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Motivations

@ One of the important longstanding theoretical questions raised by QCD is
its behaviour in the perturbative Regge limit s > —t

@ Based on theoretical grounds, one should identify and test suitable
observables in order to test this peculiar dynamics

t
ha(MF) (M)
<— vacuum quantum
S —
number
ha(M3) hy (M)

hard scales: M7, M3 > Ajop or Mi?, M5? > Adcp or t > Abep
where the t—channel exchanged state is the so-called hard Pomeron
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How to test QCD in the perturbative Regge limit?

What kind of observables?

@ perturbation theory should be applicable:
selecting external or internal probes with transverse sizes < 1/Agcp or by
choosing large t in order to provide the hard scale.
p—0

9 governed by the "soft" perturbative dynamics of QCD

m =0
and not by its collinear dynamics wﬁrrri/o -0
m =0

= select semi-hard processes with s > p7., > A%CD where p%, are
typical transverse scale, all of the same order.
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How to test QCD in the perturbative Regge limit?

Some examples of processes

@ inclusive: DIS (HERA), diffractive DIS, total v*~v* cross-section (LEP,
ILC)

@ semi-inclusive: forward jet and 7° production in DIS, Mueller-Navelet
double jets, diffractive double jets, high pr central jet, in hadron-hadron
colliders (Tevatron, LHC)

9 exclusive: exclusive meson production in DIS, double diffractive meson
production at e"e™ colliders (ILC), ultraperipheral events at LHC
(Pomeron, Odderon)
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The specific case of QCD at large s

QCD in the perturbative Regge limit
@ Small values of aus (perturbation theory applies due to hard scales) can be
compensated by large In s enhancements.

= resummation of >~ (as Ins)™ series (Balitski, Fadin, Kuraev, Lipatov)
— introduction of a new arbitrary scale so : Ins — In >

~ ~ s(aslns) ~ 5 (s Ins)?

@ this can be put in the following form :

<« Impact factor
< Green's function

< Impact factor
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Higher order corrections

@ Higher order corrections to BFKL kernel are known at NLL order (Lipatov
Fadin; Camici, Ciafaloni), now for arbitrary impact parameter
as Yy, (as Ins)" resummation

@ impact factors are known in some cases at NLL

@ v* — 4* at t = 0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao;
Balitski, Chirilli)

o forward jet production (Bartels, Colferai, Vacca)

¢ inclusive production of a pair of hadrons separated by a large interval of
rapidity (Ivanov, Papa)

@ v} — pr in the forward limit (Ivanov, Kotsky, Papa)
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Mueller-Navelet jets: Basics

Mueller-Navelet jets

@ Consider two jets (hadrons flying within a narrow cone) separated by a
large rapidity, i.e. each of them almost fly in the direction of the hadron
“close” to it, and with very similar transverse momenta

@ in a pure LO collinear treatment, these two jets should be emitted back to
back at leading order: A¢p — 1w =0 (A¢p = ¢1 — P2 = relative azimuthal
angle) and k1 1=Fk.12. There is no phase space for (untagged) emission
between them

p(m)\L

Yy large - rapidity

| jeta (ki2, ¢2)

Beam axis

¢7 . zero rapidity
”—

large + rapidity
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Master formulas

kr-factorized differential cross-section

do
= d d d%k; d%k
dlksi|dlks2|dysi dy.e /¢J1 ¢J2/ e

kji, 051,201 X O(ky1, 51, —ki)
X G(kl, k27 §)
k2, ps2, w72 X ®(kyz2,z 52, ko)

with ®(kjo, xj2, ko) = [dxa f(z2)V(ke,z2)  f = PDF zy = Eileys
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Mueller-Navelet jets at LL fails

Mueller Navelet jets at LL BFKL

@ in LL BFKL (~ > (aslns)™),
emission between these jets
— strong decorrelation
between the relative azimuthal
angle jets, incompatible
with pp Tevatron collider data

@ a collinear treatment
at next-to-leading order
(NLO) can describe the data

@ important issue:
non-conservation
of energy-momentum
along the BFKL ladder.
A LL BFKL-based
Monte Carlo combined
with e-m conservation
improves dramatically
the situation (Orr and Stirling)

jety
collinear
parton
(PDF)
rapidity gap
LL BFKL
rapidity gap

Green function

collinear
arton

p
(PDF)
@ jet,

Multi-Regge kinematics
(LL BFKL)
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Studies at LHC: Mueller-Navelet jets

Mueller Navelet jets at NLL BFKL

@ up to now, the
subseries s Y (asIns)™
NLL was included
only in the exchanged
Pomeron state, and
not inside the jet vertices
Sabio Vera, Schwennsen
Marquet, Royon

collinear
parton
(PDF)

jet; NLL jet vertex

rapidity gap

NLL BFKL

rapidity gap .
& Green function

. collinear
@ the common belief parton

was that these corrections (PDF) jety NLL jet vertex
should not be important

Quasi Multi-Regge kinematics (here for NLL
BFKL)
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Numerical implementation

Because of the structure of the NLL jet vertex, numerical implementation is
quite delicate (requires special grouping of the terms, etc.)

9 First study done with a Mathematica code
D. Colferai; F. Schwennsen, L. Szymanowski, S. Wallon
JHEP 1012:026 (2010) 1-72

rather slow = access to a small number of configurations

@ New Fortran code

@ much faster

o Check of the Mathematica based results

o Allows for k; integration over a finite range and study of the A¢

distribution

Stability studies (PDFs, etc.) made easier

o A comparison with the recent small R study of D. Yu. Ivanov et al. has
been performed

<
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Numerical implementation

In practice

Following results are with:
o \5=TTeV
@ jet cone-algorithm with R = 0.5
o MSTW 2008 PDFs
@ ur = pr = p (imposed by the PDFs)
@ 1 and so set equal to VEsiks2
@ two-loop running coupling as(pu?) with as(M2) = 0.1176

12/31



Results: symmetric configuration (|kj1| = |kj2| = 35 GeV)

Cross-section

pure LL
LL vertices + improved collinear NLL Green's function
NLL vertices + NLL Green’s function

01 NLL vertices 4+ improved collinear NLL Green's function

0.01
0.001
0.0001

1e-05

| |
7 8 9 10

1e-06
6

Differential cross section in dependence on Y for |kj1| = |kj2| = 35 GeV.

The effect of NLL vertex correction is very sizeable, comparable with NLL
Green’s function effects

Energy-momentum conservation not satisfied by BFKL-like approaches =
validity restricted to Y,; < cosh™" Zi E thus Y =Y + Yo < 8.4 for x ~ 1/3

Jyi !
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Results: symmetric configuration (|kj1| = |kj2| = 35 GeV)

Cross-section: stability with respect to ur = pr and so changes

pure LL

LL vertices + improved collinear NLL Green's function
NLL vertices + NLL Green’s function

NLL vertices + improved collinear NLL Green's function

Relative effect of changing ur = pr Relative effect of changing /so
by factors 2 (thick) and 1/2 (thin) by factors 2 (thick) and 1/2 (thin)
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Results: symmetric configuration (|kj1| = |kj2| = 35 GeV)

Cross-section: PDF errors

Relative variation of the cross section when using other PDF sets than
MSTW 2008 (full NLL approach)

Ao
o
0.3 T T T T T T
—— ABKMO09
02 L —— cT10 |
: —— HERAPDF 1.5
—— NNPDF 2.1
0.1 — —
0
0.1 [~ N
0.2 — —
ol Y

(very similar values for the LL computation)
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Results: symmetric configuration (|kj1| = |kj2| = 35 GeV)

0.8

0.6

0.4

0.2

Azimuthal correlation

.
|

|
|

l

\

:

pure LL

LL vertices + improved collinear NLL Green’s function
NLL vertices + NLL Green's function

NLL vertices + improved collinear NLL Green's function

error bands: errors due to the Monte Carlo integration

LL — NLL vertices change results dramatically
Both NLL and improved NLL results are almost flat in Y
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Results: symmetric configuration (|kj1| = |kj2| = 35 GeV)

Azimuthal correlation: dependency with respect to ur = pr and so changes
(cos @) (cos @)

1Y B

7

Effect of changing ur = pr by factors 2 (thick) and 1/2 (thin)
(cos ¢) (cos ¢)

C T C T ]
12 - 12| -

05 e — v 0; ey
7 8 9 7 8 9
Effect of changing /5o by factors 2 (thick) and 1/2 (thin)
9 (cos @) is still rather ur = pr and so dependent

@ collinear resummation can lead to (cos ¢) > 1(!) for small ur = pur
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Results: symmetric configuration (|kj1| = |kj2| = 35 GeV)

Azimuthal correlation: PDF errors

Relative variation of (cos ¢) when using other PDF sets than MSTW 2008 (full
NLL approach)

A{cos ¢)
{cos )
0.1 — T T T T T T T T T T
r —— ABKMO09 1
r —— CT10 B
I —— HERAPDF 15 g
0.05 - —— NNPDF2.1 —
o E %
-0.05 — —
o1l 1y
7 8 9

(cos @) is much less sensitive to the PDFs than the cross section
(at LL {cos ¢) does not depend on the PDFs at all)
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Results: symmetric configuration (|kj1| = |kj2| = 35 GeV)

Azimuthal correlation: {(cos 2¢)

(cos 2¢)
E L e B —— ] pure LL
L ] LL vertices + improved collinear NLL Green’s function
0.8 - ] NLL vertices + NLL Green's function

NLL vertices + improved collinear NLL Green's function

Y

bands: errors due to the Monte Carlo integration

Both NLL and improved NLL results are almost flat in Y
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Results: symmetric configuration (|kj1| = |kj2| = 35 GeV)

Azimuthal correlation: PDF errors

Relative variation of (cos2¢) when using other PDF sets than MSTW 2008

A{cos 2¢)
(cos 2¢)
0.1 T T T T T T T T T T T T T T

—— ABKMO9 8
—— CT10 4
—— HERAPDF 1.5
—— NNPDF 2.1

0.05

-0.05

ool 1y
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Results: symmetric configuration (|kj1| = |kj2| = 35 GeV)

Ratio of azimuthal correlations (cos 2¢)/(cos ¢)

(cos 2¢) /{cos ¢)
1 — —— —— T
F ‘ g pure LL
L ] LL vertices + improved collinear NLL Green’s function
08— ] NLL vertices + NLL Green's function
L ] NLL vertices + improved collinear NLL Green's function
06

0.4

0.2

L v dy

bands: errors due to the Monte Carlo integration
NLL collinear improved changed nothing compared to pure NLL

Based on comparisons for /s = 14 TeV (JHEP 1012:026 (2010) 1-72), it may
be a good observable to distinguish between NLL BFKL and NLO DGLAP
scenarii
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Results: symmetric configuration (|kj1| = |kj2| = 35 GeV)

Azimuthal correlation: PDF errors

Relative variation of M when using other PDF sets than MSTW 2008

(cos ¢)
A((cos 26) /(cos #))
(cos 2¢) /{cos ¢)
0.1 T T T T T T T T T T T T T T
r —— ABKMO09 1
r —— CT10 B
 —— HERAPDF 15 -
0.05 — —— NNPDF2.1 —
0= =]
-0.05 |~ —
o1l 1y
7 8 9
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Comparison with NLO DGLAP for /s = 14 TeV

o (nb.Gev™2)
1000

08

dots: based on the NLO DGLAP parton generator Dijet (thanks to M. Fontannaz)

We plan to do the same comparison for /s = 7 TeV
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Results: integrated kj at Tevatron (|ksi| > 20GeV, [kja| > 50GeV) +/s = 1.8 TeV

Comparison in the simplified NLL Green's function + LL jet vertices scenario

@ The integration f,:j ~ dky can be performed analytically

@ A comparison with the numerical integration based on code provides a
good test of stability, valid for large YV’

(cos ¢)
'R T ]
- x -
L + x .
08— x _]
i N ]
C - ]
0.6 — + x X —
C *
C N ]
0.4 — —
i N ]
C . ]
C . ]
02 — —
oL \ \ \ \ \ 11y
0 1 2 3 4 5 6
blue: LL
magenta: NLL Green’s function + LL jet vertices scenario Sabio Vera, Schwennsen
X: numerical dk; integration kj1 > 20 GeV and kjo > 50 GeV
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Results: asym. config. (|kj1| = 30GeV, |kj2| = 35GeV)

Recently a computation of the jet vertex at NLO in the small cone
approximation (R < 1) was made.

F. Caporale, D. Yu. Ivanov, B. Murdaca, A. Papa, A. Perri

arXiv:1112.3752v2 [hep-ph]

Ao A(cos ¢)
o (cos ¢)

O T T T 7 T T T T T T T T T T TT 04 T T

0.2

-0.2

o
LI L N B L B B

PO N B RN TR B (O

6 7 8 9 10 6

Cross section (cos @)

The comparison between the exact and approximate treatments shows good
agreement even for a cone parameter R ~ 0.5

Note: Y « 8 for BFKL validity (e-m conservation issues)
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Results: A¢ distribution

Computing (cos(ng)) up to large values of n gives access to the angular
distribution

1 do 1 =
-1 = 5 {1 +QZCOS (n¢) (cos (n¢)>}

n=1

This is a quantity accessible at experiments like ATLAS and CMS
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Results: A¢ distribution

1ldo 1do

o d¢ o do

0.8 [T T T 0.8 [T

vo'xuu\HumH‘\HH\HH\HHFA(z) ‘O'xuH\H)H\HH\HH\HH\HHFA(b

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
NLL Green’s function + LL vertices NLL Green's function + NLL vertices

Full NLL treatment predicts :

@ Less decorrelation for same Y

@ Slower decorrelation with increasing Y’
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Integration over k

Experimental data is integrated over some range, kjmin < k.

Growth of the cross section with increasing kjmax :

o (nb)

30 T

B 90% Omaz |

20 —

15 - -

10 —

5 .

0 | | | | | | kJmax (GeV)

40 60 80 100 120 140

= need to integrate up to kjmax ~ 60 GeV
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Integration over k

@ But the BFKL validity domain is limited: Y;; < cosh™* %
— A lower ks means a larger validity domain : a ks as small as possible is
preferable

@ With only a lower cut on ks, one has to integrate over regions where the
BFKL approach is not valid anymore : k; =60 GeV — Y, < 7.3

@ For this reason it would be nice to have a measurement with also an upper
cut on transverse momentum, kjmin < k7 < KJymax

@ A measure with a kjmin of 30 GeV seems to be possible
Going down to 25 GeV would probably require a dedicated trigger
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Results for 30 GeV < k; < 35 GeV

o (nb) (cos @)

100 E T T 3 1.2 T T T T

>~<
>~<

0.001

ksmax = 35 GeV = computation should be valid for Y;; < 8.4

A rough estimation leads to ~ 400 000 events for a relative rapidity Y = 6.5
and ~ 100000 events for Y = 8 with a luminosity of 100 pb™*

A ks window of only 5 GeV doesn’t seem feasible experimentally because of the
resolution on transverse momentum of the jets
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Conclusion

@ The first complete NLL analysis of Mueller-Navelet jets has been
performed

@ The effect of NLL corrections to vertices is dramatic, similar to the NLL
Green function corrections
@ For the cross-section:
makes prediction more stable with respect to variation of scales p and so
@ Surprisingly small decorrelation effect
(cos @) very flat in rapidity YV
still rather dependent on the choice of scales
@ Energy-momentum conservation could modify the picture, in particular for
large values of Y
@ We believe a measurement for low k; would be interesting to study BFKL
dynamics
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The specific case of QCD at large s

QCD in the perturbative Regge limit

@ Small values of aus (perturbation theory applies due to hard scales) can be
compensated by large In s enhancements. = resummation of
> .(as Ins)™ series (Balitski, Fadin, Kuraev, Lipatov)

T T ()

~ ~ s(aslns) ~ 5 (s Ins)?

@ this results in the effective BFKL ladder

" reggeon = "dressed gluon"

effective vertex

h1 ho— th 1 »(0)—1
ghihavanything _ Ly 4 ap(©)
S

with ap(0) —1=Cas (C >0) Leading Log Pomeron
Balitsky, Fadin, Kuraev, Lipatov
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Master formulas

Angular coefficients

Co = /dquJl d¢ 2 cos (m(qu,l — ¢y — 77))
X /d2k1 d%ko ®(ky1, 271, —k1) G(k1, ko, 8) ®(kj2, z.72, ko).

@ m =0 = cross-section

do
dlks1|dlkyz2| dys1 dyse

=Co

@ m > 0 — azimutal decorrelation

C’rn

(cos(mg)) = (cos (m(¢s1 — ds2 — 7)) = o
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Master formulas in conformal variables

Rely on LL BFKL eigenfunctions

L1 R
o LL BFKL eigenfunctions: By, (ki) = —5 (ki)™ 2 e
@ decompose P on this basis

@ use the known LL eigenvalue of the BFKL equation on this basis:
w(n,v) = Gaxo (Inl, & +iv)

with xo(n,7) =2¥(1) =¥ (y+ §) -V (1 -y + %)

(¥(x) = I (2)/T(x), &5 = Neos /)

@ — master formula:

~ (m,v)
Crm = (4 —30m,0) /dl/ Crmp(|ki1|, zs1) Cru(ka2|, 2,2) (i)

S0

with C7n,l,(|kj|,$1):/dquJkodxf(:c)V(k,x)Em,,,(k)Cos(quSJ)

@ at NLL, same master formula: just change w(m,v) and V
(although E., . are not anymore eigenfunctions)
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Jet vertex: LL versus NLL

k,k’ = Euclidian two dimensional vectors

LL jet vertex:

V x

NLL jet vertex:
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NLL correction to the jet vertex: quark part (Bartels, Colferai, Vacca)

1
Vq()(k,z)
3. k2 Cr 85 72\ Ca 5 Ny k2
- In——— )= =4 AT 17 O (k.
[(2 A2 4)ﬂ+(36+4>w s g Ve k)

: Crl—2z Caz ©)
+/dz(ﬂ_ ) +—= 2)Vq (k,zz)

a2k
25

1+ (1—2)?
BIE(ED S

&K ((1L-2)k—K)

LhO(K)SP (K k - K, w2 x)
(k k)2 172)1( k')

\
=9

ka@(A —K*)VO (k, n))
S —
2(k—K)2
Cr /d 1+22 [d%
1-z ) a2
o NCr (
12+ (1-k)?

Ok — K| — 2(|k — K| + |K']) )V<0)(k',;1:)}

SV k4 (1= 2)1,(1—2)(k—1),2(1 — 2); 2)

+8P (k- (1-2)1, (1 - 2),2(1 — z):x))

oy 1/@ xer
7W/Z172 712

2+ (1-k)2

-0 (A—z - 12> VO (k,z)
(1-2) 4 ’ 36/31
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NLL correction to the jet vertex: gluon part (Bartels, Colferai, Vacca)

VD (k, )

_ 11Ca 1Ny k? 7 67\ Ca 13Ny k2 Vo
= [(77—37)1117#- T73%) +%7 buln VyV (k)

/dz NiCr, VO (k, x2)
LN [ W) e
f/ /dqug(z [k L) Sy (0 kK i)

—EO(AZ k’z)v(;‘”(k,u)}

Ny [ &K NCa (k—X) K o), ,
+ﬁ/ — /U dzR.g(z)((l71)](71(,)2 21— )(k k,)zk,zs (K, k- K, z2;2)

- %(—) (A= (- 2k -K)") Pk, x)]

Ca ' dz a1
e 1-2)P0-2) [

T Jo 1—2

{ NCa

N E R [s§3>(zk+ (1= 2L (1 - 2)(k —1),2(1 — 2);2)

+8P e — (1= 2)1, (1 ) a(1 — z):r)]

-0 (% - 12) [Vg(“)(k, z) + vg<°>(k,.m)} }

1 2 2
Cy [ & NN LRIk ((l—zk k) WO
+7r/ /d~ (')((1 ')(k )((177)1( kf)’ ' ()

x S k- K, 2z) — kue(A —k’z)Vg(”)(k,m))
1

- W(—)(\k —K|—2(k— K|+ \k’\))Vg(O)(k".r)]
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Jet vertex: jet algorithms

Jet algorithms

@ a jet algorithm should be IR safe, both for soft and collinear singularities
@ the most common jet algorithm are:

@ k¢ algorithms (IR safe but time consuming for multiple jets configurations)

o cone algorithm (not IR safe in general; can be made IR safe at NLO: Ellis,
Kunszt, Soper)
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Jet vertex: jet algorithms

Cone jet algorithm at NLO (Ellis, Kunszt, Soper)

@ Should partons (|p1], ¢1,y1) and (p2|, ¢2,y2) be combined in a single jet?
|p:| =transverse energy deposit in the calorimeter cell ¢ of parameter
Q= (yi,¢:) in y — ¢ plane
@ define transverse energy of the jet: p; = |p1| + |p2|
@ jet axis:
L= IP1ly1 + [p2|y2

pJ
Qe
_ Ipilé1 + [p2| 42

Py

¥

parton; (Q1, |p1l)

cone axis (Q¢) Q= (yi, ¢:) in y — ¢ plane
partong (QQ, |p2|)

If distances [ — Qc|® = (i — ye)® + (i — ¢c)? < R* (i =1 and i = 2)

— partons 1 and 2 are in the same cone 2,
Ip1] + |p2|

combined condition: [ — Q| < ——————
maz(|p1], [p2|)
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Jet vertex: LL versus NLL and jet algorithms

LL jet vertex and cone algorithm

k, k’ = Euclidian two dimensional vectors

b

SP(kyix) =6 (1 - ’;—J) k|6 (k — k)
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Jet vertex: LL versus NLL and jet algorithms

NLL jet vertex and cone algorithm
k, k’ = Euclidian two dimensional vectors

553’Ccme)(k'7 k -k, zz;2) =

(2) k—K'|+[K 2
S (kw)@([mmm] - [Ay2+A¢2]>

’ ’ 2
+ 8P (k—K,22) 0 <[Ay2 + 267] — | iy Reone| )

2 ’ kK |+]K/| 2
+ 8P, a(1-2)) @ ([Ay2 + 807 - [ Reone] ) ,
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Mueller-Navelet jets at NLL and finiteness

Using a IR safe jet algorithm, Mueller-Navelet jets at NLL are finite

@ UV sector:
o the NLL impact factor contains UV divergencies 1/¢

o they are absorbed by the renormalization of the coupling: ag — as(ur)

9 IR sector:
o PDF have IR collinear singularities: pole 1/e at LO

o these collinear singularities can be compensated by collinear singularities of
the two jets vertices and the real part of the BFKL kernel

@ the remaining collinear singularities compensate exactly among themselves

o soft singularities of the real and virtual BFKL kernel, and of the jets vertices
compensates among themselves

This was shown for both quark and gluon initiated vertices (Bartels, Colferai,
Vacca)
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BFKL Green’s function at NLL

NLL Green's function: rely on LL BFKL eigenfunctions
@ NLL BFKL kernel is not conformal invariant
9 LL F,,, are not anymore eigenfunction

9 this can be overcome by considering the eigenvalue as an operator with a
part containing au

@ it acts on the impact factor

Inl, 2 +i
Xl n,2 v
71‘b0 1 . 8 Cny(|kJ1|,$Jl)

_ T - —21 In 2 AT 1)
2N, X <'”"2+’”){ MR N ol ere) S |

91y K1l '2|kJ2|
HRr

1
w(n,v) = asxo (|n| + w) + a2
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LL substraction and sg
@ onesums up > (asIn§/so)" + as Y (s In§/s0)" (8§ =z1228)

9 at LL s¢ is arbitrary

@ natural choice: so = /50,1 50,2 So0,; for each of the scattering objects
o possible choice: sg; = (Jky| + |ks — k|)? (Bartels, Colferai, Vacca)

9 but depend on k, which is integrated over

@ §is not an external scale (x1,2 are integrated over)
2

o we prefer
x
50,0 = (kg1 + k1 —ka[)? = s, = lek?n
J1 K 3 TJ1Tg, S
T Lt A
2 50 so kgl kgl
2 / T2 1.2
50,2 = (|kJ2| + |kJ2 — k2|) — 80’2 = TkJQ
7,2 — UJ17YS2 = Y
9 sp — sy affects
o the BFKL NLL Green function
@ the impact factors:
’ 21/ / ’ 1. 80,
OniL(ki;sp ;) = PnoL(ki;so) + [ dk q)LL(ki)}CLL(kiyki)El -~ (1)
0,
@ numerical stability (non azimuthal averaging of LL substraction) improved
with the choice so,; = (ki — 2k;)?
(then replaced by Sg,i after numerical integration)
44 /31
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Collinear improvement at NLL

Collinear improved Green's function at NLL

@ one may improve the NLL BFKL kernel for n = 0 by imposing its
compatibility with DGLAP in the collinear limit
Salam; Ciafaloni, Colferai

@ usual (anti)collinear poles in v = 1/2 +4v (resp. 1 — ) are shifted by w/2
9 one practical implementation:
o the new kernel asx(V) (v, w) with shifted poles replaces

&SXO(’Y? 0) + 073)(1 (’Yv 0)

@ w(0,v) is obtained by solving the implicit equation

w(0,v) = aSX(l)('va(Ov v))
for w(n,v) numerically.

@ there is no need for any jet vertex improvement because of the absence of
~ and 1 —« poles (numerical proof using Cauchy theorem "backward")
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Numerical implementation

In practice

MSTW 2008 PDFs (available as Mathematica packages)
ur = pr (this is imposed by the MSTW 2008 PDFs)
two-loop running coupling as(u%)

We use a v grid (with a dense sampling around 0)

all numerical calculations are done in Mathematica

¢ ¢ ¢ ¢ ¢ ¢

we use Cuba integration routines (in practice Vegas): precision 10~2 for
500.000 max points per integration

(7

mapping |k| = |ks| tan(£n/2) for k integrations = [0, co[— [0, 1]
@ although formally the results should be finite, it requires a special grouping
of the integrand in order to get stable results

= 14 minimal stable basic blocks to be evaluated numerically
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Motivation for asymmetric configurations

@ Initial state radiation (unseen) produces divergencies if one touches the
collinear singularity q*> — 0

%7
ERRERS
q /
PJ2

@ they are compensated by virtual corrections

@ this compensation is in practice difficult to implement when for some
reason this additional emission is in a "corner” of the phase space (dip in
the differential cross-section)

@ this is the case when p1 +p2 — 0
@ this calls for a resummation of large remaing logs = Sudakov resummation
PJ1

e
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Motivation for asymmetric configurations

@ since these resummation have never been investigated in this context, one
should better avoid that region

@ note that for BFKL, due to additional emission between the two jets, one
may expect a less severe problem (at least a smearing in the dip region

[p1] ~ [p2])
PJ1

PJ2
@ this may however not mean that the region |p1| ~ |p2| is perfectly

trustable even in a BFKL type of treatment

@ we now investigate a region where NLL DGLAP is under control
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Opening the boxes: Impact representation v* v* — * v* as an example

@ Sudakov decomposition: ki = a;p1 + Bip2 + kii (03 =p3 =0, 2p1 - p2 = s)
@ write d*k; = 5 do; dp; d*k1; (k= Eud + kL = Mink)

@ t—channel gluons have non-sense polarizations at large s: ¢%2/***™ = 2 p,

=setan =0and [df = O (ky, 1 — ky)
impact factor

18 d°k u d2k/ down / /
M=o O e ] ek )
5+iood w
w S ’
< [ (L) eewrn
d—ioco

= set B =0and [da, = cI>”'*_’A’*(7E717 -r+k,)
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