Measurement of Forward Jets and Dijets with a Jet Veto

Eugen Ertel on behalf for the ATLAS collaboration

Low-X 2012, June 30

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

- $\rightarrow \mbox{Motivation}$
- \rightarrow ATLAS Detector
- \rightarrow Forward Jet Performance
- \rightarrow Forward Jet Cross-Section Measurement
- \rightarrow Dijet Production with Jet Veto
- $\rightarrow \text{Conclusion}$

- Jet production in p-p: PDF · matrix element · parton shower · hadronization · underlying event
- PDF probe gluon PDF's at low-x
- QCD dynamics probe description by standard event generators:
 - BFKL-like dynamics (becomes important for large rapidity intervals)
 - Effects of wide-angle soft-gluon radiation
 - Colour singlet exchange (becomes important for widely separated jet + high mean p_T of dijet system)
- Forward jet measurement required

- Event generators for systematic uncertainties and detector effect corrections (LO):
 - PYTHIA 6
 - HERWIG++
 - ALPGEN
- NLOJET++ (NLO):
 - Hadronisation and underlying event (non-perturbative corrections) obtained using e.g. PYTHIA
- POWHEG (NLO)
 - NLO dijet calculation passed through PYTHIA/HERWIG for showering, hadronisation, and underlying event
- HEJ¹ (all-order):
 - Parton level only
 - Provides an all-order description of wide angle emissions

¹arXiv:1007.4449v1

ATLAS DETECTOR

- In 2010 the LHC provided proton-proton collisions with a center-of-mass energy of $\sqrt{s}=7{\rm TeV}$
- Approximately 45 pb^{-1} have been recorded by ATLAS
- Relevant sub-systems: tracking system, electromagnetic, and hadronic calorimeter
- $\bullet\,$ Total coverage of the ATLAS calorimeters is $|\eta|<$ 4.9 $\,$
 - Tracking detector: $|\eta| < 2.5$
 - Forward calorimeter (FCal): 3.1 $< |\eta| <$ 4.9

- Forward jet energy scale (JES) uncertainty via dijet p_T balance²
- Discrepancies from different physics model predictions
- JES uncertainty increases at low p_T jets
- In central part of the detector < 2.5% for $60 < p_T < 800 {\rm GeV}$
- Reduction of JES uncertainties work in progress

²arXiv:1112.6426, submitted to EPJC

INCLUSIVE JET MEASUREMENT: EVENT SELECTION

- Measurement performed using 2010 collision data with 37pb⁻¹
- Jets reconstructed at electromagnetic scale, calibrated with MC derived corrections.
- Jet finding algorithm: Anti-Kt with R = 0.4 and R = 0.6

- Different triggers used: central, forward, ...
- Jets are required to have $p_T > 20 \text{GeV}$ and |y| < 4.4
- Several jet quality criteria

• Jet energy scale uncertainty determined using measurements and MC, e.g. for jets with $p_T \approx 20 \text{GeV} \approx 5\%$ in central region and up to $\approx 13\%$ in the forward region.

INCLUSIVE JET MEASUREMENT

- Jet double-differential cross section in forward region measured³
- Cross-section spectra corrected for detector effects
- Careful treatment of systematic uncertainties
- Good description of data over many orders of magnitude ${}^3arXiv:1112.6297v2$

INCLUSIVE JET MEASUREMENT: PDF's

- Ratios of inclusive jet double-differential cross-section to the theoretical prediction
- Normalized to NLOJET++(+nonpert. corr., CT10 PDF) prediction
- Non-pert. corr. derived from PYTHIA (AUET2B tune)
- MSTW, NNPDF, and HERAPDF give a slightly better description than CT10
- Systematic uncertainties large due to JES (in forward region at low p_T)

HERAPDF 1.5

INCLUSIVE JET MEASUREMENT: GENERATORS

• Ratios of data & POWHEG to the NLOJET++ predictions corrected for non-perturbative effects

- CT10 PDF set used for predictions
- POWHEG passed through PYTHIA/HERWIG for showering, hadronisation, and underlying event (AUET2B/AUET2)
- POWHEG+PYTHIA gives the best description

- POWHEG fixed order
- □ (CT10, µ=p^{born})× Non-pert. corr.

DIJET PRODUCTION WITH JET VETO

- The aim of this analysis is to study effects of QCD radiation and compare to predictions
- Measurement of additional hadronic activity in high p_T dijet events in the rapidity interval Δy between the two leading jets

- Two variables to quantify the amount of additional radiation in rapidity interval Δy :
 - Gap fraction fraction of events that do not have an additional jet with $p_{\mathcal{T}}>Q_0$
 - Mean number of jets with $p_T > Q_0$
- $Q_0 =$ veto scale is chosen to be 20GeV

10.1007/JHEP09(2011)053

EVENT SELECTION AND TUNES

- Measured data and jet reconstruction same as for inclusive jet cross-section measurement
- Number of jets required to be ≥ 2
- Trigger: \bar{p}_T (mean p_T of dijet system) regions defined, where the chosen trigger for each region was at least 99% efficient
- Jets are required to have $p_T > 20 \text{GeV}$ and |y| < 4.4
- \bar{p}_T of the jets define the dijet system > 50 GeV
- Veto jet $p_T > Q_0$, where $Q_0 = 20 \text{GeV}$
- Pile-up suppression: only events with exactly one reconstructed primary vertex
- PYTHIA 6 (MRST LO* PDF + AMBT1 tune)
- HERWIG++ (MRST LO* PDF + LHC-UE7-1 tune)
- ALPGEN (CTEQ6L1 PDF + AUET1 tune)
- POWHEG (MSTW 2008 NLO PDF + AMBT1/AUET1)
- HEJ (MSTW 2008 NLO PDF)

UNCERTAINTIES I - GAP FRACTION

• Experimental uncertainty dominated by ...

- Jet energy scale uncertainty
- Correction for detector effects (unfolding)
- Other uncertainties found to be negligible
- For example: in gap fraction few % up to 9%

- Overall uncertainty in HEJ dominated by scale choice and are larger than non-perturbative corrections (estimated using PYTHIA)
 - Typically 5% for the gap fraction and 8% for the mean number of jets
- Difference between POWHEG+PYTHIA and POWHEG+HERWIG larger than intrinsic uncertainty in POWHEG NLO calculation

GAP FRACTION: PYTHIA, HERWIG, ...

- PYTHIA: best description as a function of Δy (slightly underestimates at Δy ≈ 3); good description as function of p
 _T
- HERWIG: overestimates for low Δy, underestimates for large Δy; good description as function of p
 _T
- ALPGEN: largest deviation from data

GAP FRACTION: HEJ AND POWHEG

- POWHEG+HERWIG:
 - Tends to produce too much activity

• HEJ:

- Describes data at low \bar{p}_T as function of Δy
- Predicts too many gap events at large p
 _T (expected for p
 _T >> Q₀)

- POWHEG+PYTHIA:
 - Provides best description, considering the full phase-space
 - Deviates from data for large Δy (expected, contributions to full QCD important at large Δy)

GAP FRACTION: DEPENDENCE ON VETO SCALE Q_0

 Q₀ dependence of cross-section useful in studying colour structure of event

- HEJ: Description becomes better for $Q_0
 ightarrow ar{p}_{\mathcal{T}}$
- POWHEG+PYTHIA and POWHEG+HERWIG: Large differences For large \bar{p}_T and Δy none of theoretical predictions describe data well - important for colour singlet exchange.

MEAN NUMBER OF JETS IN RAPIDITY INTERVAL

- HEJ: Deviates from data (as for gap fraction)
- POWHEG+PYTHIA: Best description
- POWHEG+HERWIG: Worse for low p
 _T, not observed in the gap fraction distributions

CONCLUSION

- Need forward jets to probe perturbative QCD calculations, PDF's, and to constrain phenomenological models
- Nearly 4π coverage of the ATLAS high granularity calorimeter system allows precise measurement of forward jets
- Inclusive jet cross-section measurement in forward region
 - Comparison between data and predictions for different PDF sets and NLO+parton shower
 - Sensitive to PDF's and physics models
- Dijet Production with Jet Veto
 - Activity in the rapidity interval between boundary jets
 - Best overall description by POWHEG+PYTHIA
- Approx. 120x more data at $\sqrt{s}=7{\rm TeV}$ and 150x more data at $\sqrt{s}=8{\rm TeV}$ already collected
- Challenges:
 - High pile-up environment
 - Reduction of jet energy scale uncertainty