AMS: First Year on ISS in SPACE

AMS

Divic RAPIN

D.P.N.C.Université de GenèveJournée de réflexion du DPNC,BOSSEY 18 juin 2012

AMS International Collaboration

16 Countries, 60 Institutes and 600 Physicists

Project and design based on NASA's commitment to deploy AMS on the ISS

ANTI-MATTER

Questions and problems:

- No signal of presence of antimatter in Universe is presently seen. (No annihilation signals of sufficient intensity)
- If antimatter existed, where is it? Very far?
- Are there relics in the local Universe?
- What is the limit of its non existence

Sakharov Conditions: for a baryogenesis (with no anti-baryons)

- Out of thermal equilibrium (yes)
- Violation of symmetries C (yes) and CP (too small)
- Baryon number (nb of quarks) violation.(no)

The physics applying to the firsts instants of Big-Bang is not yet known.

AMS: Search for anti-nuclei in cosmic ray

AMS goal: Limits on anti-Helium in cosmic rays

5

Abundances of various particles (\rightarrow *identification*)

Abundance of various nuclei (elements) in CR

Tests of CR propagation models using secondaries and ratios

Li, Be, B nuclei come from CNO spallation. Radio-active secondary nuclei like ${}^{10}Be$ ($\tau = 2 \times 10^6$ y) are *cosmic clocks*. Chemical composition and isotope ratios depend on cosmic ray confinement time and density of the interstellar medium.

Dark Matter

Dark Matter manifests its existence through its gravitational effects:

-Rotational velocities of stars at the edge of the disk galaxies.

-Gravitational lensing

DISTRIBUTION OF DARK MATTER IN NGC 3198

From the many hypothesis on the nature of DM, two are related to particle physics:

- Supersymmetric particles X_{o}
- Kaluza-Klein Boson (B)

DM Annihilation in Supersymmetry

Dominant $\chi + \chi \Rightarrow A \Rightarrow b$ bbar quark pair B-Fragmentation known! Hence Spectra of Positrons, Gammas and Antiprotons known!

Two leading theoretical candidates

AMS experiment

First flight AMS-01 (STS-91 Docking to MIR)

Approval: April 1995, Assembly: December 1997, Flight: 10 days in June 1998

AMS: A TeV precision, multipurpose spectrometer TRD TOF Particles and nuclei are defined by their Identify e+, e-Ζ, Ε charge (Z) and energy ($E \sim P$) UUU BRANKIUU R CO CO CO CO CO Magnet **Silicon Tracker** TRD **Z**, **P** TOF 7-8 **RICH** RICH Ζ, Ε **ECAL E** of e⁺, e⁻, γ ECA Z, P are measured independently by the Tracker, RICH, TOF and ECAL

AMS: A TeV precision, multipurpose spectrometer

of the magnet.

- 9 layers of XY sensors (7 m² total)
- 7 inner layers (in magnet bore) + two external layers(top and bottom)

•Cooling of the front-end electronics by *thermal bars* and two phases CO2 circuit at 50 bar pressure.

Ring Imaging Cerenkov Counter (RICH)

ECAL: electromagnetic calorimeter

- Pb/scintillating fibers sandwich (640 kg) with 3D sampling by 9 crossed superlayers (18 layers, 5 pairs in X, 4 pairs in Y)
- Segmentation: *long:~ 1 X*₀, *lat: ~ 0.5 R*_M
- Length: ~ 17 X_0 , ~ 1 λ_R .
- Angular resolution: ~ 10
- $\Delta E/E = 10\%/\sqrt{E + 2.6\%}$
- Proton suppression up to 10⁴ at 500 GeV.
 (10⁶ with TRD)

Imagerie 3D

Superlayer

1 cell = 35 fibers

324 PMs x 4 cells

Integration of AMS: at CERN in a specially built clean room

- 2007-08: pre-integration with spare vacuum case (waiting for the SC magnet)
- •Dec 2008: arrival of magnet
- •Sep 2009: integration with SC magnet
- •Feb 2010: Test beam
- •Mar 2010: EMI & TVTest @ESTEC
- •Apr 2010: Change configuration to permanent magnet.
- •Aug 2010: *Test beam* and move to KSC (Cape Canaveral) Tests, integration @NASA
- •May 2011: Launch & install on ISS

Closing Endeavour's Payload Bay Doors at the Launch Pad to Prepare for Launch

FROM SHUTTLE TO ISS

AMS Electrical Interfaces on ISS

G.Ambrosi

2.0

Orbital DAQ parameters

Particle rates: 200 to 2000 Hz per orbit

Orbit average: DAQ efficiency 85% DAQ rate ~530Hz

1 year of data: 1.6 10¹⁰ events 35 TB raw events

Acquisition rate [Hz] 1600 1400 1200 1000 800 600 400 200 -150 -100 -50 150 50 100 DAQ efficiency 80 0.9 60 0.8 40 0.7 20 0.6 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 -150 -100 -50 50 100 150

Data from the 1st few minutes – 20 GeV Electron, 19 May 2011

Data from the 1st few minutes – 42 GeV/c Carbon, 19 May 2011

y z— x

TRD on ISS

AMS data on ISS: He rate

G.Ambrosi

Tomography of support plane with Helium deficit

He missing particles extrapolated to the first mechanical Tracker support

Conclusion

- AMS02 is in orbit since May 16th 2011
- No visible damage due to the launch stress or to the space environment, all the system are working in both the primary and redundant part
- All the detectors are properly functioning with DAQ in nominal conditions since May 19th 2011
- Minor failures
- Thermal behavior needs attention
- Ground operations (POCC and SOC) run smoothly
- Detector calibrations (alignment, e/p rejection, charge id, etc.) are well advanced
- 10+ years on board the ISS: Precision measurements → discovery potential

Superconducting Magnet

- Cooled with superfluid Helium.
- 2500 liters He for Xyears operation

