

1

Central Exclusive Production in CMS

Wenbo Li Peking University (for the CMS Collaboration)

Low-X 2012, June 28, Cyprus

Outline

- Introduction
- ➤ The CMS Detector
- Exclusive dipohoton and dielectron production
 - Event selection
 - ≻ Result
- Exclusive dimuon production
 - Event selection
 - Signal extraction
 - ≻ Result
- Summary & Outlook

Central Exclusive Production

Central exclusive production:

$$pp \to p + X + p$$

- Both protons emerge intact from the interaction
- \succ X: a simple fully measured system
- Exclusive: no other particles produced & large rapidity gap
- Cleanest and simplest inelastic pp collision
- > Physics processes involved: $\gamma\gamma$ interactions, γ IP fusion, and IPIP exchange

- Double pomeron exchange:
 - gg fusion through a quark loop to produce the central system
 with a soft low-Q² screening gluon to cancel the color flow
 Sudakov factor (no partons emitted by the fusing gluons)

 - Rapidity-gap survival probability (no additional inelastic pp scattering)
- Shed light on diffraction and double pomeron exchange
 - Low-x gluon density (σ ~ (xg)⁴)
 Rapidity-gap survival probability
- Provide excellent test of theoretical predictions of exclusive Higgs production > QCD calculation (blue box) is same, where most uncertainties come from \triangleright Only the calculable matrix elements (red box) are different for H and $\gamma\gamma$ cases $\succ \frac{d\sigma(M_{\gamma\gamma})}{dM_{\gamma\gamma}}$: σ_H should be well determined theoretically

Exclusive production:

- \blacktriangleright QED process, cross section known with high accuracy at theoretical level (<1%)
- Control process for other exclusive processes
- Potentially interesting for integrated luminosity measurement (provided that semiexclusive production is well understood or well suppressed)

Semi-exclusive production:

- > Either or both protons excited and diffractively dissociated.
- Much less theoretically determined
- Suppression of semi-exclusive events depends on performance of the forward detectors (In CMS, this process contributes more than half of the candidates)

The CMS Detector

 $(|\eta_{max}|=2.5)$

Subdetectors used to define the exclusivity condition (rapidity gap):

- > Diphoton and dielectron analyses: Tracker (blue box) + Calo (red box) ($|\eta_{max}|=5.2$)
- Dimuon analysis: Tracker only (blue box)

Exclusivity condition: no other particles detected besides the two photons/electrons/muons

Exclusive γγ production & & Exclusive e⁺e⁻ production

FWD-11-004

Event Selection

 Any other inelastic interaction overlapping with an exclusive interaction would spoil the exclusivity condition and make the exclusive interaction unobservable
 Only 2010 data sample used (low pileup) (36pb⁻¹)

- > Trigger: 2 EM showers with $E_T > 5 GeV$
- Photon (electron) selection:

> Exactly two identified photons (electrons) with $E_T > 5.5 GeV$ and $|\eta| < 2.5$

- Cosmic ray rejection criteria:
 - EM timing of the two photons (electrons)
 - \succ $|\mathbf{t}_1| < 2ns$ and $|\mathbf{t}_2| < 2ns$

$$\succ$$
 $|t_1 - t_2| < 2ns$

 $\rightarrow \Delta \phi > 2.5$ rad

- \succ No track segments in the DTs and CSCs
- Exclusivity selection criteria (overriding part):
 - ► No additional tracks ($|\eta| < 2.5$)
 - > No additional towers above noise thresholds in EB, EE, HB, HE and HF ($|\eta| < 5.2$)

Additional: not associated to the two central photons (electrons) Noise threshold: determined using unpaired events and zerobias events Exclusivity efficiency (fraction of events with single interaction): 14.5%

Number of events remaining after each selection:

exclusive diphoton analysis			exclusive dielectron analysis		
selection criterion	events remaining		selection criterion	events ren	naining
Trigger	3 0 2 3 4 9 6		Trigger	3	023 496
Photon reconstruction	1	683 526	Electron reconstruction		132 271
Photon identification	40 692		Electron identification	2 6 4 8	
Cosmic ray rejection	32775		Cosmic ray rejection	2 0 2 3	
Exclusivity requirement		0	Exclusivity requirement		17

Number of background events:

exclusive $\gamma\gamma$ production		exclusive e ⁺ e ⁻ production		
Background	Events	Background	Events	
exclusive e ⁺ e ⁻	0.11 ± 0.03	exclusive Y(1S,2S,3S) $\rightarrow e^+e^-$	negligible	
cosmic ray	negligible	cosmic ray	0.04 ± 0.01	
non-exclusive	1.68 ± 0.40	non-exclusive	0.80 ± 0.28	
exclusive $\pi^0\pi^0$ and $\eta\eta$	negligible	exclusive $\pi^+\pi^-$	negligible	
Total	1.79 ± 0.40	Total	0.84 ± 0.28	

Result $(\gamma\gamma)$

> 95% confidence level upper limit: $\sigma_{\text{exclusive }\gamma\gamma}^{E_{\text{T}}(\gamma)>5.5 \text{ GeV}, |\eta(\gamma)|<2.5} < 1.30 \text{ pb}$

 \succ This upper limit is actually on the cross section for the sum of

exclusive (el-el) production

> semi-exclusive (inel-el and inel-inel) production with no particles from the proton dissociation having $|\eta| < 5.2$. (difficult to calculate its contribution precisely) (but is expected to be of similar magnitude)

Number of candidates expected:

S^2 not included in σ

Process	\mathcal{L}	σ	ε	nEvents
el-el	$36 \pm 1.4 \mathrm{pb}^{-1}$	3.74±0.04 pb	$0.0488 {\pm} 0.0056$	6.57±0.07 (theo.)±0.80 (syst.)
inel-el	$36 \pm 1.4 \mathrm{pb}^{-1}$	3.34±0.67 pb ×2	$0.0348 {\pm} 0.0035$	8.37±1.68 (theo.)±0.90 (syst.)
inel-inel	$36 \pm 1.4 \mathrm{pb}^{-1}$	3.52±0.70 pb	$0.0119 {\pm} 0.0011$	1.51 ± 0.30 (theo.) ±0.15 (syst.)
Total				16.5±1.7 (theo.)±1.2 (syst.)

- > 17 exclusive e^+e^- events on a background of 0.84±0.28 events are observed.
- > The theoretical prediction is 16.5 ± 2.1 events.
- > Observation in good agreement with QED prediction (LPAIR generator).

- Rapidity-gap survival probability is not included in LPAIR.
- ➤ From Valery:

Process	State		S ²
el-el			1
inel-el	low mass (M _X	< 2–2.5 GeV)	0.86±0.03
	high mass		0.81 ± 0.03
	low mass + lov	w mass	0.3–0.45
inel-inel	low mass + high mass		0.2–0.28
	high mass + high mass		0.08–0.16

Result (e^+e^-)

12

Exclusive $\mu^+\mu^-$ production

FWD-10-005 JHEP 01 (2012) 052

Event Selection

- 2010 data sample (low pile-up) (40pb⁻¹)
 Both events with and without pileup are used (primary vertex exclusivity only)
- > Unlike dielectron analysis, only exclusive (el-el) events are considered as signal here
- \blacktriangleright Trigger: 2 muons with $p_T > 3 \text{GeV}$
- \succ Muon selection.
 - Two muons with p_T > 4GeV and |η| < 2.1
 Both pass tight identification cuts
 Coming from the same primary vertex
- > Muon pair kenimatics:
- $\Delta p_{T}(\mu\mu) < 1.0 \text{ (balanced in } p_{T})$ Suppress non-exclusive and semi-exclusive background $1 |\Delta \phi(\mu\mu)| < 0.1 \text{ (back to back in } \phi)$ Suppress non-exclusive background $M(\mu\mu) > 11.5 \text{ GeV} \text{ (Reject } Y(1S,2S,3S) \text{ photoproduction)}$
- > 3D opening angle > 0.95π (Reject cosmic ray events)
- Exclusivity selection criteria (vertex exclusivity only):
 - no additional tracks from the dimuon primary vertex
 no other tracks within 2mm of the dimuon vertex

 \blacktriangleright Exclusivity efficiency: 92.3%

much higher than the case using ideal exclusivity requirements (Tracker + Calo) (15%)

Signal Extraction

➢ After all selections, 148 events remain (~50% expected to be from proton dissociation)

- > Signal (el-el) is extracted with a binned maximum likelihood fit to the $p_T(\mu\mu)$ distribution with 3 free parameters:
 - Signal yield
 - Single proton dissociation (inel-el) yield
 - Correction factor to the shape of single proton dissociation events

➢ Shape and yield of double proton dissociation (inel-inel) and Drell-Yan production are fixed from simulation (Varied as systematic uncertainties)

For $p_T(\mu) > 4$ GeV, $|\eta(\mu)| < 2.1$ and $m(\mu\mu) > 11.5$ GeV, the measured cross section and the ratio to the LPAIR prediction are:

$$\sigma = 3.38^{+0.58}_{-0.55}$$
 (stat.) \pm 0.16 (syst.) \pm 0.14 (lumi.) pb

$$R = 0.83^{+0.14}_{-0.13}$$
 (stat.) ± 0.04 (syst.)

Kinematic distributions

17

Conclusion

- > No diphoton candidate survived all the selection criteria.
- An upper limit on the cross section is set at 1.30 pb with 95% confidence level.
- ➤ 17 dielectron candidates on top of a background of 0.84 events are observed from both exclusive and semi-exclusive production, while the predicted number is 16.5±2.1.
- ➢ Both the number of candidates and the kinematic distributions are in good agreement with QED predictions evaluated with LPAIR generator.
- For $p_T(\mu) > 4$ GeV, $|\eta(\mu)| < 2.1$ and $m(\mu\mu) > 11.5$ GeV, a cross section of exclusive dimuon production is measured:

 $\sigma = 3.38^{+0.58}_{-0.55}$ (stat.) ± 0.16 (syst.) ± 0.14 (lumi.) pb

Outlook:

- $\blacktriangleright \quad \text{Exclusive W}^+\text{W}^- \text{ production via } \gamma\gamma \text{ interactions}$
- $\succ \quad \text{Exclusive Z production via } \gamma \text{IP fusion}$
- $\succ \quad \text{Exclusive } \pi^+\pi^- \text{ production}$

Thank you !

Figure 6: 1 and 2 sigma contours in the plane of fitted parameters for the p dissociation yield vs slope (left), slope vs. signal yield ratio (center), and signal yield ratio vs. p dissociation yield ratio (right).

Selection	N_{El-El}	N _{Inel-El}
All selection criteria applied	$0.83\substack{+0.14 \\ -0.13}$	$0.73\substack{+0.16 \\ -0.14}$
No $ \Delta p_T $	$0.82\substack{+0.13\\-0.13}$	$0.63\substack{+0.11 \\ -0.10}$
No $ \Delta p_T $ or $1 - \Delta \phi / \pi $	$0.81\substack{+0.13 \\ -0.13}$	$0.45\substack{+0.08 \\ -0.07}$

Table 2: Best fit values of N_{El-El} and $N_{Inel-El}$ for the nominal selection, and with the requirements on $|\Delta p_T|$ and $1 - |\Delta \phi / \pi|$ removed.

Selection	Variation from nominal yield
track veto size	3.6%
track quality	2.5%
Drell-Yan background	0.4%
double p -dissociation background	0.9%
Crossing-angle	1.0%
Tracking efficiency	0.1%
Vertexing efficiency	0.1%
Momentum scale	0.1%
Efficiency correlations in J/ψ control sample	0.7%
Muon and trigger efficiency statistical error	0.8%
Total	4.8%

Table 3: Relative systematic uncertainties.