Neutrinos Oscillation Experiments at Reactors

Yifang Wang Institute of High Energy Physics June 25, 2012

Reactor Experiment: comparing observed/expected neutrinos

Need high precision experiments

Three on-going experiments

Experiment	Power (GW)	Baseline(m) Near/Far	Detector(t) Near/Far	Overburden (MWE) Near/Far	Sensitivity (90%CL)
Double Chooz	8.5	400/1050	8.2/8.2	120/300	~ 0.03
Daya Bay	17.4	470/576/1650	40//40/80	250/265/860	~ 0.008
Reno	16.5	409/1444	16/16	120/450	~ 0.02

Three experiments: Daya Bay

- Relative measurement to cancel Corr. Syst. Err.
 - ⇒ 2 near sites, 1 far site
- Multiple AD modules at each site to reduce Uncorr. Syst. Err.
 - ⇒ Far: 4 modules, near: 2 modules Cross check; Reduce errors by 1/√N
- Multiple muon detectors to reduce veto eff. uncertainties
 - ➡ Water Cherenkov: 2 layers
 - ⇒ **RPC:** 4 layers at the top + telescopes

Three Experiments: RENO

Three experiments: Double Chooz

- ⇒ Water for shielding backgrounds
- ⇒ Water Cherenkov for muon veto
- RPC/plastic scintillator at the top for muon veto
- Three zones neutrino detector:
 - → Target: Gd-loaded LS
 - ✓ ~ 10-20t for neutrino
 - ⇒ γ-catcher: normal LS
 - ✓ ~ 10-20t for energy containment
 - ⇒ Buffer shielding: oil
 - ✓ ~ 20-40t for shielding

Light collection

- > Daya Bay: 192 8"PMT for 163 PE/MeV
- **RENO: 354 10"PMT for 250 PE/MeV**
- Double Chooz: 390 10"PMT 200 PE/MeV

Gd-Loaded Liquid Scintillator: a challenge

Issue: transparency, aging, ...

Currently produced Gd-loaded liquid scintillators

Groups	Solvent	Complexant for Gd compound	Quantity(t)
Chooz	IPB	alcohol	5
Palo Verde	PC+MO	EHA	12
Double Chooz	PXE+dodecane	Beta-Dikotonates	8
Reno	LAB	ТМНА	40
Daya Bay	LAB	ТМНА	185

- Hall 1(2 ADs) started the operation on Aug. 15, 2011
- Hall 2(1 AD) physics data taking on Nov.5, 2011
- Hall 3(3 ADs) started physics data taking on Dec.24, 2011
- First physics results based on 55 days of data taking on March 8, 2012

Sin²2θ₁₃ = 0.092 ± 0.016(stat) ± 0.005(syst), 5.2 σ for non-zero θ₁₃

• Updated results reported on June 4, 2012 at Neutrino 2012

Sin²2θ₁₃ = 0.089 ± 0.011(stat) ± 0.005(syst), 7.7 σ for non-zero θ₁₃

- Data taking started on Aug. 11, 2011
- First physics results based on 228 days data taking(up to Mar. 25, 2012) released on April 3, 2012, revised on April 8, 2012, published on May 11, 2012:

Sin²2θ₁₃=0.113±0.013(Stat)±0.019(Syst), 4. 9σ for non-zero θ₁₃

Double Chooz

- Far detector starts data taking at the beginning of 2011
- First results based on 85.6 days of data taking reported in Nov. 2012
 Sin²2θ₁₃=0.086±0.041(Stat)±0.030(Syst), 1.7σ for non-zero θ₁₃
- Updated results based on 228 days of data taking reported on June 4, 2012 at Neutrino 2012

 $\sin^2 2\theta_{13} = 0.109 \pm 0.030 (Stat) \pm 0.025 (Syst), 3.1\sigma$ for non-zero θ_{13}

Event Signature and Backgrounds

- **Signature:** $\overline{v}_e + p \rightarrow e^+ + n$
 - \Rightarrow **Prompt:** e⁺, 1-10 MeV,
 - ⇒ Delayed: n, 2.2 MeV@H, 8 MeV @ Gd
 - ⇒ Capture time: 28 µs in 0.1% Gd-LS

Backgrounds

- \Rightarrow Uncorrelated: random coincidence of $\gamma\gamma$, γ n or nn
 - γ from U/Th/K/Rn/Co... in LS, SS, PMT, Rock, ...
 - \checkmark n from α -n, μ -capture, μ -spallation in LS, water & rock
- ⇒ Correlated:
 - ✓ Fast neutrons: prompt—n scattering, delayed —n capture
 - ⁸He/⁹Li: prompt —β decay, delayed —n capture
 - Am-C source: prompt —γ rays, delayed —n capture
 - ✓ α-n: ${}^{13}C(α,n){}^{16}O$

Backgrounds & uncertainties

	Daya Bay		Reno		Double Chooz
	Near	Far	Near	Far	Far
Accidentals (B/S)	1.4%	4.0%	0.56%	0.93%	0.6%
Uncertainty(ΔB/B)	1.0%	1.4%	1.4%	4.4%	0.8%
Fast neutrons(B/S)	0.1%	0.06%	0.64%	1.3%	1.6%
Uncertainty(ΔB/B)	31%	40%	2.6%	6.2%	30%
⁸ He/ ⁹ Li (B/S)	0.4%	0.3%	1.6%	3.6%	2.8%
Uncertainty (ΔB/B)	52%	55%	48%	29%	50%
α -n(B/S)	0.01%	0.05%	-	<u> </u>	-
Uncertainty(ΔB/B)	50%	50%	-	-	-
Am-C(B/S)	0.03%	0.3%	-	-	-
Uncertainty (ΔB/B)	100%	100%	-	-	-
Total backgrounds(B/S)	1.9%	4.7%	2.8%	5.8%	5.0%
Total Uncertainties $(\Delta(B/S))$	0.2%	0.35%	0.8%	1.1%	1.5%

Efficiencies and Systematics

	Daya Bay		Reno		Double Chooz
	Corr.	Uncorr.	Corr.	Uncorr.	Corr/Uncorr.
Target proton	0.47%	0.03%	0.5%	0.1%)	0.3%
Flasher cut	0.01%	0.01%	0.1%	0.01%	-
Delayed energy cut	0.6%	0.12%	0.5%	0.1%	0.7%
Prompt energy cut	0.1%	0.01%	0.1%	0.01%	-
Energy response	-	-	-	-	0.3%
Trigger efficiency					<0.1%
Multiplicity cut	0.02%	<0.01%	0.06%	0.04%	-
Capture time cut	0.12%	0.01%	0.5%	0.01%	0.5%
Gd capture ratio	0.8%	<0.1%	0.7%	0.1%	0.3%
Spill-in	1.5%	0.02%	1.0%	0.03%	0.3%
livetime	0.002%	<0.01%			-
Muon veto cut	-	-	0.06%	0.04%	-
Total	1.9%	0.2%	1.5%	0.2%	1.0%

Reactor flux estimate

	Daya Bay		Reno		Double Chooz
	Corr.	Uncorr.	Corr.	Uncorr.	Corr./Uncorr.
Thermal power		0.5%		0.5%	0.5%
Fission fraction/Fuel composition		0.6%		0.7%	0.9%
Fission cross section /Bugey 4 measurement			1.9%		1.4%
Reference spectra	3%		0.5%		0.5%
IBD cross section			0.2%		0.2%
Energy per fission	0.2%		0.2%		0.2%
Baseline	0.02%		-		0.2%
Spent fuel		0.3%			
Total	3%	0.8%	2.0%	0.9%	1.8%

Daily Rate: Evidence of Deficit

Predictions are absolute, multiplied by one normalization factor from the fitting

Systematic Errors at Daya Bay: Side-by-Side Comparison

Expected ratio of neutrino events: R(**AD1/AD2**) = **0.982**

 \Rightarrow The ratio is not 1 because of target mass, baseline, etc.

• Measured ratio: $0.987 \pm 0.004(stat) \pm 0.003(syst)$

This check will determine finally the systematic error

17

Backgrounds at Double Chooz: Reactor-off

Electron Anti-neutrino Disappearence:

Latest results

Double Chooz

$\frac{R=0.944\pm0.007\pm0.003}{}$	R= 0.920±0.009±0.014	$\sin^2 2\theta_{13} = 0.170 \pm 0.035 \pm 0.040$	
$\sin^2 2\theta_{13} = 0.089 \pm 0.010 \pm 0.005$	Sin ² 20 ₁₃ =0.113±0.013±0.019	Sin ² 2θ ₁₃ =0.109±0.030±0.025	
7.7 σ for non-zero $θ_{13}$	4. 9 σ for non-zero θ_{13}	3.1 σ for non-zero θ_{13}	

<u>Future</u>

Daya Bay

- ➡ Installation of AD7 and AD8 this summer
- ⇒ Full data taking this fall
- \Rightarrow Final precision of Sin²2 θ_{13} : ~5%

RENO

- ➡ Continue data taking
- \Rightarrow Final precision of Sin²2 θ_{13} : ~10%

Double Chooz

- ⇒ Near site detector installation underway
- ➡ Full data taking(by the end of) next year
- \Rightarrow Final precision of Sin²2 θ_{13} : ~15%

Next Step: Daya Bay-II Experiment

- 20 kton LS detector
- **3% energy resolution**
- Rich physics possibilities
 - ⇒ Mass hierarchy
 - Precision measurement of 4 mixing parameters
 - ⇒ Supernovae neutrino
 - ⇒ Geoneutrino
 - ⇒ Sterile neutrino

 - ⇒ Exotic searches

Talk by YFW at ICFA seminar 2008, Neutel 2011; by J. Cao at NuTurn 2012; Paper by L. Zhan, YFW, J. Cao, L.J. Wen, PRD78:111103,2008; PRD79:073007,2009

Mass Hierarchy: 20kt, 3% detector @36 GW

- Distortion of energy spectrum due to mass hierarchy
- Enhance signature in frequency regime

 using
 Fourier transformation
 formalism

An Ideal Location

Thermal power > 36 GW Overburden ~ 2000 MWE

RENO-50

5000 tons ultra-low-radioactivity Liquid Scintillation Detector

RENO-50

Physics with RENO-50

Precise measurement of
θ₁₂

 $\frac{\delta \sin^2 \theta_{12}}{\sin^2 \theta_{12}} \sim 1.0\% (1\sigma) \text{ in a year } \leftarrow \text{ current accuracy : 5.4\%}$

- Determination of mass hierarchy Δm²₁₃
- Neutrino burst from a Supernova in our Galaxy : ~1500 events (@8 kpc)
- Geo-neutrinos : ~ 300 geo-neutrinos for 5 years
- Solar neutrinos : with ultra low radioacitivity
- Reactor physics : non-proliferation
- Detection of T2K beam : ~120 events/year

■ Test of non-standard physics : sterile/mass varying neutrinos 2012/6/25

- Daya Bay experiment discovered the new oscillation and provided the most precise measurement of θ₁₃
- Precision on $Sin^2 2\theta_{13}$ will be improved in the next few years, up to ~ 5%
- As the most powerful man-made neutrino source, reactor neutrinos will continue to play an important role:
 - → Mass hierarchy
 - Precision measurement of mixing parameters up to < 1% level
 unitarity test of the mixing matrix
 - ⇒ Sterile neutrinos
 - → Neutrino magnetic moments

Reference

Daya Bay

- F.P. An et al., Daya Bay Coll., "A side-by-side comparison of Daya Bay antineutrino detectors", arXiv: 1202.6181[physics.ins-det], Nucl. Inst. and Meth. A 685 (2012), pp. 78-97
- F.P. An et al., Daya Bay Coll., "Observation of electron anti-neutrino disappearance at Daya Bay", arXiv: 1203.1669[hep-ex], Phys. Rev. Lett. 108, 171803 (2012)
- ⇒ D. Dwyer, Talk at Neutrino 2012, Kyoto, June 4, 2012

Double Chooz

- ⇒ Y. Abe et al., Double Chooz Collaboration , "Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment.", Phys.Rev.Lett. 108 (2012) 131801
- ⇒ M. Ishitsuka, Talk at Neutrino 2012, Kyoto, June 4, 2012

RENO

 J.K. Ahn et al., Reno Collaboration, "Observation of Reactor Electron Anti-Neutrino Disappearance in the RENO Experiment", Phys.Rev.Lett. 108 (2012) 191802