ALFA and AFP ATLAS Detectors for Forward Physics

Rafał Staszewski on behalf of the ATLAS Collaboration

Low-x Meeting 2012 27 June – 1 July, Paphos, Cyprus

Introduction

- **Aim:** detect intact protons scattered at very small angles measure elastic/diffractive processes
- Detectors must be located close to the beam
- Protons must leave the beam envelope
- Two detectors in ATLAS: ALFA and AFP
 - Different running conditions
 - Different physics goals

Introduction

ALFA

- Absolute Luminosity For ATLAS
- already installed
- mainly elastic scattering
 (→ absolute luminosity, total cross section)
- proton leaves the beam envelope due to its p_T

Proton Trajectory

special machine settings

AFP

- ATLAS Forward Proton
- under approval (installation possible in 2013/14)
- high mass diffraction, $\gamma\gamma$
- proton has lost energy
- LHC machine as a magnetic spectrometer

Proton Trajectory

• standard LHC runs

Special runs for ALFA

- β^* betatron function at the IP (~ focal length of the quadrupole system)
- Large cross section of el. scatt. measurements possible with low lumi
- Low luminosity → low pile-up → small background

Proton positions in ALFA and AFP

Dedicated optics (ALFA)

Standard optics (AFP)

Proton positions in ALFA and AFP

ALFA

- Elastic protons
- Vertical approach

AFP

- Diffractive protons
- Horizontal approach

The Detectors – comparison

ALFA

- 240 m from the IP
- Roman Pots
- Vertical movement
- Scintillating fibres

AFP

- 210 m from the IP
- Movable Beam Pipe
- Horizontal movement
- 3D Pixel detectors
- QUARTIC timing detector

See talk by Sune Jakobsen on ALFA detectors See talk by Maciej Trzebiński on AFP physics

AFP – Overall Setup

- 206 Si detectors
- 214 Si + QUARTIC
- Trajectory position & direction
- Time-of-flight

AFP – Movable Beam Pipe

Whole beam pipe section moves w.r.t. the beam together with the detectors

BEAM

AFP – Position Measurement

Requirements

- Resolution 10 μ m (horizontal), 30 μ m (vertical)
- Thin dead zone at the edge (below 100 μm)
- Radiation hard electronics

Solution

- 3D silicon sensor + FEI4 chip, following ATLAS IBL (Insertable B Layer)
- Design of the mechanics being finalised

AFP – Energy Reconstruction

- Proton transport: $(E, X_0', Y_0') \rightarrow (x, y, x', y')$
- No coordinate mixing: $(E_{,}x_{_{0}}') \rightarrow (x_{,}x'), (E_{,}y_{_{0}}') \rightarrow (y_{,}y')$

AFP – Timing Detectors

• Pile-up background rejection

QUARTIC detectors

- Resolution of 10 20 ps
- Reject 90% of background
- 8x4 quartz bars (position measurement)

How to achieve 10-20 ps resolution?

Component	Timing resolution [ps]
Quartz bar	22 (15)
MCP-PMT	20 (16)
CFD	5
Total	30
Cable dispersion	15%
Total	24.5
HPTDC	20 (12)
Reference clock	5
Total per bar	40 (30)
Total for 8 bars	14
Total for 2 QUARTIC	10 (7)

- Possibility to reach 10 ps time resolution by next year
- Improvement to 7 ps possible with minor developpments
- Possible improvements in spatial resolution (fibres instead of bars)

Summary

ALFA

- already installed
- mainly elastic scattering
- Roman Pots
- vertical movement
- scintillating fibres

AFP

- under approval (installation possible in 2013/14)
- high mass diffraction, $\gamma\gamma$
- Movable Beam Pipe
- horizontal movement
- 3D Pixel detectors
- QUARTIC timing detector

See talk by Sune Jakobsen on ALFA detectors

See talk by Maciej Trzebiński on AFP physics

Quadrupoles vs diffractive protons

