

Measurement of the forward rapidity gap cross-section

A. Polini (on behalf of the ATLAS Collaboration)

Outline:

- Diffraction at the LHC The ATLAS Detector
- **Recent Results**
 - Inelastic Cross Section
- Forward Rapidity GapsSummary and Outlook

Diffraction: introduction (i)

Diffractive Events:

- 1. Interactions where the beam particles emerge intact or dissociated into lowmass states
- 2. Interactions mediated by t-channel exchange of object with the quantum numbers of the vacuum, color singlet exchange or Pomeron

Single Diffraction (SD)

Double Diffraction (DD)

Central Diffraction (CD) ~1/10 of the SD

Kinematic variables:

- t: the 4-momentum exchanged at the proton vertex
- the mass of diffractive systems: M_X , M_Y , or $\xi \equiv M_X^2/s$

Diffraction: introduction (ii)

In general such processes lead to final state particles separated by large rapidity gaps

Diffraction: Events with large rapidity gap not exponentially suppressed

$$\Delta \eta = \ln s / M_X^2 = -\ln \xi \qquad \xi = M_X^2 / s$$

Experimentally:

- Substantial fraction (~30%) of total cross section of pp interactions is due to diffractive dissociation processes
- The ATLAS central detector sensitive to high mass diffraction; low-mass diffractive dissociation not immediately observable

ATLAS: $|\eta| < 4.9 \implies \xi_X > 10^{-5}$; $M_X > 7$ GeV

The ATLAS detector

ATLAS Forward Detectors

A. Polini

ATLAS and the LHC

A. Polini

Luminosity and PileUp (µ)

un Number: 189280, Event Number: 170532! Date: 2011-09-14 02:47:14 CEST

μ=20

7

ATLAS nominal/design run conditions:

- Bunch intensity ~ 10¹¹ protons
- ~ 2080 colliding bunches , 25 ns Luminosity at 10³⁴ cm⁻² s⁻¹
- 20 pileup events

Pileup interactions appear as noise in the Primary Vertex reconstruction, and add (mainly low p_T) energy deposits in the detector

In 2012: μ ~30, 50ns interactions, 1.7x 10¹¹ p, 1380 bunches

Low-x2012, June 27th-July 1st Paphos, Cyprus

Measurement of the inelastic pp cross-section at √s=7 Tev with the ATLAS Detector

Nature Comm. 2 (2011), April 2011

20 μ b⁻¹, single fill in March 2010 (μ =0.01)

trigger by minimum bias trigger scintillator detectors, with acceptance for ξ~10⁻⁶, M_X>15.7 GeV. Analysis extrapolated also at M_X>M_p

Fraction of diffractive events constrained by the ratio of single sided to inclusive events

Asymmetric events:

•
$$\rightarrow$$
 Measure $R_{ss} = \frac{1}{N}$

ratio of **single sided** MBTS events divided by **the number inelastic events**

Single sided Events fraction in ATLAS (from MC):

 V_{ss}

Single Diffractive + Double Diffractive (from 27% to 41%); less than 1% of ND

A. Polini

Fraction of diffractive events in inclusive cross section

The ratio of the single-sided to inclusive event sample R_{ss} as a function of the fractional contribution of diffractive events to the inelastic cross-section $f_{D.}$ MC models based on triple Pomeron exchange

 $d\sigma/d\xi \thicksim 1/\xi^{1+\epsilon}$, $\epsilon{=}~\alpha_{\rm IP}-1$

 $R_{ss} = 10.0 \pm 0.4\% \Rightarrow f_{D} \sim 25-30\%$ depending on the models

Inelastic cross section vs \sqrt{s}

Measured cross section is for $\xi > 5 \times 10^{-6}$ $\xi = \frac{M_X^2}{s} > 5 \times 10^{-6} M_X > 15.7 \,\text{GeV}$ $\sigma_{inel}(\xi > 5 \times 10^{-6}) = \sigma_{inel} \times (1 - f_{\xi < 5 \times 10^{-6}})$

Use Donnachie-Landshoff MC to extrapolate to full range:

Rapidity gap cross-section in pp interactions at √s=7 TeV

Eur. Phys. J. C72 (2012) 1926

7.1 pb⁻¹, taken in March 2010, 2 bunches per beam (μ <0.005)

Select events with a large rapidity gap and compare with models based on Regge phenomenology (Triple Pomeron exchange)

Rapidity gap cross section

Rapidity gap definition at detector level

- Detector divided into η-rings of size 0.1 between -4.9<η<4.9
- Ring is empty if there is
- No track with p_T >200 MeV (for $|\eta|$ <2.5)
- No calorimeter cell with E above noise level (for $|\eta| < 4.9$)

Hadron level gap definition

Phase space divided in the same η -rings No stable particle with p_T >200 MeV and $|\eta|$ <4.9 Data corrected back to hadron level

Forward gap $\Delta \eta_F$: largest consecutive set of empty rings starting from the edge of the acceptance ($\eta = + - 4.9$) Cross section measured as a function of the largest forward rapidity gap

Rapidity gaps – data vs MC

Size of forward gap

No MC models gives a perfect description over the full $\Delta \eta^{F}$, but description is reasonable Pythia8 used to correct the data

Rapidity gap cross section – MC corrections

Data corrected back to hadron level (stable final state particles) using MC migration matrix, ~ diagonal for this p_T cut

Main sources of systematic uncertainties:

- Monte Carlo model, dependence and unfolding
- Modeling of Diffractive contributions
- Calorimeter energy scale ~20%
- MBTS and tracking efficiency
- Luminosity: ~3.4%

Cross section vs forward rapidity gaps compared to MC with default settings

A. Polini

- Both PHOJET and PYTHIA 8 (no CD component in PYTHIA) reproduce trend but agreement not perfect:
- PHOJET better at large Δη_F
- PYTHIA better for smaller $\Delta \eta_{F}$

 $\begin{array}{l} \text{Low } \Delta\eta_{\text{F}} \rightarrow \text{ND dominant (exponential decrease)} \end{array}$

Overestimation of σ_{inel}

Large $\Delta \eta_F \rightarrow$ flat contribution from diffraction

Uncertainty in the hadronisation fluctuations investigated for different models and p_T cut

17

- Increasing P_T threshold
 → Increase ND contribution
- Exponential decrease for both ND and SD/DD contributions
- PYTHIA better in shape and value

Uncertainty in the hadronisation fluctuations investigated for different models and p_T cut

- Herwig++ minimum bias does not contains an explicit diffractive components, but produces a sizeable fraction of events with large gaps
- Herwig++ with different models of Underlying Events, turning off the color reconnection (no CR), excluding soft events (no Empty)
- Herwig++ fails to describe the ND decrease vs the gap size

Cross section vs forward rapidity gaps for $\Delta \eta^{F} > 2$

PYTHIA8 overshoots the data, probably due to an overestimation of DD (ie. PYTHIA compared to Tevatron data for DD). It described f_D

PHOJET has a CD contribution and a much smaller DD contribution with respect to PYTHIA. It overestimates of the total inelastic cross section

Cross section vs forward rapidity gaps for $\Delta \eta^{F}$ >2 and diffractive dynamics

- ND events decrease with $\Delta \eta^F$ and are supposed to be negligible for $\Delta \eta^F > 3$
- Increase at large $\Delta \eta^F$ due to $\alpha_{IP}(0)>1$ DL $\alpha_{IP}(0)=1.085$
- Fit in region $6 < \Delta \eta^{F} < 8 \Rightarrow \alpha_{I\!P}(t=0) = 1.058 \pm 0.003(\text{stat})^{+0.034}_{-0.039}(\text{syst})$
- At large $\Delta \eta^F$ a plateau, flatness indicates a Pomeron intercept close to 1
- Cross-section of ~1mb per unit rapidity (cf. Ryskin Martin Khoze, arXiv:1102.2844)

A. Polini

Inelastic cross section integrated for ξ > ξ cut

- ATLAS and TOTEM data compared to predictions
- RMK reproduces the enhancement at very low ξ , assuming a IPIPIR term and not just the IPIPIP term

Summary

- Inelastic cross-section measured for ξ >5.106, and extrapolated to ξ >m_p2/s
- Large modeling uncertainty in the extrapolation, due to low-mass diffraction
- Rapidity gap studies give a diffractive fraction f_D=30.2±0.3(stat)±3.8 (syst) %
- Cross-section measured as a function of the forward rapidity gap, for $\Delta \eta^F$ up to 7 (ATLAS central detector)
- Data compared with models based on Triple Pomeron exchange, allow to validate MC and sensitive to diffractive dynamics
- Diffractive cross section dσ/ $\Delta \eta^F \sim 1.0 \pm 0.2$ mb per unit of $\Delta \eta^F$ for $\Delta \eta^F > 3.5$

Backup

Low-x2012, June 27th-July 1st Paphos, Cyprus

ALFA - Absolute Luminosity For ATLAS

- Designed to detect protons t ~3.7 10⁻⁴ GeV²
- primary goal is to measure absolute luminosity and to reach the level of a precision 2-3%
- Single diffractive measurements are possible for $\xi < 0.01$
- and non-diffractive proton measurements for $0.01 < \xi < 0.1$
- Dedicated high $\beta^* = 90m run$ (October 2011)
- Track patterns of candidates of elastic scattering for a recent run in the LHC beam coordinate system with a preliminary alignment.

See talk by Sune Jakobsen

Plans for ATLAS Upgrade

AFP: Atlas Forward Program (AFP1 and AFP2)

- AFP1 Detectors located in two stations: 206/214 m from IP
- AFP2 420m from IP (later)

Silicon Tracking Detectors:

- measure position and angle
- − Radiation hardness (~30 kGy/year @ 10^{34} cm⁻²s⁻¹) → Silicon 3D detectors

Timing detectors:

A. Polini

- Timing resolution: $\sigma(t) \sim 10 \sim 20 \text{ ps} \rightarrow \sigma(z)$ few mm
- MHz rate + Trigger capability
- Quartz based Cherenkov detector + Microchannel plate PMT

Low-x2012, June 27th-July 1st Paphos, Cyprus

See talk by Maciej Trzebinski

Minimum Bias Trigger Scintillator

 32 independent wedge-shaped plastic scintillators (16 per side) read out by PMTs, 2.09<|η|<3.84

Designed to for triggering on min bias events, >99% efficiency
MBTS timing used to veto halo and beam gas events

Also being used as gap trigger for various diffractive subjects