering of dissociated system *X* with intact proton) \rightarrow <u>Gap Survival Probability</u>

MC truth studies

- Truth studies of Pythia 6, 8, Herwig++ and Pomwig based on private production Herwig++ ... versions 2.4.2 and 2.5.1 (tunes UE-EE-3 and UE7-2) Pythia ... versions 6.4.23 (tune AMBT1) and 8.150 (AUET2B) Pomwig ... version 2.0.2
- Event selection dijet events, $p_{T}^{\text{jets}} > 20 \text{ GeV}$ (jet reconstruction algorithm – FastJet 3.0.0)
- Gap definition largest gap in η (with no stable truth particle with p_{γ} >200 MeV) to the edge of detector ($|\eta|$ <4.9)
- Significant <u>differences</u> between <u>ND Herwig and Pythia</u> observed
 - ND Herwig provides much slower gap spectrum fall

Due to the difference in <u>hadronisation models</u>.

Herwig++: *clustering hadr.* (smaller p_{T} /multiplicities in fwd region)

Pythia: string hadronization

Discrepancies in ND gap spectra

Gaps calculated by taking into account particles with $p_{\tau} > 200$ MeV only.

Jet p_{T} > **20 GeV** cut applied to leading and sub-leading jets.

- Herwig++ 2.4 doesn't describe non-diffractive ATLAS data well
 - \rightarrow we should update to newer version (2.5) and tunes

Vlasta Kůs

SD Herwia++ 2.5.*

8

Gap size

6

Influence of jet momentum cut

- The intention is to study single diffraction in hard dijet events

 → requirement on presence of <u>at least 2 jets with p_r^{jet} > 20 GeV</u>
- Due to this p_{τ}^{jet} requirement we loose the diffractive plateau in gap-size distributios
- In plots below, we can't see any plateau even for histograms with no jet $p_{_{T}}$ cut as these events were generated with $p_{_{T}}^{_{parton}} > 7$ GeV requirement

Influence of p_{τ}^{min} -particle cut

- The tracker and calorimeter have limited resolution we can't see particles that are too soft
 - \rightarrow need to set some **min.** *p***_T cut** on particles to mimic these conditions
- By considering only particles above certain threashold we arbitrarily increase gap-sizes
- Tests with several p_{τ} thresholds to estimate this influence ...

Gap spectra Generator level

Plots **include KMR prediction of S**² (gap survival probability) for CMS energy 7 TeV protonproton collisions ... $\underline{S}^2 = 6 \frac{9}{5}$

Significant gap spectra fall with increasing p_{τ} cut, no plateau observed due to the presence of hard dijet system.

By using 20 GeV jet cut we gain about one order of magnitude in σ compared to 30 GeV cut. Not possible to go below 20 GeV – no JES available.

Vlasta Kůs

Gap spectrum - summary

Generator level

Cross-sections (nb) for different gap sizes $\Delta \eta_{gap}$ and p_T^{jet} >20GeV, S^2 = 0.06

	$\Delta \eta > 3$	$\Delta \eta > 4$	$\Delta \eta > 5$
ND Pythia	155	18	0.4
SD Pomwig	394	127	33
SD Pomwig * S ²	1.2	0.4	0.1

In total ... $\Delta \eta_{gap}$ > 3: SD*S² / ND = 0.15 $\Delta \eta_{gap}$ > 4: SD*S² / ND = 0.42 $\Delta \eta_{gap}$ > 5: SD*S² / ND = 5

For measurement, improvement would be achieved by proton tagging by forward detectors.

Vlasta Kůs

Summary

- significant discrepancies in gap-size distributions in Herwig++ modelling compared to Pythia observed
- diffractive plateau not observed due to the requirement on presence of hard dijet system
- SD / ND ~ 0.4 for gaps bigger than 4 (gap survival probability included)
- currently working on hard SD measurement on ATLAS low-pileup data