The JLab 12 GeV Project

The science program at JLab @ 12GeV

Quark confinement and the role of the glue in meson and baryon spectroscopy

The 3D structure of the nucleon – from form factors and PDFs to GPDs and TMDs

The strong interaction in nuclei – evolution of quark hadronization, nuclear transparency of hadrons

Search for science beyond the Standard Model – precision and intensity frontiers

Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab, J. Dudek et al., EPJ A48 (2012) 187

Base equipment & proposed equipment

12 GeV Experiments by Physics Topics

Updated PAC40, June 2013

Торіс	Hall A	Hall B	Hall C	Hall D	Total
The Hadron spectra as probes of QCD (GlueX and heavy baryon and meson spectroscopy)		2		2	4
The transverse structure of the hadrons (Elastic and transition Form Factors)	4	3	3	1	11
The longitudinal momentum structure of the hadrons (Unpolarized and polarized parton distribution functions)	2	2	6		10
The 3D quark structure of the hadrons (Generalized Parton Distributions and Transverse Momentum Distributions)	5	14	4		23
Hadrons and cold nuclear matter (Medium modification of the nucleons, quark hadronization, N-N correlations, hypernuclear spectroscopy, few-body experiments)	4	2	6		12
Low-energy tests of the Standard Model and Fundamental Symmetries	3	1		1	5
TOTAL	18	23	19	4	64

PAC fully and conditionally approved experiments: 64 More than 7 years of parallel running experiments.

IWHSS, Erlangen, Germany, July 22-24, 2013

DIS structure functions and d_v(x)/u_v(x)

Neutron structure and quark distributions

1) Measure F_2^n/F_2^p by tagging almost unbound neutrons using detection of low momentum protons in a radial TPC. 2) Other experiment will measure ${}^{3}H/{}^{3}He$.

Polarized PDFs on p/d at 12GeV

Flavor-tagged polarized PDFs

Generalized Parton Distributions

Structural content of GPD *E* & *H*

Nucleon matrix element of the Energy-Momentum Tensor of q flavored quarks:

$$\langle p_2 | \hat{T}^q_{\mu\nu} | p_1 \rangle = \bar{U}(p_2) \left[\frac{M_2^q(t)}{M} \frac{P_{\mu}P_{\nu}}{M} + J^q(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} + \frac{d_1^q(t)}{5M} \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^2}{5M} \right] U(p_1)$$

- $M_2(t)$: Mass density in the nucleon
- J(t) : Angular momentum density
- $d_{I}(t)$: Pressure and shear forces

$$J^{q}(t) = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \, x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

$$M_2^q(t) + \frac{4}{5}d_1(t)\xi^2 = \frac{1}{2}\int_{-1}^1 \mathrm{d}x \, x H^q(x,\xi,t)$$

related to "D-term"

To determine J(t), measurements of the xand t dependence of GPDs are needed. To separate $M_2(t)$ and $d_1(t)$ measurements at small and large $\xi(x_B)$ are needed.

DVCS and Bethe-Heitler Process

Cross section of ep \rightarrow ep γ at Q²=2 GeV/c² and X_B=0.35

CLAS DVCS/BH cross sections

Large kinematical range in Q^2 , x_B , t

Differential cross section (preliminary)

Target Asymmetry A_{UL} (preliminary)

350

350

OF ENERGY

Extracting CFF/GPDs from DVCS

Extraction in leading twist with:

- Preliminary results from CLAS on A_{UL} , A_{LL}
- Cross sections σ

Kinematic coverage of DVCS @ 12GeV

A_{LU} projections for JLab@12GeV

A_{LU} projections for protons

A_{UL} projections for protons

U.S. DEPARTMENT OF ENERGY

A_{UT} projections for 12GeV

IWHSS, Erlangen, Germany, July 22-24, 2013

-ISA

Page 18

Office of

Science

J.S. DEPARTMENT OF ENERGY

GPD H from projected CLAS12 data

Review article: M. Guidal, H. Moutarde, M. Vanderhaeghen, Rept. Prog. Phys. 76 (2013) 066202

LO fit to all observables: σ , A_{LU} , A_{UL} , A_{LL} , A_{Ux} , A_{Uy} , A_{Lx} , A_{Ly}

CFF E from projected CLAS12 data

Page 20 Office of Science

Projected quark densities in impact parameter

IWHSS, Erlangen, Germany, July 22-24, 2013

Beam asymmetries A_{LU} for neutrons

A_{LU} is highly sensitive to d-quark helicity contribution to nucleon spin.

IWHSS, Erlangen, Germany, July 22-24, 2013

Time-like Compton Scattering (TCS)

Transverse Momentum Structure of Nucleon – TMDs

SIDIS and Transverse Momentum Distribution

SIDIS cross section in leading twist:

The 8 structure functions factorize into TMD parton distributions, fragmentation functions, and hard parts:

$F_{UU} \propto f_1(\mathbf{x}, \mathbf{k}_{\perp}) \mathbf{D}_1(\mathbf{z}_h, \mathbf{p}_{\perp}) \mathbf{H}_{UU}(\mathbf{Q}^2)$ $F_{LL} \propto g_{1L}(\mathbf{x}, \mathbf{k}_{\perp}) \mathbf{D}_1(\mathbf{z}_h, \mathbf{p}_{\perp}) \mathbf{H}_{LL}(\mathbf{Q}^2)$ $F_{UU} \propto \mathbf{h}_{\perp}^{\perp}(\mathbf{x}, \mathbf{k}_{\perp}) \mathbf{H}_{\perp}^{\perp}(\mathbf{z}_h, \mathbf{p}_{\perp}) \mathbf{H}_{UU}(\mathbf{Q}^2)$				
$F_{LL} \propto g_{1L}(\mathbf{x}, \mathbf{k}_{\perp}) D_1(\mathbf{z}_h, \mathbf{p}_{\perp}) H_{LL}(\mathbf{Q}^2)$ $F_{LL} \propto h^{\perp}_{\perp}(\mathbf{x}, \mathbf{k}_{\perp}) H^{\perp}_{\perp}(\mathbf{z}_h, \mathbf{p}_{\perp}) H_{LL}(\mathbf{Q}^2)$	F _{UU} ∝	$f_1(x, k_\perp)$	$D_1(z_h, p_\perp)$	Η _{υυ} (Q²)
$F_{\rm m} \propto h^{\pm}_{\pm} (\mathbf{x} \mathbf{k}_{\perp}) \mathbf{H}^{\pm}_{\pm} (\mathbf{z}_{\perp} \mathbf{n}_{\perp}) \mathbf{H}_{\rm m} (\Omega^2)$	F _{LL} ∝	g _{1L} (x, k)D ₁ (z _h , p⊥	H _{LL} (Q²)
	F _{UL} ∝	h_{1L}^{\perp} (x, k $_{\perp}$)	$H_1^{\perp}(z_h, p_{\perp})$	H _{UL} (Q²)

Integrals over transverse momentum of initial and scattered parton

A full program to access L.T. TMDs from measurements requires separation of the structure function using polarization, and coverage of a large range in x, z, P_T along with sensitivity to Q^2 , and the flavor separation in u, d, s quarks.

JLab TMD Proton Program @ 12 GeV

SIDIS π/K on unpolarized protons/deuterons

CLAS12 A_{UL} on longitudinally polarized target

 Only leading twist azimuthal moment for longitudinally polarized target. The sin2
poment is sensitive to spin-orbit correlations.

Office of

Science

U.S. DEPARTMENT OF ENERGY

Page 28

A_{UT} on transverse polarized proton

JLab TMD D₂ Program @ 12 GeV

Page 30

Office of

Science

U.S. DEPARTMENT OF ENERGY

JLab TMD ³He Program @ 12 GeV

Leading twist TMD parton distributions: information on correlations between *quark orbital motion* and *spin*

Momentum Tomography with TMDs

Sivers function for d-quarks extracted from model simulations with a transverse polarized ³He target.

d-quark momentum tomography for Sivers function. The d-quark momentum density shows a distortion and shift in $\mathbf{k}_{\mathbf{x}}$. A non-zero $\delta \mathbf{k}_{\mathbf{x}}$ value requires a non-zero orbital angular momentum.

12 GeV UPGRADE REBASELINE SCHEDULE

Summary

- JLab 12 GeV upgrade has a broad science program covering many facets of hadron physics.
- Extending knowledge of PDFs to high x in measurements of (un)polarized structure functions using tagging. Addresses part of the nucleon "spin-puzzle" and extend knowledge of quark density distribution at high x.
- Precision studies of DVCS in polarization measurements give access to GPDs and enable quark spatial imaging. They relate to the quark spin, mass and force distributions in the nucleon (confinement?).
- Precise measurements of SIDIS improve access to TMDs and quark momentum tomography, and relate to the quark orbital angular momentum.
- Many topics not discussed, hadron spectroscopy, high precision parity experiments, nucleon e.m. form factors, dark matter searches, QCD and nuclei,

....

Additional slides

IWHSS, Erlangen, Germany, July 22-24, 2013

Preliminary Plans for First Years of Beam in Hall B

- Highly rated experiments in first 3 years of running
- PCR, HPS, pDVCS, nDVCS, pSIDIS, g₁^p/g₁ⁿ
- High discovery potential during first year

Exclusive J/ ψ production near threshold

Gluonic d.o.f. in meson excitations

Isoscalar mesons from LQCD

Extracting an exotic J^{PC} signal in GlueX

E12-06-102

Amplitude analysis of MC generated data shows that a very small exotic $\pi_1(1600)$ signal can be isolated from the much larger signals of ordinary mesons.

CLAS results set upper limit of 13.5nb for $\pi_1(1600)$ production in this channel, less than 2% of a₂(1320). *M. Nozar, PRL 102 (2009) 102002.*

A complementary program is in preparation with CLAS12 with quasi-real photons.

E12-11-005

Office of

CFF H from projected CLAS12 data

M. Guidal, H. Moutarde, M. Vanderhaeghen, Rept. Prog. Phys. 76 (2013) 066202

Page 40 Office of Science