

IWHSS 2013

International Workshop on Hadron
Structure and Spectroscopy 2013,
Erlangen, Germany, 22-24 July

Topics

- Longitudinal and Transverse Spin

> Structure of the Nucleon

Experimental review of

transverse-spin physics

iкerbasque
Basque Foundation for Science

Transverse spin - a bumpy road

- largely neglected

Transverse spin - a bumpy road

- largely neglected
- "transverse spin" structure function g_{2} small (vanishing in parton model)

Transverse spin - a bumpy road

- largely neglected
- "transverse spin" structure function g_{2} small (vanishing in parton model)
- transverse-spin effects suppressed in pQCD:

$$
\mathbf{A}_{\mathbf{N}} \propto \alpha_{\mathbf{S}} \frac{\mathbf{m}_{\mathbf{q}}}{\mathbf{Q}^{2}}
$$

[^0]
Transverse spin - a bumpy road

- largely neglected
- "transverse spin" structure function g_{2} small (vanishing in parton model)
- transverse-spin effects suppressed in PQCD:

$$
\mathbf{A}_{\mathbf{N}} \propto \alpha_{\mathbf{S}} \frac{\mathbf{m}_{\mathbf{q}} \longleftarrow \text { quark mass }_{\mathbf{Q}^{\mathbf{2}} \longleftarrow \text { energy scale }} \text {. } \quad \text { en }}{}
$$

[^1]
Transverse spin - a bumpy road

- largely neglected
- "transverse spin" structure function g_{2} small (vanishing in parton model)
- transverse-spin effects suppressed in PQCD:

$$
\mathbf{A}_{\mathbf{N}} \propto \alpha_{\mathbf{S}} \frac{\mathbf{m}_{\mathbf{q}} \longleftarrow \text { quark mass }_{\mathbf{Q}^{\mathbf{2}} \longleftarrow \text { energy scale }} \text {. } \quad \text { en }}{}
$$

[^2]
Nature does not seem to cooperate

... also not for pion production ...

... also not for pion production

also not for pion production

- large left-right asymmetries persist even at RHIC energies

What's the origin of these SSA?

- fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]
- correlating transverse quark spin with transverse momentum

What's the origin of these SSA?

- fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]
- quark-distribution effect?

[D.W. Sivers, PRD 41 (1990) 83]
- correlating transverse quark momentum with transverse spin of nucleon

What's the origin of these SSA?

- fragmentation effect ding

relating transverse quark spin with transverse momentum
- quark-distribution effect?

[D.W. Sivers, PRD 41 (1990) 83]
- correlating transverse quark momentum with transverse spin of nucleon

going beyond leading-twist collinear approach

going beyond leading-twist collinear approach

TMD
factorization

TMD: transverse-momentum-dependent distributions

going beyond leading-twist collinear approach

High
Intermediate

$$
q_{T}^{2} \ll Q^{2} \quad M^{2} \ll q_{T}^{2} \ll Q^{2} \quad M^{2} \ll q_{T}^{2}
$$

q_{T}^{2}

$$
M^{2}
$$

TMD
factorization
twist-3 collinear factorization

TMD: transverse-momentum-dependent distributions

going beyond leading-twist collinear approach

TMD: transverse-momentum-dependent distributions

Spin-momentum structure of the nucleon

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right] \\
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right. \\
& \left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]
\end{aligned}
$$

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		U	L	T
	U	f_{1}		h_{1}^{\perp}
	L		$g_{1 L}$	$h_{1 L}^{\perp}$
	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

Spin-momentum structure of the nucleon

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right] \\
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right. \\
& \left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]
\end{aligned}
$$

Sivers

worm-gear

- each TMD describes a particular spin-

Boer-Mulders

- functions in black survive integration over transverse momentum
- functions in green box are chirally odd pretzelosity red are naive T-odd details M. Radici, M. Boglione

Transverse spin $|\uparrow \downarrow\rangle=\frac{1}{2}(|+\rangle \pm|-\rangle)$

$$
\langle\uparrow| \hat{O}|\uparrow\rangle-\langle\downarrow| \hat{O}|\downarrow\rangle \propto\langle+| \hat{O}|-\rangle-\langle-| \hat{O}|+\rangle
$$

transverse-spin asymmetries involve helicity flip

Transverse spin $|\uparrow \downarrow\rangle=\frac{1}{2}(|+\rangle \pm|-\rangle)$

$$
\langle\uparrow| \hat{O}|\uparrow\rangle-\langle\downarrow| \hat{O}|\downarrow\rangle \propto\langle+| \hat{O}|-\rangle-\langle-| \hat{O}|+\rangle
$$

transverse-spin asymmetries involve helicity flip

Transverse spin $|\uparrow \downarrow\rangle=\frac{1}{2}(|+\rangle \pm|-\rangle)$

$$
\langle\uparrow| \hat{O}|\uparrow\rangle-\langle\downarrow| \hat{O}|\downarrow\rangle \propto\langle+| \hat{O}|-\rangle-\langle-| \hat{O}|+\rangle
$$

transverse-spin asymmetries involve helicity flip

Transverse spin $|\uparrow \downarrow\rangle=\frac{1}{2}(|+\rangle \pm|-\rangle)$

$$
\langle\uparrow| \hat{O}|\uparrow\rangle-\langle\downarrow| \hat{O}|\downarrow\rangle \propto\langle+| \hat{O}|-\rangle-\langle-| \hat{O}|+\rangle
$$

transverse-spin asymmetries involve helicity flip

need to couple to chiral-odd fragmentation function:
transverse spin transfer (polarized final-state hadron)
$\boxed{\boxed{0}}$ 2-hadron fragmentation
『 Collins fragmentation

TMD fragmentation functions

TMD fragmentation functions

TMD fragmentation functions

Collins fctn. - chiral-odd fragmentation

- spin-dependence in fragmentation into unpolarized final state:
left-right asymmetry in hadron direction transverse to both quark spin and momentum

Collins fctn. - chiral-odd fragmentation

- spin-dependence in fragmentation into unpolarized final state:
left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and $e^{+} e^{-}$ annihilation data

Collins fctn. - chiral-odd fragmentation

- spin-dependence in fragmentation into unpolarized final state:
left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and $e^{+} e^{-}$ annihilation data

Collins fctn. - chiral-odd fragmentation

- spin-dependence in fragmentation into unpolarized final state:
left-right asymmetry in hadron direction transverse to both quark spin and momentum
- extracted from SIDIS and $e^{+} e^{-}$ annihilation data
- spin average gives "ordinary" D_{1}

a QCD laboratory

a QCD laboratory

hadron structure (distribution functions).

a QCD laboratory

(fragmentation functions)

a QCD laboratory

- data from COMPASS, HERMES, and JLab: planned for future EIC
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

Drell-Yan

a QCD laboratory

- data from COMPASS, HERMES, and JLab: planned for future EIC
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

Drell-Yan

- ideal place to study hadronization
- convolutes parton fragmentation functions $\Delta \otimes \Delta$
- wealth of ("raw") data from Belle and BaBar

a QCD laboratory

- data from COMPASS, HERMES, and JLab: planned for future EIC
- convolutes parton distribution functions
$\Phi \otimes \Phi$
- testing ground for sign reversal of naive-T-odd distributions
- hardly any data
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

Drell-Yan

- ideal place to study hadronization
- convolutes parton fragmentation functions $\Delta \otimes \Delta$
- wealth of ("raw") data from Belle and BaBar

Probing TMDs in semi-inclusive DIS

in SIDIS*) couple PDFs to:
*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

*) semi-inclusive DIS with unpolarized final state

Probing TMDs in semi-inclusive DIS

\rightarrow give rise to characteristic azimuthal dependences
*) semi-inclusive DIS with unpolarized final state

1-hadron production (ep \rightarrow ehX)

$$
\begin{array}{r}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{array}
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

1-hadron production (ep $\rightarrow e h X$)

$$
\begin{array}{r}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{array}
$$

$$
+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
$$

$$
\left.+\lambda_{e}\left[\left(\cos \left(\phi-\phi_{S}\right) d \sigma_{L T}^{13}\right)+\frac{1}{Q}\left(\cos \phi_{S} d \sigma_{L T}^{14}+\cos \left(2 \phi-\phi_{S}\right) d \sigma_{L T}^{15}\right)\right]\right\}
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

The quest for transversity

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution (Collins fragmentation)

- significant in size and opposite in sign for charged pions

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity Non-zero Collins function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution

 (Collins fragmentation)- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity Non-zero Collins function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution

 (Collins fragmentation)- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one
- leads to various cancellations in SSA observables

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity Non-zero Collins function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- wealth of new results:
- COMPASS
[PLB 692 (2010) 240,
PLB 717 (2012) 376]
- HERMES
[PLB 693 (2010) 11]
- Jefferson Lab
[PRL 107 (2011) 072003]

16
IWHSS 2013, Erlangen

- analyzed in different frames:

Collins FF from $e^{+} e^{-}$

- Collins-Soper

vs. Gottfried-Jackson
\Rightarrow different convolutions over transverse momenta:
$A_{12} \propto \cos \left(\phi_{1}+\phi_{2}\right) \frac{H_{1}^{\perp,[1]} \bar{H}_{1}^{\perp,[1]}}{D_{1}^{[0]} \bar{D}_{1}^{[0]}} \quad A_{0} \propto \cos \left(2 \phi_{0}\right) \frac{\mathcal{F}\left[\mathcal{W} H_{1}^{\perp} \bar{H}_{1}^{\perp}\right]}{\mathcal{F}\left[D_{1} \bar{D}_{1}\right]}$
$F^{[n]}=\int d\left|\mathbf{k}_{T}\right|^{2}\left[\frac{\left|\mathbf{k}_{T}\right|}{M_{h}}\right]^{n} F\left(z, \mathbf{k}_{T}^{2}\right)$
- analyzed in different $t_{\phi_{2}}$ frames:

Collins FF from $e^{+} e^{-}$

- Collins-Soper

vs. Gottfried-Jackson

\Rightarrow different convolutions over transverse momenta:

- analyzed in different $t_{\phi_{2}}$ rames:

Collins FF from $e^{+} e^{-}$

- Collins-Soper

\Rightarrow different convolutions over transverse momenta:

Collins FF from $e^{+} e^{-}$

- nonzero $A^{\text {UL }}$ and A^{UC}
\Rightarrow only modest dependence on $\left(p_{t 1}, p_{t 2}\right)$
$\Rightarrow \mathrm{A}^{\mathrm{UC}}<\mathrm{A}^{\mathrm{UL}}$; complementary information on $\mathrm{H}_{1}{ }^{\perp}$, fav and $\mathrm{H}_{1}{ }^{\perp}$, dis
$\Rightarrow \mathrm{A}_{0}<\mathrm{A}_{12}$, but interesting structure in p_{t}

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity through

 2-hadron fragmentation

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	f_{1}^{\perp}	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution (2-hadron fragmentation)

[A. Airapetian et al., JHEP 06 (2008) 017]

- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign
- ${ }^{2} \mathrm{H}$ results consistent with zero

COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

COMPASS 2007/2010 proton data

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	f_{1}^{\perp}	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution (2-hadron fragmentation)

[A. Airapetian et al., JHEP 06 (2008) 017]

- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign
- ${ }^{2} \mathrm{H}$ results consistent with
zero

data from $e^{+} e^{-}$by BELLE

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution (2-hadron fragmentation)

[A. Airapetian et al., JHEP 06 (2008) 017]

- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign
- ${ }^{2} \mathrm{H}$ results consistent with zero

$$
x h_{1}^{4 \mathrm{u}}(\mathrm{x})-\mathrm{x} \mathrm{~h}_{1}^{\mathrm{h}^{\mathrm{d}}(x) 4}
$$

- data from $e^{+} e^{-}$by BELLE allow first (collinear) extraction of transversity (compared to Anselmino et al.)

updated analysis M. Radici

collinear extraction of valence transversity

[A. Bacchetta et al. JHEP 03 (2013) 119]

IWHSS 2013, Erlangen

collinear extraction of valence transversity

[A. Bacchetta et al. JHEP 03 (2013) 119]

collinear extraction of valence transversity

d_{v}-transversity Soffer bound

[A. Bacchetta et al. JHEP 03 (2013) 119]

23
[M. Anselmino et al., PRD 87 (2013) 094019]

general trend towards violating d-Soffer bound?

$$
\left|h_{1}^{q}(x)\right| \leq \frac{1}{2}\left[f_{1}^{q}(x)+g_{1}^{q}(x)\right]
$$

IWHSS 2013, Erlangen

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity distribution (2-hadron fragmentation)

- new preliminary results on various other hadron combinations
- COMPASS: charged $\pi^{ \pm} \mathrm{K}^{\mp}$
- HERMES: $\pi^{ \pm} \pi^{0}$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

First signal of transversity from polarized $p^{\uparrow} p->\pi^{+} \pi^{-} X$

- forward region -> valence effect from polarized (beam) proton?
- previous mid-rapidity preliminary data from PHENIX consistent with zero
- dependence on cone cut; due to underlying p_{T} dependence?

Transversity's friends

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Pretzelosity

- chiral-odd \rightarrow needs Collins FF (or similar)
- proton \& deuteron data consistently small
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of P_{h}

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- again: chiral-odd
- evidence from CLAS (violating isospin symmetry?)
- consistent with zero at

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- again: chiral-odd
- evidence from CLAS (violating isospin symmetry?)
- consistent with zero at COMPASS and HERMES

S. Skoirala

Worm-Gear I
[CLAS, PRL 105 (2010) 262002]

- new preliminary data from CLAS closer to HERMES/ COMPASS (and to zero)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Worm-Gear II

- first direct evidence on:
- ${ }^{3} \mathrm{He}$ target at JLab
- H target at COMPASS \& HERMES

"Wilson-line physics" naively T-odd distributions

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 \mathrm{~T}}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathcal{W}} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

31

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 T}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathcal{W}} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

π^{+}dominated by u-quark scattering:

$$
\simeq-\frac{f_{1 T}^{\perp u}\left(x, p_{T}^{2}\right) \otimes \mathcal{W} D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}{f_{1}^{u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}
$$

u-quark Sivers DF < 0

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes for pions

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 T}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathcal{W}} D_{1}^{q}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)}
$$

π^{+}dominated by u-quark scattering:

$$
\simeq-\frac{f_{1 T}^{\perp u}\left(x, p_{T}^{2}\right) \otimes \mathcal{W} D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}{f_{1}^{u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, k_{T}^{2}\right)}
$$

u-quark Sivers DF < 0
d-quark Sivers DF >0 (cancelation for π^{-})

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes

- cancelation for D target supports opposite signs of up and down Sivers

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes

[courtesy of A. Bacchetta]

- cancelation for D target supports opposite signs of up and down Sivers
- new results from JLab using ${ }^{3} \mathrm{He}$ target and from COMPASS for proton target

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes Q^{2} dependence?

- slightly larger amplitudes at HERMES
- average Q^{2} about factor 3 larger at COMPASS

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes Q^{2} dependence?

- slightly larger amplitudes at HERMES

10^{-1}
33

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes Q^{2} dependence?

- slightly larger amplitudes at HERMES

is y-dependence a Q^{2} dependence? Evolution? M. Boglione

Process dependence

simple QED example

DIS: attractive

Drell-Yan: repulsive

Process dependence

simple QED example

DIS: attractive

Drell-Yan: repulsive

result: Sivers|DIS $=-$ Sivers|DY

Process dependence

simple QED example

DIS: attracti ${ }^{\text {sec }}$
Drell-Yan: repulsive

result: Sivers|DIS $=-$ Sivers $\left.\right|_{\text {DY }}$

Process dependence

need Drell-Yan experiments with transverse polarization: COMPASS, transverse SeaQuest, RHIC, ...

- C. Riedl
add color:
QCD

$$
\text { result: Sivers|oIs }=- \text { Sivers }\left.\right|_{\text {DY }}
$$

$p^{\uparrow} p \rightarrow \pi X$

"generalized parton model"
 no rigorous TMD factorization!

$p^{\dagger} p \rightarrow \pi X$

"generalized parton model"
collinear twist-3
no rigorous TMD factorization!

$$
g T_{q, F}(x, x)=-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\mathrm{SIDIS}}
$$

TMD factorization

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

$p^{\dagger} p \rightarrow \pi X$

- Sivers fit to HERMES data nicely described A_{N} in pp

Phys.Rev.Lett. 101 (2008) 222001.

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

$p^{\dagger} p \rightarrow \pi X$

- Sivers fit to HERMES data nicely described A_{N} in pp
- may also originate from Collins effect or twist-3 effects

Phys.Rev.Lett. 101 (2008) 222001.

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

$p^{\dagger} p \rightarrow \pi X$

- Sivers fit to HERMES data nicely described A_{N} in pp
- may also originate from Collins effect or twist-3 effects
- only sizable in forward direction

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

$p^{\dagger} p \rightarrow \pi X$

- Sivers fit to HERMES data nicely described A_{N} in pp
- may also originate from Collins effect or twist-3 effects
- only sizable in forward direction
- after early success of linking
 twist-3 with Sivers, sign mismatch discovered: $g T_{q, F}(x, x)=-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\text {sIDIS }}$

$\mathrm{p}^{\dagger} \mathrm{p} \rightarrow \pi \mathrm{X}$ - p_{T} dependence

- clean approach: collinear twist-3
- but expected p_{T} fall-off not seen; or at least it's very slow

not quite Drell-Yan yet: jet SSA

- no sensitivity to fragmentation details: $\mathbf{p}^{\uparrow} \mathbf{p} \rightarrow$ jet $+\mathbf{X}$
- Sivers-type mechanism (-> use Sivers fctn from SIDIS fits)

Includes initial- and final-state color-charge interactions $g T_{q, F}(x, x)=-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\text {SIDIS }}$

Excludes initial- and final-state color-charge interactions

Boer-Mulders

spin-effects in unpolarized reactions

Unpolarized Drell-Yan

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

Unpolarized Drell-Yan

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

- "failure" of collinear PQCD

Unpolarized Drell-Yan

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

Large deviations from Lam-Tung relation observed in DY [NA10 ('86/'88) \& E615 ('89)]

- "failure" of collinear PQCD
- possible source: Boer-Mulders effect

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

C. Riedl

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

valence BM fctn

- C. Riedl

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

valence and sea $B M$ fctn

- C. Riedl

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Signs of Boer-Mulders

valence and sea BM fctn

similar BM fctn for up and down quarks?

Modulations in spin-independent

 SIDIS cross section$$
\begin{aligned}
\frac{\mathrm{d}^{5} \sigma}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{h} \mathrm{~d} P_{h \perp}^{2}}= & \frac{\alpha^{2}}{x y Q^{2}}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{A(y) F_{\mathrm{UU}, \mathrm{~T}}+B(y) F_{\mathrm{UU}, \mathrm{~L}}\right. \\
& \left.+C(y) \cos \phi_{h} F_{\mathrm{UU}}^{\cos \phi_{h}}+B(y) \cos 2 \phi_{h} F_{\mathrm{UU}}^{\cos 2 \phi_{h}}\right\}
\end{aligned}
$$

(Implicit sum over quark flavours)

Modulations in spin-independent

 SIDIS cross section$$
\begin{aligned}
\frac{\mathrm{d}^{5} \sigma}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{h} \mathrm{~d} P_{h \perp}^{2}}= & \frac{\alpha^{2}}{x y Q^{2}}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{A(y) F_{\mathrm{UU}, \mathrm{~T}}+B(y) F_{\mathrm{UU}, \mathrm{~L}}\right. \\
& \left.+C(y) \cos \phi_{h} F_{\mathrm{UU}}^{\cos \phi_{h}}+B(y) \cos 2 \phi_{h} F_{\mathrm{UU}}^{\cos 2 \phi_{h}}\right\}
\end{aligned}
$$

(Implicit sum over quark flavours)

signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

- not zero!
[Airapetian et al., PRD 87 (2013) 012010]

- not zero!
- opposite sign for charged pions with larger magnitude for π^{-} -> same-sign BM-function for valence quarks?
[Airapetian et al., PRD 87 (2013) 012010]

- not zero!
- opposite sign for charged pions with larger magnitude for π^{-} -> same-sign BM-function for valence quarks?
- intriguing behavior for kaons
[Airapetian et al., PRD 87 (2013) 012010]

- not zero!
- opposite sign for charged pions with larger magnitude for π^{-} -> same-sign BM-function for valence quarks?
- intriguing behavior for kaons
- available in multidimensional binning both from HERMES and soon from COMPASS
- B. Parsamyan
∇ h-

Z
sys $\approx 2 \cdot$ stat

- B. Parsamyan
signs of Boer-Mulders COMPASS ${ }^{6} \mathrm{LiD}$ (25% of 2004 data)
∇ h-

- available in multidimensional binning both from HERMES and soon from COMPASS

Conclusion

Conclusion

transverse spin - a challenge to both experiment and theory

Conclusion

- transverse spin - a challenge to both experiment and theory
- TMD factorization applied to SIDIS:
- non-zero correlation between quark transverse momentum and nucleon transverse polarization (Sivers effect)
- non-zero transversity, and correlation between transverse hadron momentum and transverse spin of fragm. quark (Collins effect)
- dihadron fragmention as tool to measure transversity
- worm-gear g1t is non-vanishing

Conclusion

- transverse spin - a challenge to both experiment and theory
- TMD factorization applied to SIDIS:
- non-zero correlation between quark transverse momentum and nucleon transverse polarization (Sivers effect)
- non-zero transversity, and correlation between transverse hadron momentum and transverse spin of fragm. quark (Collins effect)
- dihadron fragmention as tool to measure transversity
- worm-gear g_{11} is non-vanishing
- hadron production in pp:
- no clear interpretation of A_{N} (sign mismatch between Sivers and twist-3, large asymmetries even at high $\mathrm{p}_{\mathrm{T}}, \ldots$)
- preliminary signals of dihadron fragmentation (and of Collins effect)

Conclusion

- transverse spin - a challenge to both experiment and theory
- TMD factorization applied to SIDIS:
- non-zero correlation between quark transverse momentum and nucleon transverse polarization (Sivers effect)
- non-zero transversity, and correlation between transverse hadron momentum and transverse spin of fragm. quark (Collins effect)
- dihadron fragmention as tool to measure transversity
- worm-gear g_{11} is non-vanishing
- hadron production in pp:
- no clear interpretation of A_{N} (sign mismatch between Sivers and twist-3, large asymmetries even at high $\mathrm{p}_{\mathrm{T}}, \ldots$)
- preliminary signals of dihadron fragmentation (and of Collins effect)
- hint of a non-zero valence Boer-Mulders function from DY and SIDIS

Conclusion

- transverse spin - a challenge to both experiment and theory
- TMD factorization applied to SIDIS:
- non-zero correlation between quark transverse momentum and nucleon transverse polarization (Sivers effect)
- non-zero transversity, and correlation between transverse hadron momentum and transverse spin of fragm. quark (Collins effect)
- dihadron fragmention as tool to measure transversity
- worm-gear git $_{1}$ is non-vanishing
- hadron production in pp:
- no clear interpretation of A_{N} (sign mismatch between Sivers and twist-3, large asymmetries even at high $\mathrm{p}_{\mathrm{T}}, \ldots$...)
- preliminary signals of dihadron fragmentation (and of Collins effect)
- hint of a non-zero valence Boer-Mulders function from DY and SIDIS
- let's prepare for
- precision measurements at ongoing and future facilities
- fundamental QCD tests in Drell-Yan experiments

some backup slides

Subleading twist - $\sin \left(\phi_{s}\right)$

- significant non-zero signal observed for negatively charged mesons also at COMPASS
- must vanish after integration over $P_{h \perp}$ and z, and summation over all hadrons

Subleading twist - $\sin \left(\phi_{s}\right)$

- significant non-zero signal observed for negatively charged mesons also at COMPASS
- must vanish after integration over $P_{h \perp}$ and z, and summation over all hadrons
- various terms related to transversity, worm-gear, Sivers etc.:
$\times\left(\operatorname{xf}_{\frac{1}{\mathrm{~T}}}^{\mathrm{D}} \mathrm{D}_{1}-\frac{\mathrm{M}_{\mathrm{h}}}{\mathrm{M}} \mathrm{h}_{1} \frac{\tilde{\mathrm{H}}}{\mathrm{z}}\right)$
$-\mathcal{W}\left(\mathbf{p}_{\mathbf{T}}, \mathrm{k}_{\mathrm{T}}, \mathbf{P}_{\mathrm{h} \perp}\right)\left[\left(\mathrm{xh}_{\mathrm{T}} \mathbf{H}_{1}^{\perp}+\frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathrm{g}_{1 \mathrm{~T}} \frac{\tilde{\mathbf{G}}^{\perp}}{\mathrm{z}}\right)\right.$
$-\left(\mathbf{x h}_{\mathbf{T}}^{\perp} \mathbf{H}_{\mathbf{1}}^{\perp}-\frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathrm{f}_{\mathbf{1 T}}^{\perp} \frac{\tilde{\mathbf{D}}^{\perp}}{\mathbf{z}}\right)$
IWHSS 2013, Erlangen

2-photon exchange signal from JLab

- non-zero inclusive LR asymmetry on neutron
- goes beyond singlephoton exchange interpretation

transversity extraction

- combining SIDIS (COMPASS \& HERMES) and $e^{+} e^{-}$data (BELLE):

- promising agreement between collinear and TMD extraction of transversity
- no obvious sign of difference in TMD (Collins) from collinear (dihadron)

Inclusive hadron electro-production

$e p^{\uparrow} \rightarrow e h X$

virtual photon going into the page
$e p^{\uparrow} \rightarrow h X$

lepton beam going into the page

Inclusive hadron electro-production

$$
e p^{\uparrow} \rightarrow h X
$$

Inclusive hadron electro-production

- scattered lepton undetected \Rightarrow lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$

Inclusive hadron electro-production

- scattered lepton undetected \Leftrightarrow lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q^{2}) \rightarrow hadronic component of photon relevant

Inclusive hadron electro-production

- scattered lepton undetected - lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q^{2}) \rightarrow hadronic component of photon relevant
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \phi$

Inclusive hadron electro-production

- scattered lepton undetected - lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q^{2}) \rightarrow hadronic component of photon relevant
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \phi$ $A_{U T}\left(p_{T}, x_{F}, \phi\right)=$

$$
A_{U T}^{\sin \phi}\left(p_{T}, x_{F}\right) \sin \phi
$$

Inclusive hadron electro-production

- scattered lepton undetected - lepton kinematics unknown $e p^{\uparrow} \rightarrow h X$
- dominated by quasi-real photo-production (low Q^{2}) \rightarrow hadronic component of photon relevant
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \phi$

$$
\begin{aligned}
& A_{U T}\left(p_{T}, x_{F}, \phi\right)= \\
& \quad A_{U T}^{\sin \phi}\left(p_{T}, x_{F}\right) \sin \phi
\end{aligned}
$$

$$
A_{\mathrm{N}} \equiv \frac{\int_{\pi}^{2 \pi} \mathrm{~d} \phi \sigma_{\mathrm{UT}} \sin \phi-\int_{0}^{\pi} \mathrm{d} \phi \sigma_{\mathrm{UT}} \sin \phi}{\int_{0}^{2 \pi} \mathrm{~d} \phi \sigma_{\mathrm{UU}}}
$$

$$
=-\frac{2}{\pi} A_{\mathrm{UT}}^{\sin \phi}
$$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Inclusive hadrons in ep

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Inclusive hadrons in ep

behavior and size similar to SIDIS Sivers

[^0]: Transverse Quark Polarization in Large- p_{T} Reactions, $e^{+} e^{-}$Jets, and Leptoproduction: A Test of Quantum Chromodynamics
 G. L. Kane

 Physics Department, University of Michigan, Ann Arbor, Michigan 48109
 and
 J. Pumplin and W. Repko

 Physics Department, Michigan State University, East Lansing, Michigan 48823

[^1]: Transverse Quark Polarization in Large- p_{T} Reactions, $e^{+} e^{-}$Jets, and Leptoproduction: A Test of Quantum Chromodynamics
 G. L. Kane

 Physics Department, University of Michigan, Ann Arbor, Michigan 48109
 and
 J. Pumplin and W. Repko

 Physics Department, Michigan State University, East Lansing, Michigan 48823

[^2]: Transverse Quark Polarization in Large- p_{T} Reactions, $e^{+} e^{-}$Jets, and Leptoproduction: A Test of Quantum Chromodynamics
 G. L. Kane

 Physics Department, University of Michigan, Ann Arbor, Michigan 48109
 and
 J. Pumplin and W. Repko

 Physics Department, Michigan State University, East Lansing, Michigan 48823

