
A. Yu. Smirnov

International Centre for Theoretical Physics, Trieste, Italy

Invisibles network INT Training lectures June 25-29, 2012

mill addition

Adianatic conversion

if density changes slowly

- the amplitudes of the wave packets do not change
- flavors of the eigenstates follow the density change

Adelibatic conversion

Sun, Supernova
From high to low densities
Initial state:

$$
v(0)=v_{e}=\cos \theta_{m}{ }^{0} v_{1 m}(0)+\sin \theta_{m}{ }^{0} v_{2 m}(0)
$$

Adiabatic evolution to the surface of the Sun (zero density):

$$
\begin{aligned}
& v_{1 m}(0) \rightarrow v_{1} \\
& v_{2 m}(0) \rightarrow v_{2}
\end{aligned}
$$

Mixing angle in matter in initial state

Final state:

$$
v(f)=\cos \theta_{m}{ }^{0} v_{1}+\sin \theta_{m}{ }^{0} v_{2} e^{-i \phi}
$$

Probability to find $v_{e} P=\left|\left\langle v_{e} \mid v(f)\right\rangle\right|^{2}=\left(\cos \theta \cos \theta_{m}{ }^{0}\right)^{2}+\left(\sin \theta \sin \theta_{m}{ }^{0}\right)^{2}$ averaged over oscillations

$$
=0.5\left[1+\cos 2 \theta_{m}{ }^{0} \cos 2 \theta\right]
$$

$$
P=\sin ^{2} \theta+\cos 2 \theta \cos ^{2} \theta_{m}{ }^{0}
$$

Two aspects of mixing

$v_{e}=\cos \theta_{m} v_{1 m}+\sin \theta_{m} v_{2 m}$
$v_{\mu}=-\sin \theta_{m} v_{1 m}+\cos \theta_{m} v_{2 m}$
conerent mixtures
of mass eigenstates

$$
\begin{aligned}
& v_{2 m}=\sin \theta_{m} v_{e}+\cos \theta_{m} v_{\mu} \\
& v_{1 m}=\cos \theta_{m} v_{e}-\sin \theta v_{\mu} \theta_{m}
\end{aligned}
$$

flavor composition of the mass eigenstates

Wave packets
Vacuum $\theta_{m} \rightarrow \theta$

$$
\begin{aligned}
& v_{1 m} \rightarrow v_{1} \\
& v_{2 m} \rightarrow v_{2}
\end{aligned}
$$

Level crossing
 V. Rubakov, private comm.

N. Cabibbo, Savonlinna 1985
H. Bethe, PRL 57 (1986) 1271

Dependence of the neutrino eigenvalues on the matter potential (density)

$$
\frac{\mathrm{l}_{\mathrm{v}}}{\mathrm{l}_{0}}=\frac{2 \mathrm{E} \mathrm{~V}}{\Delta \mathrm{~m}^{2}}
$$

(2in2 $2 \theta_{12}=0.825$

$$
\frac{l_{v}}{l_{0}}=\cos 2 \theta
$$

Crossing point - resonance

- the level split is minimal
- the oscillation length is maximal

Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors. E.Kh. Akhmedov, Soebur Razzaque, A.Yu. Smirnov. e-Print: arXiv:1205.7071 [hep-ph]

1-3 leptonic mixing and the neutrino oscillograms of the Earth. Evgeny K. Akhmedov, Michele Maltoni, Alexei Yu. Smirnov, JHEP 0705 (2007) 077 e-Print: hep-ph/0612285

Neutrino oscillograms of the Earth: Effects of 1-2 mixing and CP-violation. Evgeny Kh. Akhmedov, Michele Maltoni, Alexei Yu. Smirnov, JHEP 0806 (2008) 072 e-Print: arXiv:0804.1466 [hep-ph]
and references therein

Vaccum Vs, matter

Can be treated on the same footing
matter with constant density, (unless near topological defects)

Mass diagonal
Mixes flavor states

Flavor states oscillate

Flavor diagonal Mixes mass eigenstates

Mass states oscillate in matter

Flavor states and mass states change roles when matter and vacuum exchange

supgetiova
 ricritition

Collective flavor trasformation

How flavor diagonal interactions can lead to flavor off-diagonal elements of the Hamiltonian?

Origin of collective effects

MSW flavor conversion

 inside the starPropagation in vacuum

Oscillations

Inside the Earth

$v v$-scattering

Refraction in

 neutrino gases$$
A=\sqrt{2} G_{F}\left(1-v_{e} v_{b}\right)
$$

velocities

elastic forward scattering

J. Pantaleone

can lead to the coherent effect
Momentum exchange \rightarrow flavor exchange
\rightarrow flavor mixing
Collective flavor transformations

Flavor exchange

J. Pantaleone
S. Samuel
V.A. Kostelecky

$v v$ - scattering in u-channel due to Z^{0} - exchange

1. Momentum exchange \rightarrow flavor exchange
2. Coherence if the background is in mixed state:

$$
\left|v_{\mathrm{ib}}\right\rangle=\Phi_{\mathrm{ie}}\left|v_{e}\right\rangle+\Phi_{\mathrm{i} \tau}\left|v_{\tau}\right\rangle
$$

Coherent flavor changing transition

Probe neutrino $=$ background neutrino

Potential depends on transition probability

Flavor exchange

Flavor exchange between the beam (probe) and background neutrinos

If the background is in the mixed state:

$$
\left.\left|v_{\mathrm{ib}}\right\rangle=\Phi_{\mathrm{ie}}\left|v_{e}+\Phi_{\mathrm{i} \tau}\right| v_{\tau}\right\rangle
$$

$$
\mathrm{B}_{e \tau} \sim \Sigma_{i} \Phi_{i e}{ }^{*} \Phi_{i \tau}
$$

sum over particles of bg. w.f. give projections

Contribution to the Hamiltonian in the flavor basis

$$
H_{v v}=\sqrt{2} G_{F} \Sigma_{i}\left(1-v_{e} v_{i b}\right)\left(\begin{array}{ll}
\left|\Phi_{i e}\right|^{2} & \Phi_{i e}{ }^{*} \Phi_{i \tau} \\
\Phi_{i e} \Phi_{i \tau}{ }^{*} & \left|\Phi_{i \tau}\right|^{2}
\end{array}\right]
$$

Evolution equation

Ensemble of neutrino polarization vectors $\mathrm{P}_{\mathrm{\omega}}$
Negative frequencies

$$
d_{+} \mathbf{P}_{\omega}=(-\omega \mathbf{B}+\lambda L+\mu \mathbf{P}) \times \mathbf{P}_{\omega}
$$

Vacuum mixing term
Usual matter potential

$$
\begin{array}{ll}
B=(\sin 2 \theta, 0, \cos 2 \theta) & L=(0,0,1) \\
\omega=\Delta m^{2} / 2 E & \lambda=V=\sqrt{2} G_{F} n_{e}
\end{array}
$$

Collective vector

$$
P=\int_{-\inf }^{+\inf } d \omega P_{\omega}
$$

$$
\mu=\sqrt{2} G_{F} n_{v}\left(1-\cos \theta_{v v}\right)
$$

The term describes collective effects

Neutrino propagation

Trobrertir 1

Oscillations in multilayer medium

Applications:
flavor-to-flavor transitions

- accelerator
- atmospheric
- cosmic neutrinos

Adiabaticity breaking at the borders of layers

Graphical

Equation of motion
(= spin in magnetic field)

$$
\frac{d P}{d t}=(B \times P)
$$

where "' magnetic field" vector:

$$
B=\frac{2 \pi}{I_{m}}\left(\sin 2 \theta_{m}, 0, \cos 2 \theta_{m}\right)
$$

$P=\left(\operatorname{Re} v_{e}{ }^{+} v_{\tau}, \operatorname{Im} v_{e}{ }^{+} v_{\tau}, v_{e}{ }^{+} v_{e}-1 / 2\right)$
Phase of oscillations

$$
\phi=2 \pi \dagger / I_{m}
$$

Probability to find $v_{e} \quad P_{e e}=v_{e}^{+} v_{e}=P_{Z}+1 / 2=\cos ^{2} \theta_{z} / 2$

Resonance entancementin martle

mantle

Parametric enhancement

Parameticenancemento 1.2 model

Graphical representation

d). Parametric ridge E
e). Parametric ridge C
f). Saddle point

Propagation basis

$$
\begin{aligned}
v_{f} & =U_{23} I_{\delta} \tilde{v} \\
I_{\delta} & =\operatorname{diag}\left(1,1, e^{i \delta}\right)
\end{aligned}
$$

$\tilde{H}=U_{13}{ }^{\top} U_{12}{ }^{\top} H^{\text {diag }} U_{12} U_{13}$ $H^{\text {diag }}=\operatorname{diag}\left(H_{1 m}, ~ H_{2 m}, ~ H_{3 m}\right)$
CP-violation and 2-3 mixing - excluded from dynamics of propagation

projection
propagation projection

CP appears in projection only

For instance:

$$
A\left(v_{e} \rightarrow v_{\mu}\right)=\cos \theta_{23} A_{e 2} e^{i \delta}+\sin \theta_{23} A_{e 3}
$$

for hierarchy determination, neglect 1-2 mixing effects

$$
\begin{aligned}
& P\left(v_{e} \rightarrow v_{\mu}\right)=s_{23}{ }^{2}\left|A_{e 3}\right|^{2} \\
& P\left(v_{\mu} \rightarrow v_{\mu}\right)=1-\frac{1}{2} \sin ^{2} 2 \theta_{23}-s_{23}{ }^{4}\left|A_{e 3}\right|^{2}+\frac{1}{2} \sin ^{2} 2 \theta_{23} \underbrace{\begin{array}{l}
\text { Reduces the depth } \\
\text { of oscillations } \\
\text { interference }
\end{array}}_{\begin{array}{l}
\text { Reduces } \\
\text { the average } \\
\text { probability }
\end{array}} \begin{array}{l}
\text { Modifies } \\
\text { phase }
\end{array} \\
& P\left(v_{\mu} \rightarrow v_{\tau}\right)^{\frac{1}{2}} \cos \phi
\end{aligned}
$$

Ogcillograms
 and physics of oscillations
 P. Lipari,
 T. Ohlsson
 M. Blennow
 M. Chizhov,
 M. Maris,
 S.Petcov
 T. Kajita

For $2 v$ system
normal \rightarrow inverted
neutrino \rightarrow antineutrino

CP-violation domains

Solar magic lines
Three grids of lines:

Atmospheric magic lines
Interference phase lines
$\delta=60^{\circ}$
Standard parameterization

CP-interference

Due to specific form of matter potential matrix (only $\mathrm{V}_{\text {ee }} \neq 0$)

$$
\frac{P\left(v_{e} \rightarrow v_{\mu}\right)=\left|\cos \theta_{23} A_{e 2} e^{i \delta}+\sin \theta_{23} A_{e 3}\right|^{2}}{\text { ' }_{\text {solar" amplitude }} \quad \text { ? atmospheric" amplitude }^{2}}
$$ dependence on δ and θ_{23} is explicit

For maximal 2-3 mixing

$$
\begin{aligned}
& \mathrm{P}\left(v_{e} \rightarrow v_{\mu}\right)^{\delta}=\left|A_{e 2} A_{e 3}\right| \cos (\phi-\delta) \\
& \mathrm{P}\left(v_{\mu} \rightarrow v_{\mu}\right)^{\delta}=-\left|A_{e 2} A_{e 3}\right| \cos \phi \cos \delta \\
& \mathrm{P}\left(v_{\mu} \rightarrow v_{\tau}\right)^{\delta}=-\left|A_{e 2} A_{e 3}\right| \sin \phi \sin \delta \\
& \Sigma=0
\end{aligned}
$$

Explicitly

$$
\begin{aligned}
& P\left(v_{e} \rightarrow v_{\mu}\right)=c_{23}{ }^{2}\left|A_{S}\right|^{2}+s_{23}{ }^{2}\left|A_{A}\right|^{2}+2 s_{23} c_{23}\left|A_{S}\right|\left|A_{A}\right| \cos (\phi+\delta) \\
& \phi=\arg \left(A_{S} A_{A}{ }^{*}\right)
\end{aligned}
$$

$$
P_{\text {int }}=2 s_{23} c_{23}\left|A_{S}\right|\left|A_{A}\right| \cos (\phi+\delta)
$$

Dependence on δ disappears, interference term is zero if

$$
P_{\text {int }}=0 \Rightarrow \begin{aligned}
& A_{S}=0-\text { - solar magic lines } \\
& A_{A}=0 \text { - atmospheric magic lines } \\
& (\phi+\delta)=\pi / 2+2 \pi \mathrm{k} \text { - interference phase condition }
\end{aligned}
$$

$$
\phi(E, L)=-\delta+\pi / 2+\pi k \quad \text { depends on } \delta
$$

For $v_{\mu} \rightarrow v_{\mu}$ channel

$$
P_{\text {int }} \sim 2 s_{23} c_{23}\left|A_{S}\right|\left|A_{A}\right| \cos \phi \cos \delta
$$

- The survival probabilities is CP-even functions of δ
- no CP-violation
- dependences on phases factorize

Dependence on δ disappears

$$
\mathrm{P}_{\text {int }}=0 \Rightarrow \begin{aligned}
& A_{S}=0 \\
& A_{A}=0 \\
& \phi=\pi / 2+\pi \mathrm{k}
\end{aligned}
$$

interference phase does not depends on δ

Form the phase line grid

Sensitivity to CP phase

δ - true (experimental) value of phase
δ_{f} - fit value
Interference term: $\Delta P=P(\delta)-P\left(\delta_{f}\right)=P_{\text {int }}(\delta)-P_{\text {int }}\left(\delta_{f}\right)$
For $v_{e} \rightarrow v_{\mu}$ channel:
$\Delta P=2 s_{23} c_{23}\left|A_{s}\right|\left|A_{A}\right|\left[\cos (\phi+\delta)-\cos \left(\phi+\delta_{f}\right)\right]$

$$
\Delta P=0 \quad \begin{aligned}
& A_{S}=0 \\
& A_{A}=0 \\
& (\phi+\delta)=-\left(\phi+\delta_{f}\right)+2 \pi \mathrm{k} \\
& \\
& \phi(E, L)=-\left(\delta+\delta_{f}\right) / 2+\pi \mathrm{k}
\end{aligned} \begin{aligned}
& \text { (along the magic lines) } \\
& \text { int. phase } \\
& \text { condition } \\
& \text { depends on } \delta
\end{aligned}
$$

Int. phase line moves with δ-change

Grid (domains)

 does not change with δ

Physics with HAND's

Enormous physics potential

Energy range: $0.01-10^{5} \mathrm{GeV}$ which is not completely explored and largely unused

Baselines: 0-13000 km

Matter effects: $3-15 \mathrm{~g} / \mathrm{cm}^{3}$

Flavor content nue, numu
Lepton number nu -antinu angle

Discovery of neutrino oscillations
Measurements of 2-3 mixing and mass splitting
Bounds on new physics

- sterile neutrinos
- non-standards interaction
-violation of fundamental symmetries, CPT

High statistics solve the problems

from LAND to HAND

E. Kh Akhmedov M. Maltoni A.Y.S. JHEP 05, (2007) 077 [hep-ph/0612285] JHEP 06 (2008) 072 [arXiv:0804.1466] PRL 95 (2005) 211801 arXiv:0506064 unpublished, see M Maltoni talks
A.Y.S. , hep-ph/0610198.
E. Kh Akhmedov, S Razzaque, A.S. in preparation

Developments of new detection methods?

TITAND?
Y. Suzuki

Energy resolution

Statistics of direction

Suppression of effects

Original fluxes
v_{e} and v_{μ}

Screening factors
neutrinos and antineutrinos

Reduces CPasymmetry

Integration averaging

averaging and smoothing effects reconstruction of neutrino energy and direction

Detection

identification of flavor

Numbers of events

Triple suppression

$$
\begin{aligned}
& N_{e}{ }^{I H}-N_{e}{ }^{N H} \sim\left(\bar{P}_{A}-P_{A}\right)\left(1-\kappa_{\mu}\right)\left[r s_{23}{ }^{2}-\left(1-\kappa_{e}\right) /\left(1-\kappa_{\mu}\right)\right] \\
& \text { CP Neutrino - } \\
& \text { asymm } \\
& \text { etry } \\
& \text { antineutrino } \\
& \text { factor } \\
& \text { Flavor suppression } \\
& \text { (screening factors) } \\
& \text { can be avoided unavoidable } \\
& P_{A}=\left|A_{e 3}\right|^{2} \\
& \kappa_{\alpha}=\left(\bar{\sigma} \bar{\Phi}_{\alpha}\right) /\left(\sigma \Phi_{\alpha}\right) \\
& \left.N_{\mu}{ }^{I H}-N_{\mu}{ }^{N H} \sim\left(\bar{P}_{\mu \mu}-P_{\mu \mu}\right)\left(1-\kappa_{\mu}\right)-r^{-1}\left(1-\bar{\kappa}_{e}\right)\left(P_{e \mu}-P_{e \mu}\right)\right]
\end{aligned}
$$

PINGU

Precision IceCube Next Generation Upgrade

Mass hierarchy, 2-3 mixing,
 CP

IC, DeepCore and PINGU

Digital Optical Module
IceCube: 86 strings ($\times 60$ DOM) 100 GeV threshold Gton volume

Deep Core IC :

- 8 more strings (480 DOMs)
- 10 GeV threshold
- 30 Mton volume

PINGU:
18, 20, 25 ? new strings
(~1000 DOMs)
in DeepCore volume

- Existing IceCube strings
- Existing DeepCore strings
- New PINGU strings

PINGU Geometry

Denser array

20 new strings (~60 DOMs each) in 30 MTon DeepCore volume

Few GeV threshold in inner 10 Mton volume

Energy resolution $\sim 3 \mathrm{GeV}$

- Existing IceCube strings
- Existing DeepCore strings
- New PINGU-I strings

Mass hierarchy

Effective area, effective volume

Normal mass hierarchy

Two large mixings

$$
\begin{aligned}
& \Delta m^{2}{ }_{32}=2.3 \times 10^{-3} \mathrm{eV}^{2} \\
& \Delta m^{2}{ }_{21}=8 \times 10^{-5} \mathrm{eV}^{2}
\end{aligned}
$$

Symmetry?
$v_{\mu}-v_{\tau}$ symmetry

PINGU: Tracking events

 S Razzaque, A. Y. S.Asymmetry, statistical significance

Quick estimation
$S_{\text {tot }} \sim s n^{1 / 2}$ of significance

Effective average significance in individual bin

Systematics reduces
significance by factor 2
s in
mains

PINGU and mass hierarchy

Hierarchy with PINGU

$$
\sigma_{\mathrm{E}}=0.2 \mathrm{E}
$$

$\sigma_{\theta} \sim 1 / E^{0.5}$

Tracking events

Flavor mixing in neutrino-neutrino scattering from flavor diagonal interactions

Propagation in the Earth - neutrino image of the Earth: resonance enhancement of oscillations, parametric effects Magic lines, CP-violation domains

Determination of neutrino parameters with huge atmospheric neutrino detectors

Significance plot

Oscillograms
 For the best fit values of parameters

Level crossings

Normal mass hierarchy

Resonance region
High energy range

Neutrino density

$$
\lambda=V=\sqrt{2} G_{F} n_{e}
$$

neutrino potential:

$$
\begin{aligned}
\mu & =\sqrt{2} G_{F}(1-\cos \xi) n_{v} \\
n_{v} & \sim 1 / r^{2} \\
\xi & \sim 1 / r \quad \text { for large } r \\
& \quad 1 \\
\mu & \sim 1 / r^{4}
\end{aligned}
$$

in neutrinosphere in all neutrino species: $n_{v} \sim 10^{33} \mathrm{~cm}^{-3}$
electron density:

$$
\begin{aligned}
& n_{e} \sim 10^{35} \mathrm{~cm}^{-3} \\
& \Rightarrow \lambda \gg \mu
\end{aligned}
$$

Combining

Introducing negative frequencies for antineutrinos

$$
\overline{\mathbf{P}}_{\omega}=\mathbf{P}_{-\omega} \quad \omega>0
$$

$$
\begin{aligned}
d_{+} \mathbf{P}_{\omega} & =(\omega \mathbf{B}+\mu \mathbf{D}) \times \mathbf{P}_{\omega} \\
\mathbf{D} & =\int_{-\mathrm{inf}}^{+\mathrm{dinf}} \mathrm{~d} \mathbf{S}_{\omega} \mathbf{P}_{\omega}
\end{aligned}
$$

$$
\text { where } s_{\omega}=\operatorname{sign}(\omega)
$$

Equation of motion for D : integrating equation of motion with s_{w}

$$
d_{+} D=B \times M \text { where } M=\int_{-\inf }^{\inf } \mathrm{d} \omega \boldsymbol{s}_{\omega} \omega P_{\omega}
$$

In another form:

$$
d_{+} \mathbf{P}_{\omega}=\boldsymbol{H}_{\omega}(\mu) \times \mathbf{P}_{\omega}
$$

where

$$
\mathbf{H}_{\omega}=(\omega \mathbf{B}+\mu \mathbf{D})
$$

If $\mu|D| \gg \omega$ - the individual vectors form large the self-interaction term dominates $d_{+} \mathbf{P}_{\omega} \sim \mu \boldsymbol{D} \times \mathbf{P}_{\omega}$
does not depend on ω

- evolution is the same for all modes
- P_{ω} are pinned to each other

$$
\mathbf{M}=\omega_{\text {syn }} \mathbf{D}
$$

synchronization frequency

$$
\begin{aligned}
& \omega_{\text {syn }}=\frac{\int d \omega s_{\omega} \omega P_{\omega}}{\int d \omega s_{\omega} P_{\omega}} \\
& d_{f} D=\omega_{\text {syn }} B \times D
\end{aligned}
$$

D-precesses around B with synchronization frequency

Two aspects of mixing

$$
\begin{aligned}
& v_{\mathrm{e}}=\cos \theta_{\mathrm{m}} v_{1 \mathrm{~m}}+\sin \theta_{m} v_{2 m} \\
& v_{\mu}=-\sin \theta_{\mathrm{m}} v_{1 m}+\cos \theta_{m} v_{2 m} \\
& \text { coherent mixtures }
\end{aligned}
$$

of mass eigenstates

Vacuum $\theta_{m} \rightarrow \theta$

$$
\begin{aligned}
& v_{2 m}=\sin \theta_{m} v_{e}+\cos \theta_{m} v_{\mu} \\
& v_{1 m}=\cos \theta_{m} v_{e}-\sin \theta v_{\mu} \theta_{m}
\end{aligned}
$$

flavor composition of the mass eigenstates

The relative phases of the mass states in v_{e} and v_{μ} are opposite

flavors of eigenstates

Interference of the parts of wave packets with the same flavor depends on the phase difference $\Delta \phi$ between v_{1} and ν_{2}

