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Introduction

@ Observation of neutrino oscillations = neutrino flavor
eigenstates ve, v, v; are not mass eigenstates vy, vp, v3.
Constitutes first evidence for new physics beyond the
Standard Model.

@ Leading theory for massive light neutrinos is

non-renormalizable theory = SM +
+ ... in which weak-doublet neutrinos acquire

Majorana masses upon EWSB from unique d = 5 operator
which respects gauge symmetry. This theory is the
low-energy EFT obtained from the renormalizable seesaw
theory by integrating out the gauge-singlet neutrinos with
Majorana masses M > My, Mz, m¢,my!

@ Flavor structure of these theories is of interest. Useful to

discuss flavor structure in terms of flavor invariants, which
are basis independent.



Introduction

There is extensive literature on flavor invariants, both
quark invariants Jarlskog, Greenberg, Kusenko & Shrock,- - - and
lepton invariants Branco & Rebelo, Branco, Rebelo & Silva-Marcos,

Kusenko & Shrock, Dreiner, Kim, Lebedev & Thormeier, - - -

It is interesting to address the classification of flavor invariants
using invariant theory. Mathematics of invariant theory
describes the algebraic structure of invariants. The number of
invariants of a given degree in the flavor-symmetry breaking
mass matrices is encoded in Hilbert series. Flavor invariants
with usual operations of addition and multiplication form a ring,
which is finitely generated. It is interesting to determine the
generators of the ring and the non-trivial relations (syzygies)
among invariants.



Introduction
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Lepton and Quark Flavor Invariants

@ Flavor structure of our leading theories (SM+d =5
operator, seesaw) is encoded by flavor invariants
constructed from the quark and lepton mass matrices.

@ There are a finite number of basic invariants, and a general
invariant can be written as a polynomial in the basic
invariants.

@ Number of basic invariant generators is equal to number of
independent physical parameters: quark and lepton
masses, mixing angles and phases

@ The basic invariants and all non-trivial relations (syzygies)
between these invariants determines the flavor structure of
a given theory.



Primer: Invariant Theory

Before addressing the physical problem of interest, it is useful
to consider some simple examples which illustrate the
mathematics of invariant theory in a very simple context.



Model |

@ Two complex couplings and which transform under
G=U(1) xU(1)
—elh , NP . Q)
@ Ring of invariant polynomials generated by two basic
invariants Iy = mymj and I, = mymj with no non-trivial
relations (syzygies) between I, and I,
@ General invariant is of the form

(mymi)™ (mzm3)™ ()

@ Hilbert series

H(Q):Zcrqr :1+Zcrqr 3)
r=0 r=1

¢, = the number of invariants of degree r, c >0




Model |

General invariant is of the form
(mimi)™ (mom3)™
@ Hilbert series of Model |

H(q) = 1+29%+3q*+49°+50%+...

o0

= > (n+1)g*

n=0
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(1—9?)?
- (1+q2+q4+q6+...)2 5)



Model |

@ Hilbert series

H(q) = (1+q2+q4+q6+...)2:ﬁ (6)

N(q)
H(q) =
Cr 2 07 Cr S CdN —r

p@) = (1-a%)

r=1

dD :Zdr
r




Model |

@ Ring C[my, m3, my, m3]Y@*VQ) of all polynomials which
are invariant under G = U(1) x U(1)

p =dimV —dimG, dmV =4, dimG =2

@ Knop’s Theorem

dimV > dp — dy >p

dmV =4, dp =4, dy =0, p=2
4>4>2




Model Il

@ Two couplings m, and m; which transform under G = U(1)

N el@ , N e2|@

@ Invariants generated by four basic invariants I; = mimj,
2 2 ;
_I2 = l_“nzmg, I3 = mzm’l‘ and I, = m;_ml, but the four basic
invariants are not all independent since
@ Hilbert series

H(Q) = 1+292+29%+3q*+69°+...
1+¢°
= 7
A 22— (7)

I1, Io, I3, 14 not all independent is encoded in Hilbert series

1
H(a) # (1 g2)2(1 — q%)2

= 1+292+29°+39*+79° +... (8)




Model Il

(I3 — 1) cannot be written in terms of Iy, |5, (I3 + 14)

Syz
yzygy L
3la =171

(I3 = 14)% = (I3 + 12)% — 4lzlg = (I3 + 14)* — 41,

General polynomial in basic invariants

Pi(l1, 12,13 4+ 1) + (I3 — 14)P2(l, 12, 13 + 14)



Model Il

@ Ring C[my, m%, my, m3]Y® of all polynomials which are
invariant under G = U(1)

p =dimV —dimG, dmV =4, dmG =1

@ Knop’s Theorem

dimV > dp — dy >p

dimV:4, dD:7, dy :3,p:3
4>4>3




Model Il

@ Three couplings
G=U(1)

i¢
el

, and which transform under

9 )

@ 13 basic invariants

sk
m1m17
mom3,

3igp

3 *2
m2m3 ’

*3 4~ 2
m2 m37
mimyms,

* *
mim;ms,
mimsmj2,
mimim3.



Model Il

@ 35 relations between products I;l;, but now there are
relations among relations (syzygies)

4
l4lsl6l7 = 17110111

obtained by multiplying relations I4l7 = 21,1 and Islg = 121;9 OR
- - 2 -

by multlplyéng l4lg f 1712, lsl7 = Iflg and using lygly; = l1lol3, so

lalslgly = 121213 = 12130113

@ Hilbert series

(1 -a?)(1-a*)(L-a*)(1-a®)

H(a)



Model Il

@ Ring C[my, m3, my, m3, mg, m3]V() of all polynomials which
are invariant under G = U(1)

p =dimV — dimG, dmV =6, dmG=1

@ Knop’s Theorem

dimV > dp — dy >p

dmV =6, dp = 16, dN:10,p:5
6>6>5




Lepton and Quark Flavor Invariants

@ Use invariant theory to solve classification of quark and
lepton mass matrix invariants in the (i) seesaw model and
(i) SM + dim-5 operator (giving Majorana masses to
weakly interacting neutrinos)

@ Invariant structure in lepton sector is highly non-trivial with
many non-linear relations (syzygies) among the basic
invariants. Invariant structure depends on number of
generations n, of SM quarks and leptons and n/, of
neutrino singlets

@ Able to solve problem for low-energy EFT with ng = 2,3
and for high-energy seesaw theory with ng = ng = 2, 3.

@ Hilbert series obtained in cases of physical interest.
Number of independent invariants and syzygy structure
encoded by Hilbert series.

@ Algebraic structure of lepton invariants is much more
complicated than for quark invariants.



News About vs

What is new? for What is v?

@ Hilbert series of flavor invariants for Lagrangians (i) SM+
d = 5 operator and (ii) seesaw model determined. Syzygy
relations follow from Hilbert series.

@ Solution dependent on number of families. Cases of
physical interest: ng = 3 families of SM fermions and
n’g = 2, 3 right-handed neutrinos now solved.

@ Algebraic structure of lepton invariants is very complicated.



For the purposes of this talk:

Definition

Standard Model = nonrenormalizable EFT containing only SM
fields with gauge symmetry SU(3) x SU(2) x U(1) truncated
after unique d = 5 operator (higher dimensional operators

d =6, --- neglected)

Definition

Seesaw Model = renormalizable SU(3) x SU(2) x U(1) theory
with additional gauge-singlet neutrinos N




Flavor Matrices

@ High-Energy Seesaw Model

L = —US(Yu); QH —Df (Yo); QHT — EF (Ve ) LiHT

1
—N ( ),ijH—ENIC NS + h.c.

Mass matrices: , , , )

@ Low-Energy Effective Theory = SM + d = 5 operator

LEFT = _US (Y0 )y QH — DF (o); QHT — EF (Ve ) LHT

+%(LiH)( )ij (LjH) + h.c.

Mass matrices: , , ,



Quark Flavor Invariants

SU(ng)q xSU(ng)ye xSU(Ng)pe xU(1)2
(C |: ) 9 ) ]

— UUCT Z/[Q
— UDCT Z/[Q



Quark Flavor Invariants ng = 2

N
o
—~ P —~
~
—
~

m2 + m?
m3 +m2
m¢ + m?
m2m2 + m2m3 4 (m2 — m3)(m2 — m2) cos? ¢

mg + mg



Quark Flavor Invariants ng = 2

1
H(q) = 1 - 221 -2
p=>5: 4 masses, 1 mixing angles ¢

dmVv =16,  dimG =11

dy=0, dp=16

Knop’s Theorem
16 >16>5



Quark Flavor Invariants ng = 3

o~ o~ o~ o~ o~ o~ o~ o~~~



Quark Flavor Invariants ng = 3

1+q12
(1-02)2(1 - g*)3(1 - a%)*(1 - q?®)

General polynomial invariant

H(d) =

Pi+ |6_,6P2

2
since there is a syzygy (IG—G) =

p = 10: 6 masses, 3 mixing angles, 1 phase dckm
dimV = 36, dimG = 26

dy =12, dp =48

Knop’s Theorem
36 > 36 > 10



Lepton Flavor Invariants: EFT

C [ ’ ’ ’ }su(ng)Lxsu(ng)Ecxu(l)2
— Uge" Mg UL
— ULT UEC*
— U U,
Al ur
= — Ul Xe U
= — U Xs Uy



Lepton Flavor Invariants: EFT ng = 2

2o = (Xe)={ )
loo = (Xs5) = )
lao = (Xe7) =( )
lbo = (mMs*Xg' ms) = (ms Xg Ms*)
= | )= )
loa = (X57) = )
a2 (ms* Xg T ms Xg)
= )
If{ﬁ = (ms* Xg' ms Xg ms* ms)

—(ms* Xg" ms ms* ms Xg)
= )
— )



Lepton Flavor Invariants: EFT ng = 2

B 1+q®
B DT DI
@ Ring C[ms, m:, mg, m ]Fao of all polynomials which are

invariant under
Gravor = SU(2)L x SU(2)ge x U(1)?

p=dmV —dmG, dmV =14, dimG =38



Lepton Flavor Invariants: EFT ng = 2

@ Knop’s Theorem

dimV > dp — dy >p

dimV =14, dp =22, dy =8, p=6

p = 6 consists of 4 masses, 1 angle and 1 phase

14>14>6



Lepton Flavor Invariants: EFT ng = 3

o = (Xg)=( )
lo2 = (Xs5) =( )
lio = (Xe?) = )
oo = (XeXs) = ( )
loa = (Xs°) = )
lo = (Xe®) = )
o = (Xe?Xs) = ( )
lao = (Ms" Xg' ms Xg)
= )
ba = (XeXs%) = ( )
e = (X5°) ={ )



Lepton Flavor Invariants: EFT ng = 3

lso = (mMs* Xg' ms Xg?)
= { )
|4(1,j4:1) = (ms* Xg' ms ms* ms Xg)
+ (m5* Msg m5* XET Msg XE>
= { )
+ )
lgo = (ms* (Xg')? ms Xg?)

{
{



Lepton Flavor Invariants: EFT ng = 3

IE(:Z) = (I'T]s>|< XET Ms m5* Ms XE2>
+ (m5* Ms m5* XET Ms XE2 >
= { )
+ )
52 = (ms* (Xe)? ms ms” ms Xg?)
£ (ms* ms ms* (Xg " )?ms Xg?)
= { )

+( ) -



Lepton Flavor Invariants: EFT ng = 3

N(q)
H = —=
N(q) — 1+q6+ q8+ q10+8q12+7q14+9q16+10q18

+9q20+7q22+8q24+ q26+ q28+q30+q36

2 3 4 2
D(@) = (1-a?) (1-a*) (1-a) (1-a?) (1-a*)
@ Ring C[ms, m:, mg, m]Fao of all polynomials which are
invariant under
Gravor = SU(3)L x SU(3)ge x U(1)?

p =dimV — dimG, dimvV =30, dimG =18



Lepton Flavor Invariants: EFT ng = 3

@ Knop’s Theorem

dimV > dp — dy >p

dimV = 30, dp = 66, dy = 36, p = 12

p = 12 consists of 6 masses, 3 angles and 3 phases

30>302>12



Lepton Flavor Invariants: Seesaw Theory

= : — Ul Xe Uy
— Z/chT UL
— Z/{NCT Z/{Nc
= : — U X, U
g y — Z/{NCT Z/{Nc>'<
= s — Z/{NCT Z/[NC
= 5 — z/[;\flc Z/[Nc

= y —)Z/{NCT Z/{Nc>'<
—= —)Z/{NCT UNC*



12,00
lo.20
lo.02
lap0
l2.20
loao
lo.22
loo.a
l222
loa2
242
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Seesaw Theor

Xeg) = (mE*mE>

)
)= (m,im,),
)=
2

x
<

Xyn) = (M"M),

%) = (mememeime),

L Xe) = (m,'m,me’me)

X,?) = (m,'m,m,'m,) ,

L, Zy) = (m,m,fMM*)

Xn?) = (M"MM*M),

ZxZy) = (m,mgmem, fIMM*) |
M*Z,MZ,7) = (M*m,m,fMm,*m,T),
M*Z,MZyT)
M*m,m, Mm, *meTme*m, "),
M*Z,ZxM) — (M*ZxZ,M)
M*m,m, m,mg megm, M)

— (M*m,mgfmem, m,m, M),
(INZMZ,TM') = (M°Z,ZuMZ,T)
(MM*m,m,"Mm,*m,"M*)
—(M*'m,m,MM*Mm,*m, T},
(MZxMZx )

(M*m,mg tmem, tMm, *mg Tme*m,T) |
(

(

xX X

F EEE T ARARRIIRR

ZNZxMZ,TM*) — (M*ZxZyMZ,T)
MM*m,mefmem, fMm, *m, M)
— (M*m,mefmem,fMMIMm,*m, T,
(M°Z,ZxMZ,T) — (M*ZxZ,MZ,T)
(M*m,m,'m,memem, tMm,“m, ")
— (M*m,mgfmgm, fm,m,tMm,*m,T),
<M‘zNzx Mz;> - <M'Z;ZN sz> .
<M*ZVZXMZXT> - <M‘ZXZVMZ;>A
9



Lepton Flavor Invariants: Seesaw Theory ng = 2

M= T A e e o)

@ Ring C[m,,, m,,, mg,m., M, M*]SFaor of all polynomials
which are invariant under

Gravor = SU(2)L x SU(2)ge x U(2)ne x U(1)?

p =dimV — dimG, dmV =22, dimG =12



Lepton Flavor Invariants: Seesaw Theory ng = 2

@ Knop’s Theorem

dimV > dp — dy >p

dimV = 22, dp = 42, dy = 20, p = 10

p = 10 consists of 6 masses, 2 angles and 2 phases

22>222>10



Lepton Flavor Invariants: Seesaw Theory ng = 3

@) = 5o

D(q)’
N(CI) — 1+q4+ q6+ q8+"’+ q + q108+q110_’_q1147

D(@) = (1-a%)31-a"*1-q%*1-a®?(1-q'0)?(1-q"?)3
x(1—-g'")*(1-q*)

106

@ Ring C[m,,, m,,, mg,m., M, M*]SRacr of all polynomials
which are invariant under

Gravor = SU(3)L x SU(3)ge x U(3)ne x U(1)?

p =dimV — dimG, dimV =48, dimG =27



Lepton Flavor Invariants: Seesaw Theory ng = 3

@ Knop’s Theorem

dimV > dp — dy >p

dimV =48, dp = 162, dy = 114, p =21

p =21 9 masses, 6 angles and 6 phases

48 > 48 > 21



@ Lepton and quark mass matrix invariants studied in
low-energy SM effective theory and seesaw model.

@ Hilbert series found for cases of physical interest, namely
SM EFT with d = 5 operator Majorana neutrino masses for
ng = 2,3 and seesaw theory for ng = 2,3 generations of
SM fermions and ng = 2, 3 gauge-singlet neutrinos in
seesaw model.

@ Non-trivial relations (syzygies) between lepton invariants is
encoded in Hilbert series.

@ Structure of lepton flavor invariants is extremely non-trivial.



