

Ana M. Teixeira

Laboratoire de Physique Corpusculaire, LPC Clermont

"What is ν ?" INVISIBLES 2012 GGI, Firenze, 26 June 2012

Lepton Flavour Violation: LFV@2012

What we do know about Lepton Flavour Violation [experiment]

► Neutral leptons \rightsquigarrow neutrino oscillations $\nu_{\alpha} \nleftrightarrow \nu_{\beta}$

3 mixing angles (U_{PMNS}) - solar, atmospheric, reactor θ_{\odot} , θ_{\odot} , θ_{13} $[\Delta m_i^2]$

► Charged leptons ~> so far, only upper bounds ... on "possible" observables!

LFV process	Present bound	Future sensitivity
$\squareBR(\mu \to e\gamma)$	2.4×10^{-12}	10^{-13}
$ BR(\tau \to e\gamma) $	3.3×10^{-8}	10^{-9}
$ $ BR($ au ightarrow \mu \gamma$)	4.4×10^{-8}	10^{-9}
$BR(\mu \to 3e)$	1.0×10^{-12}	$\mathcal{O}(10^{-16})$
$BR(\tau \to 3e)$	2.7×10^{-8}	2×10^{-10}
$BR(\tau \to 3\mu)$	2.1×10^{-8}	8×10^{-10}
$\boxed{BR(\tau \to \ell P)}$	$(2-5) \times 10^{-3}$	

LFV process	Present bound	Future sensitivity
$CR(\mu - e, Ti)$	4.3×10^{-12}	$O(10^{-16(-18)})$
$CR(\mu-e,Au)$	7×10^{-13}	
$CR(\mu - e, AI)$		$\mathcal{O}(10^{-16})$
$BR(\bar{K}^0_L \to \mu e)$	4.7×10^{-12}	
$BR(B^+ \to K^+ \tau \mu)$	7.7×10^{-5}	
and many others!		

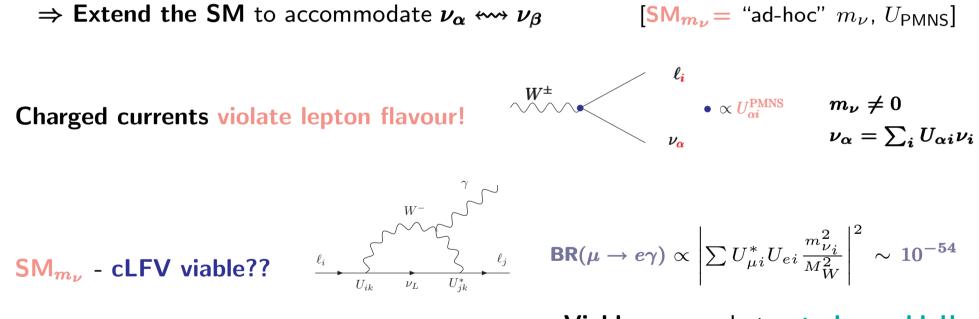
But a huge experimental commitment!

(Y. Kuno's review)

▶ Will cLFV be observed soon? How to accommodate such a signal? Which origin?

A first look at flavours in the SM

▶ Quark sector: flavour violated by charged current interactions $V_{ij}^{\mathsf{CKM}} W^{\pm} \bar{q}_i q_j$

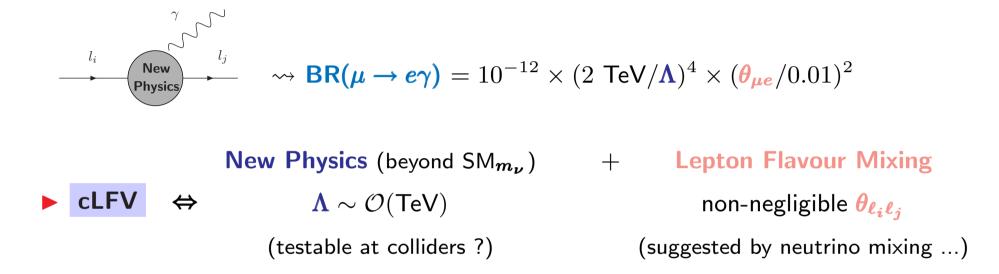

Observed in many oscillation/decay processes: very good agreement with SM!

SM QFV: Th vs Exp \Rightarrow strong constraints on "beyond SM" dynamics!

A first look at flavours in the SM

▶ Quark sector: flavour violated by charged current interactions $V_{ij}^{\mathsf{CKM}} W^{\pm} \bar{q}_i q_j$ Observed in many oscillation/decay processes: very good agreement with SM!

► Lepton sector: neutral & charged lepton flavours strictly conserved


Viable - yes... but not observable!!

"Observable" cLFV \Rightarrow New Physics in the lepton sector - beyond SM_{m_{ν}}

A few thoughts on lepton flavour violation

Huge experimental effort: MEG, PRISM/PRIME, SuperB, JPARC, ...

What is required of a SM extension to have "observable" cLFV?

- Many reasons support considering BSM O(TeV) scenarios of New Physics Hierarchy - Higgs FT problem; dark matter candidate; neutrino mass generation (?); ...
- Smallness of m_{ν} (and nature Majorana!?) \rightsquigarrow new mechanism of mass generation

Is Nature hidding clues of BSM in cLFV processes? How to unravel them?

cLFV beyond the SM - road map

Assume existence of New Physics (couplings, dynamics, states) and

Evaluate impact of New Physics for all possible signatures:

"SM" collider signals, cascade decays, EW precision tests, CP violation, anomalous moments (\vec{E} , \vec{B}), qFV, LFV, unitarity, dark matter...

at high-energies, high-intensities and astro/cosmo frontier

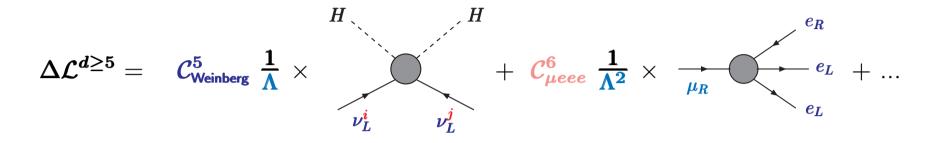
► All cLFV observables: $\ell_i \rightarrow \ell_j \gamma$, $\ell_i \rightarrow 3\ell_j$ (and angular distributions, T-, P-odd asymmetries), $\mu-e,N$ (different nuclei) ..., meson decays, ...

Synergy of observables - peculiar patterns, dominances - id/exclude candidates...

Effective Approach

cLFV: the effective approach

- ► At higher scales (TeV? M_{GUT}? M_{Planck}?) additional "heavy" degrees of freedom
- ▶ Integrate out "new heavy fields" (e.g. as possibly required to generate ν masses)
- ► Effective Lagrangian: "vestigial" (new) interactions with SM fields at low-energies $\mathcal{L}^{\text{eff}} = \mathcal{L}^{\text{SM}} + \text{ higher order (non-renormalisable) terms}$


$$\Delta \mathcal{L}^{d \geq 5} \sim \sum_{n \geq 5} \frac{1}{\Lambda^{n-4}} \mathcal{C}^n(g, Y, ...) \mathcal{O}^n(\ell, q, H, \gamma, ...)$$

Λ : mass scale of new physics

 C^{n} : dimensionless couplings - gauge couplings, Yukawas, loop factors $((4\pi)^{m})$, ... $\Rightarrow C^{n}_{ij}$: matrices in flavour space!

Oⁿ: "external legs" of the diagrams - SM fields only!

cLFV: the effective approach

▶ Dimension 5 $\Delta \mathcal{L}^5$ (Weinberg): neutrino masses ($\Delta L = 2$)

Common to all models with Majorana neutrinos [seesaws, radiative (Zee, RpV), ...]

Dimension 6 $\Delta \mathcal{L}^{6}$: kinetic corrections, **cLFV (dipole and 3-body)**, EW precision, t physics... Differs from model to model - used to **disentangle scenarios...**

▶ Higher order $\Delta \mathcal{L}^{7,8,..}$: ν (transitional) magnetic moments, NSI, ...

cLFV bounds and \mathcal{L}^{eff}

- ► Apply experimental bounds on cLFV observables to constrain $\sim \frac{1}{16\pi^2} C_{ij}^6 \frac{1}{\Lambda^2}$
- 1. hypothesis on size of "new couplings" and/or 2. hypothesis on scale of "new physics"
- ► Natural values of the couplings $C_{ij}^6 \sim \mathcal{O}(1)$ $BR(\mu \to e\gamma)|_{MEG} \Rightarrow \Lambda \lesssim 50 \text{ TeV}; \quad BR(\mu \to 3e) \Rightarrow \Lambda \lesssim 15 \text{ TeV}$ $BR(\tau \to \ell\gamma) \Rightarrow \Lambda \lesssim 3 \text{ TeV}; \quad BR(\tau \to 3\ell) \Rightarrow \Lambda \lesssim 1 \text{ TeV}$ [from La Thuile '12]

Natural scale? more delicate - well motivated: direct discovery, ...

- Example: discovery of type II seesaw (scalar triplet) mediator at LHC, $M_{\Delta} \sim 1$ TeV BR $(\mu \rightarrow e\gamma)|_{\text{MEG}} \Rightarrow |Y_{\mu\mu}^{\Delta\dagger}Y_{\mu e}^{\Delta} + Y_{\tau\mu}^{\Delta\dagger}Y_{\tau e}^{\Delta}| \lesssim 2 \times 10^{-3}$ [from 0707.4058]
- ► Can we reconstruct the New Physics Lagrangian? not likely...

We can **identify operators** (combining distinct observables) and learn about **flavour structure** (same observable, different flavours)

cLFV bounds and \mathcal{L}^{eff}

- ► Apply experimental bounds on cLFV observables to constrain $\sim \frac{1}{16\pi^2} C_{ij}^6 \frac{1}{\Lambda^2}$
- 1. hypothesis on size of "new couplings" and/or 2. hypothesis on scale of "new physics"
- ► Natural values of the couplings $C_{ij}^6 \sim \mathcal{O}(1)$ $BR(\mu \to e\gamma)|_{MEG} \Rightarrow \Lambda \lesssim 50 \text{ TeV}; \quad BR(\mu \to 3e) \Rightarrow \Lambda \lesssim 15 \text{ TeV}$ $BR(\tau \to \ell\gamma) \Rightarrow \Lambda \lesssim 3 \text{ TeV}; \quad BR(\tau \to 3\ell) \Rightarrow \Lambda \lesssim 1 \text{ TeV}$ [from La Thuile '12]

▶ Natural scale? more delicate - well motivated: direct discovery, ...

Example: discovery of type II seesaw (scalar triplet) mediator at LHC, $M_{\Delta} \sim 1$ TeV BR $(\mu \rightarrow e\gamma)|_{\text{MEG}} \Rightarrow |Y_{\mu\mu}^{\Delta\dagger}Y_{\mu e}^{\Delta} + Y_{\tau\mu}^{\Delta\dagger}Y_{\tau e}^{\Delta}| \lesssim 2 \times 10^{-3}$ [from 0707.4058]

► Can we reconstruct the New Physics Lagrangian? not likely...

Be prepared! - master "theoretical expectations" of model M376XV to falsify it!

Models of New Physics

But "theoretical expectations" is an oxymoron:

different theorists expect different New Physics at the TeV scale because it is

- motivated by the naturalness of the weak scale
- motivated by precision unification of couplings
- not motivated, but why not
- to their personal taste or prejudice!

[cf. Jäger, NA62 Workshop, '09]

Here: consider examples of (well motivated?) models with potentially observable cLFV implications! among many, many possibilities

► Models of New Physics and cLFV

cLFV: models of New Physics

New physics at TeV: Higgs fine-tuning - hierarchy problem Dark matter candidates Within experimental reach!

► SM extensions introduce new particles, new flavour violating couplings...

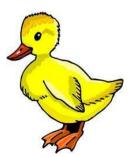
Recall: contributions to quark FV strongly constrained (dominated by SM) No "SM background" for cLFV contributions!

 $\bullet \text{ Examples:}$ $\bullet \text{ Examples:}$ $\bullet \text{ CLFV from } m_{\nu} \begin{cases} \text{SM seesaw (TeV scale) - e.g. type II} \\ \text{Extended frameworks - SUSY seesaw, GUTs, ...} \end{cases}$

► Find cLFV-footprints to probe the nature of the model!

cLFV-footprints: unveiling the NP model

▶ In the absence of cLFV (and other) signals:


⇒ constraints on parameter space (scale and couplings)

- CLFV observed: compare with peculiar features of given model
 - \Rightarrow predictions for low-energy cLFV observables (& CPV, $(g-2)_{\mu}$, ...)
 - \Rightarrow intrinsic patterns of correlations of observables
 - ⇒ possible high-energy (collider) cLFV observables; further correlations!
 - \Rightarrow If present, explore links to ν data and dark matter
- One keyword: synergy of observables !

cLFV-footprints: unveiling the NP model

- ► In the **absence** of **cLFV** (and other) **signals**:
 - ⇒ constraints on parameter space (scale and couplings)
- CLFV observed: compare with peculiar features of given model
 - \Rightarrow predictions for low-energy cLFV observables (& CPV, $(g-2)_{\mu}$, ...)
 - ⇒ intrinsic patterns of correlations of observables
 - ⇒ possible high-energy (collider) cLFV observables; further correlations!
 - \Rightarrow If present, explore links to ν data and dark matter
- One keyword: synergy of observables !

And at the end: "If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck."

cLFV-footprints: unveiling the NP model

► In the absence of cLFV (and other) signals:

⇒ constraints on parameter space (scale and couplings)

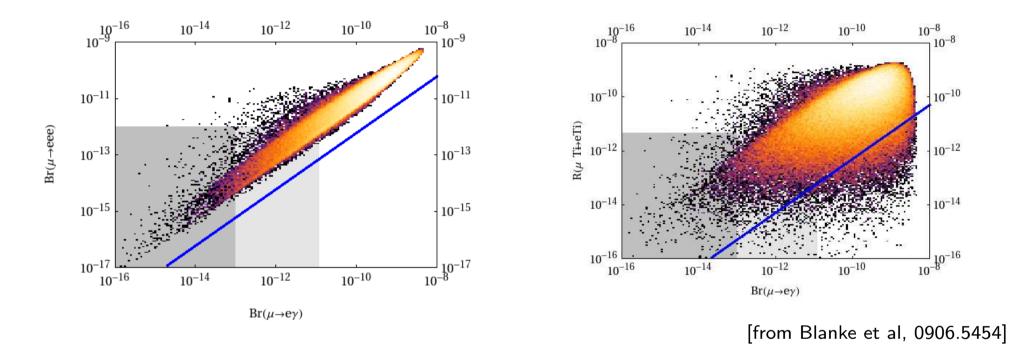
- CLFV observed: compare with peculiar features of given model
 - \Rightarrow predictions for low-energy cLFV observables (& CPV, $(g-2)_{\mu}$, ...)
 - ⇒ intrinsic patterns of correlations of observables
 - ⇒ possible high-energy (collider) cLFV observables; further correlations!
 - \Rightarrow If present, explore links to ν data and dark matter

One keyword: synergy of observables !

And at the end: "If it exhibits the observed pattern for cLFV observables, explains the issues of the SM, is in agreement with everything... it might be the correct New Physics model !"

Generic cLFV extensions

Example: cLFV in Little Higgs models (T-parity) [LHT]

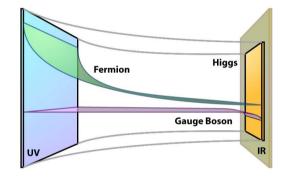

- **Higgs** is a **pseudo-Goldstone** boson of **spontaneously broken global symmetry**
- ▶ SU(5) \rightarrow SO(5) (@ TeV scale); augmented gauge group $[SU(2) \times U(1)]^2$

 \Rightarrow new (heavy) gauge bosons - A_H , Z_H , W_H^{\pm}

- ► T parity ⇒ prevents contributions to EW observables (tree-level)
 Lightest T-odd particle stable ↔ dark matter candidate
- T-odd sector: 3 doublets of mirror quarks and leptons (couple to SM via new gauge bosons)
- Only 10 new parameters in flavour sector, only SM operators relevant
- Sources of cLFV: couplings of leptons mirror leptons heavy gauge bosons

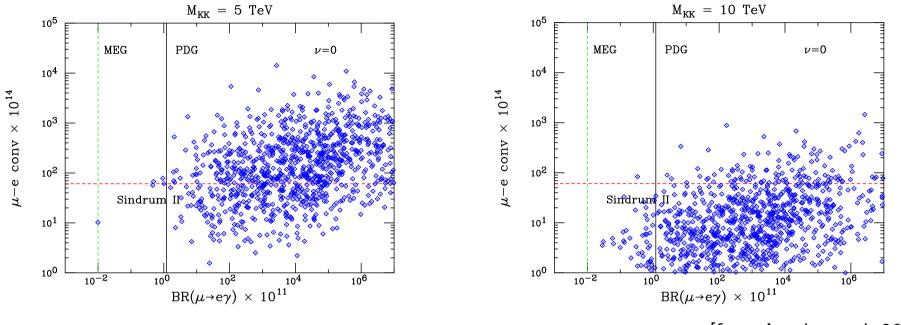
[Many people, ...]

cLFV in Little Higgs models (T-parity): an example



- **Strong correlation** of some cLFV observables: $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$
- ► Negligible **dipole** contributions
- Chirality structure of LHT $\leftrightarrow \Rightarrow$ Asymmetries for polarised τ and μ decays [1012.4385]
- ► Typically large contributions to cLFV ~> some fine-tuning required

hierarchical mixing matrices $(V_{H\ell}, V_{H\nu})$, quasi degenerate states, ...


Geometric flavour violation: RS warped extra dimensions

- ***** Embed **4dim space-time** into **higher dim AdS space** (extra dims compactified on orbifold)
 - ► Two branes (UV, IR) and bulk between; $M_{\text{TeV}} = M_{\text{Planck}}e^{-\pi L_x}$
 - ► Localise fields: **Higgs** close to **IR brane** (hierarchy problem);
 - e.g. SM fermions and gauge bosons on bulk
 - KK excitations of SM fields close to IR brane
 - ► Interactions of fields: overlap of wave functions

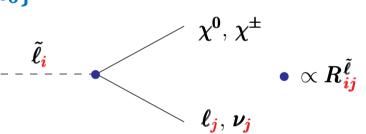
- ► An example Geometrical distribution of fermions in bulk: hierarchy in 4dim Yukawas for "anarchic" O(1) higher dim couplings
- Circumvent pheno issues: enlarge bulk symmetry (prevent violation of custodial SU(2)); additional "rescue" ingredients to avoid excessive FCNCs, protect EW precision observables, ...

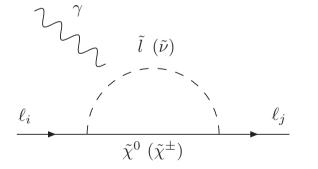
Geometric flavour violation: RS warped extra dimensions

[from Agashe et al, 0606021]

- **Electroweak precision observables:** $M_{KK} \ge 3$ TeV [models with custodial sym.]
- ▶ Purely geometrical description (quarks $|_{\varepsilon_K}$) $\Rightarrow M_{KK} \ge 20$ TeV $\stackrel{\text{some FT}}{\longrightarrow} M_{KK} \ge 3$ TeV
- ► cLFV processes mediated by KK-lepton excitations, new gauge fields cLFV: $M_{KK} \ge 10$ TeV (5 TeV only marginally compatible)
- ▶ Possible ways out... flavour structure (non-geometrical), increase gauge symmetry, ...

General Minimal Supersymmetric extension of the SM


► Supersymmetry is broken in Nature: different masses for SM particles and superpartners Generic soft-SUSY breaking terms introduce new sources of flavour violation (q and ℓ) non-diagonal masses for sleptons and sneutrinos $(M_{\tilde{\ell}}^2)_{ij} \neq 0!$ $(M_{\tilde{\nu}}^2)_{ij} \neq 0!$


► Misalignement of flavour and physical eigenstates: $R^{\tilde{\ell} \dagger} M_{\tilde{\ell}}^2 R^{\tilde{\ell}} = \text{diag}(m_{\tilde{\ell}_i}^2) \quad R^{\tilde{\ell}} \neq 1!$

 $\{\tilde{e}_L, \tilde{\mu}_L, \tilde{\tau}_L, \tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_R\} \iff \{\tilde{\ell}_1, \dots, \tilde{\ell}_6\}$

manifest in **neutral** and

charged lepton-slepton interactions

► Sizable contributions to **cLFV** observables $\propto \delta_{ij}^{\ell} = \frac{(M_{\ell}^2)_{ij}}{M_{SUSY}^2}$ "almost everything is possible - depending on the regime" ...

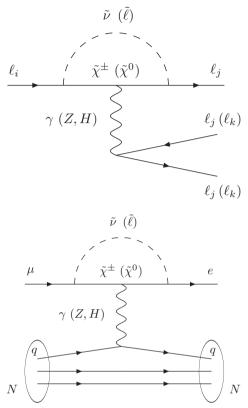
e.g.
$$\mathsf{BR}(\mu \to e\gamma) \sim \frac{\alpha}{4\pi} \left(\frac{M_W}{M_{\mathsf{SUSY}}}\right)^4 \sin^2 \theta_{\tilde{e}\tilde{\mu}} \left(\frac{\Delta m_{\tilde{\ell}}^2}{M_{\mathsf{SUSY}}^2}\right)^2$$

[... really a lot of people - a crowd!]

4th generation* - and beyond!

- Extend the SM via a fourth family* of quarks and leptons (Dirac or Majorana νs)
 *LHC excluded??
- Additional mixing angles and CP phases in the lepton sector
- ► Radiative and 3-body decays: all as large as current bounds (not simultaneously)
- ► Distinctive patterns for correlations of observables in SM4

[... still many people, decreasing?]


* * * * * * * * * *

And many other models ... LR symmetric, multiHiggs, Leptoquarks, ...

[... a whole population!]

Comparing predictions - finding fingerprints

	1			
ratio	LHT	MSSM (dipole)	MSSM (Higgs)	SM4
$\frac{BR(\mu^- \to e^- e^+ e^-)}{BR(\mu \to e\gamma)}$	0.02 1	$\sim 6 \times 10^{-3}$	$\sim 6 \times 10^{-3}$	0.06 2.2
$\frac{BR(\tau \to e^- e^+ e^-)}{BR(\tau \to e\gamma)}$	0.04 0.4	$\sim 1 \times 10^{-2}$	$\sim 1 \times 10^{-2}$	0.07 2.2
$\frac{BR(\tau^- \to \mu^- \mu^+ \mu^-)}{BR(\tau \to \mu \gamma)}$	0.04 0.4	$\sim 2 \times 10^{-3}$	$0.06\ldots 0.1$	0.06 2.2
$\frac{BR(\tau^- \to e^- \mu^+ \mu^-)}{BR(\tau \to e\gamma)}$	0.04 0.3	$\sim 2 \times 10^{-3}$	$0.02 \dots 0.04$	0.03 1.3
$\frac{BR(\tau \to \mu^- e^+ e^-)}{BR(\tau \to \mu \gamma)}$	0.04 0.3	$\sim 1 \times 10^{-2}$	$\sim 1 \times 10^{-2}$	0.04 1.4
$\frac{BR(\tau^- \to e^- e^+ e^-)}{BR(\tau^- \to e^- \mu^+ \mu^-)}$	0.8 2	~ 5	0.3 0.5	$1.5 \dots 2.3$
$\frac{BR(\tau^- \to \mu^- \mu^+ \mu^-)}{BR(\tau^- \to \mu^- e^+ e^-)}$	0.71.6	~ 0.2	510	$1.4 \dots 1.7$
$\frac{\mathrm{R}(\mu\mathrm{Ti} \rightarrow e\mathrm{Ti})}{\mathrm{BR}(\mu \rightarrow e\gamma)}$	$10^{-3}\dots 10^2$	$\sim 5 \times 10^{-3}$	$0.08\ldots 0.15$	$10^{-12}\dots 26$

[from Buras et al, 1006.5356]

Most models predict/accommodate extensive ranges for observables

(no new physics yet discovered, only bounds on new scale!)

But... Peculiar patterns to correlation of observables (model-specific)

Correlations might allow to disentagle models of cLFV in the absence of discovery of new states! ... or inability to identify mechanism of LFV!

 \blacktriangleright cLFV from ν mass generation mechanisms - seesaw

cLFV and the "SM" seesaw mechanism

★ Seesaw mechanism: explain small ν masses with "natural" couplings via new dynamics at "heavy" scale

Seesaw	$ ilde{\mathcal{C}}_5$	New Physics scales	cLFV- $\tilde{\mathcal{C}}_6$	cLFV obs
Fermionic singlet (type I)	$Y_N^T \frac{1}{M_N} Y_N$	$Y_N \sim \mathcal{O}(1) \Rightarrow M_N \approx 10^{15} \text{GeV}$ $M_N \sim M_{\text{GUT}}???$	$\left \left(Y_N^{\dagger} \frac{1}{M_N^{\dagger}} \frac{1}{M_N} Y_N \right)_{\alpha\beta} \right _{\alpha\beta}$	not enough (?)
Fermionic triplet (type III)	$Y_{\Sigma}^T \frac{1}{M_{\Sigma}} Y_{\Sigma}$	$M_{\Sigma} \gg {\sf TeV}$	$\left(\left(Y_{\Sigma}^{\dagger} \frac{1}{M_{\Sigma}^{\dagger}} \frac{1}{M_{\Sigma}} Y_{\Sigma} \right)_{\alpha \beta} \right)_{\alpha \beta}$	not enough (?)
Scalar triplet	$AV_{\Lambda} \stackrel{\mu}{\longrightarrow}$	$Y_\Delta \sim \mathcal{O}(1) \Rightarrow M_\Delta pprox ext{TeV}$	$-\frac{1}{V}$ V^{\dagger}	maybe large
(type II)	$4Y_{\Delta} \frac{\mu_{\Delta}}{M_{\Delta}^2}$	$(\mu_\Delta \ll 1!)$	$\frac{1}{M_{\Delta}^2} Y_{\Delta\alpha\beta} Y_{\Delta\gamma\delta}^{\dagger}$	constrain model!

cLFV in type II seesaw: predictive (correlations), observable cLFV!

- ▶ cLFV bounds \Rightarrow constraints on Y_{Δ} and M_{Δ} ; $\mu \rightarrow eee$: $Y_{\Delta} \sim O(1) \Rightarrow M_{\Delta} \leq 300$ TeV
- ▶ If $M_{\Delta} \sim \text{TeV}$ (smaller Y_{Δ}), possible discovery at LHC
- ► "Inverse seesaw": similar decorrelation between m_ν suppression and cLFV large BRs (?) ... and many other variations!

[from 0707.4058]

CLFV from m_{ν} in extended frameworks

The supersymmetric seesaw(s) and cLFV

★ Embed seesaw in the framework of (otherwise) **flavour-conserving SUSY models**

(cMSSM, supergravity-inspired, etc)

	Right-handed ν	\rightsquigarrow	$ ilde{ u}_R$	[Type I]
► In addition to	Scalar triplets	\rightsquigarrow	"triplinos"	[Type II]
	Fermion triplets	\rightsquigarrow	"s-triplets"	[Type III]

with same couplings, same interactions!

But! preserve nice SUSY feature of "gauge coupling unification"

"gauge non-singlets" below $M_{\mathsf{GUT}} \rightsquigarrow$ running of g_i

 \Rightarrow embed superfields into complet GUT (e.g. SU(5)) representations

- ► SUSY introduces degrees of freedom active at "seesaw" scales ⇒ indirect probe of the seesaw!
- ► Even if correlations, etc... difficult to disentangle from "generic" MSSM cLFV... On the other hand ⇒ some scenarios are falsifiable!

[... and many many many people!]

What is so special about the SUSY Seesaw?

► To accommodate data on ν -oscillations, Y^{ν} cannot be diagonal!

cLFV originates from large size and non-trivial structure of Y^{ν} !

► Even for universal soft-breaking terms @ M_{GUT} (SUSY flavour problem), **RGE running of** Y^{ν} from M_{GUT} down to **Seesaw scale** M_R induces flavour-violating terms in slepton soft-breaking masses

▶ If Majorana
$$\nu$$
s, if seesaw scale $\sim O(10^{15} \text{ GeV}) \rightsquigarrow Y^{\nu}$ can be $O(1)$

Large flavour violation in slepton sector

$$\begin{split} (\Delta m_{\tilde{L}}^2)_{ij} &= -\frac{1}{8 \pi^2} \left(3 \, m_0^2 + A_0^2 \right) \left(Y^{\nu \dagger} \, L \, Y^{\nu} \right)_{ij} \\ L &= \log(M_{\text{GUT}}/M_R) \\ \\ & \mathsf{BR}(\ell_i \to \ell_j \gamma) \propto \left| \left(Y^{\nu \dagger} \, \log \frac{M_{\text{GUT}}}{M_R} \, Y^{\nu} \right)_{ij} \right|^2 \end{split}$$

Large SUSY contributions to cLFV observables, within experimental reach!

One source of flavour violation in the lepton sector

► mSUGRA-like SUSY seesaw: Y^{ν} unique source of FV

(all observables strongly related)

 \star low-energies: $l_j
ightarrow l_i \gamma$, $l_j
ightarrow 3l_i$, $\mu - e$ in Nuclei

 \Rightarrow large rates potentially observable!

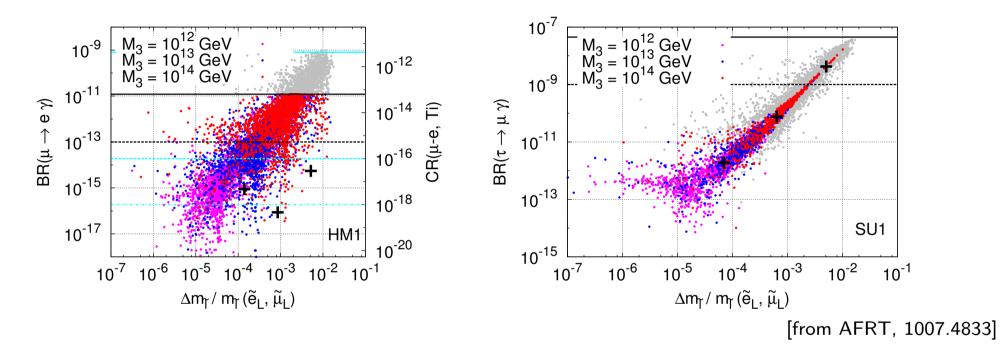
* high-energies [LHC]: study charged sleptons from $\chi_2^0 \rightarrow \ell^{\pm} \ell^{\mp} \chi_1^0$ decays

 $\Rightarrow \text{ sizable } \tilde{e} - \tilde{\mu} \text{ mass differences, new edges in } m_{\ell\ell} : \chi_2^0 \rightarrow \begin{cases} \tilde{\ell}_L^i \,\ell_i \\ \tilde{\ell}_R^i \,\ell_i \\ \tilde{\ell}_X^j \,\ell_i \end{cases} \\ \Rightarrow \chi_1^0 \,\ell_i \,\ell_i \end{cases}$

*** high-energies - lepton colliders:** cLFV in $e^{\pm}e^{-} \rightarrow e^{\pm}\mu^{-} + E_{\text{miss}}^{T}$

 \Rightarrow possibily cLFV-seesaw golden channel $e^-e^- \rightarrow \mu^-\mu^- + 2\chi_1^0$

► If LFV indeed observable (large BRs & CR),


expect interesting slepton phenomena at colliders!

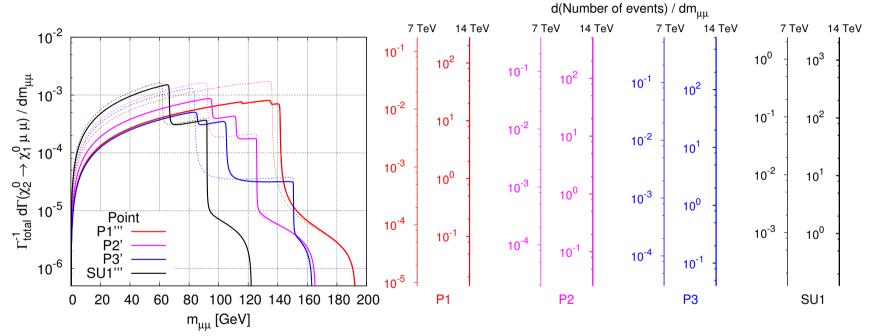
... strengthen / disfavour seesaw hypothesis !

[... a large group!]

LFV at low- and high-energies: general overview

cMSSM: CMS point HM1 {180, 850, 0, 10, +1} and ATLAS point SU1 {70, 350, 0, 10, +1} Seesaw: general \boldsymbol{R} (vary $|\theta_i|$, $\arg \theta_i \in [-\pi, \pi]$), $\boldsymbol{M}_{\boldsymbol{R_3}} = 10^{12,13,14}$ GeV; $\boldsymbol{\theta_{13}} = 0.1^{\circ}$

► If type-I seesaw and SUSY ⇒ LFV observables within experimental reach


HM1: $\Delta m(\tilde{e}_L, \tilde{\mu}_L)|_{LHC} \sim 0.1 - 1\% \rightsquigarrow BR(\mu \rightarrow e\gamma)|_{MEG}$

SU1: $\Delta m(\tilde{e}_L, \tilde{\mu}_L)|_{LHC} \sim 0.1 - 1\% \Rightarrow BR(\tau \rightarrow \mu\gamma) \gtrsim 10^{-9}$ (SuperB)

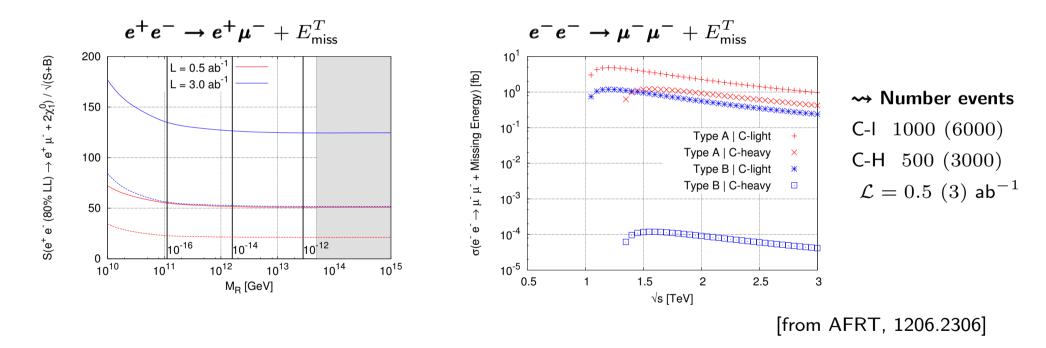
 \Rightarrow Hint towards scale of new physics ($M_{N_3} \gtrsim 10^{13}$ GeV)

LFV at the LHC: di-lepton distributions in χ_2^0 decays Impact of type-I SUSY seesaw for di-lepton distributions $\chi_2^0 \rightarrow \tilde{\ell}_{L,R}^i \ell_i \rightarrow \chi_1^0 \ell_i \ell_i$ Seesaw: R = 1, $P_{M_P}^{\prime(\prime\prime\prime)} = \{10^{10}, 5 \times 10^{10} (10^{12}), 5 \times 10^{13} (10^{15})\}$ GeV, $\theta_{13} = 0.1^\circ$

[from AFRT, 1007.4833]

- ► Displaced $m_{\mu\mu}$ and m_{ee} edges $(\tilde{\ell}_L) \Leftrightarrow$ sizable $\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}} (\tilde{e}_L, \tilde{\mu}_L)$ [\rightsquigarrow flavour non-universality (?)]
- Appearance of new edge in $m_{\mu\mu}$: intermediate $\tilde{\tau}_2$

[~> flavour violation!]


• LFV at the LHC: $\chi_2^0 \rightarrow \tilde{\tau}_2 \mu \rightarrow \chi_1^0 \mu \mu$

cLFV at Linear Colliders

★ Seesaw-induced cLFV final states from $e^{\pm}e^{-}
ightarrow e^{\pm}\mu^{-}$ +missing energy _____

▶ Potential backgrounds from $SM_{m_{\nu}}$ & $SUSY_{m_{\nu}}$ charged currents ... explore electron and positron beam polarisation!

► Statistical significance of "raw" signal ⇒ feasible observation of events!

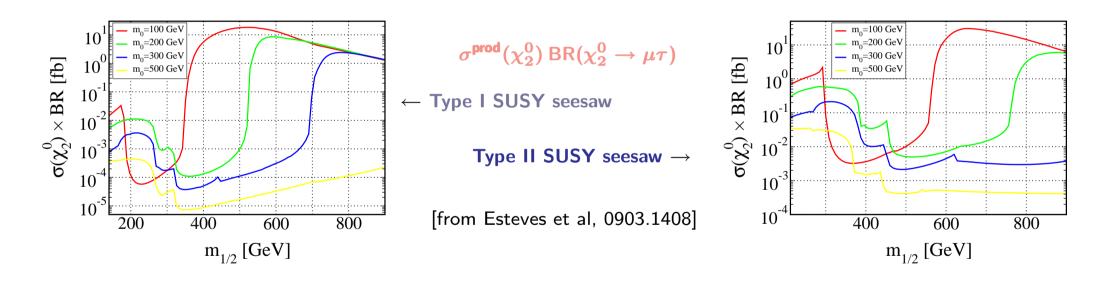
★ Golden channel (?) : $e^-e^- \rightarrow \mu^-\mu^-$ + missing energy

► Small background... ⇒ signal clear probe type I of SUSY seesaw

(if unique source of LFV!)

 e^{\pm}

ĩ€±


 ℓ_i^-

Beyond the type I SUSY seesaw: examples ...

★ Type II SUSY seesaw

• More predictive (up to overall scale) - $(\Delta m_{\tilde{L}}^2)_{ij} \propto m_{\nu\alpha}^2 U_{\alpha i} U_{\beta j}^*$

correlations between cLFV observables controled by ν -parameters !

▶ Non-singlet SUSY seesaw: "force" gauge coupling unification - embed into GUTs, etc

Type III SUSY seesaw, Inverse SUSY seesaw, hybrid...

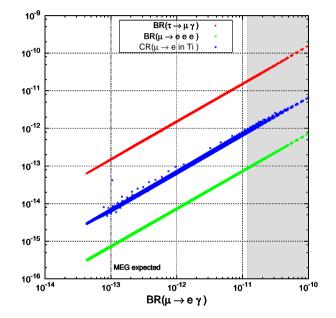
► Distinctive prospects for cLFV at colliders

[... really large community!]

^{[...} large community!]

Beyond the type I SUSY seesaw: examples ...

★ Supersymmetric Grand Unified Theories


- ▶ Reduce arbitrariness of Y^{ν} [CKM- and U_{PMNS} -inspired patterns... Symmetries...]
- SO(10) type II example

 (leptogenesis motivated)
 highly correlated cLFV observables!

[from Calibbi et al, 0910.0377]

correlated CPV and FCNCs observables

in lepton and hadron sectors!

[from Buras et al, 1011.4853]

Overview

Flavour violated in neutral leptons (and quarks)... only logical and natural that charged lepton flavour also violated in Nature! and great! New Physics beyond SM + massive vs!

► Many (interesting) models predict cLFV - some in relation with *ν*-mass generation cLFV can play a unique rôle in disentangling models, info on *ν*-dynamics "prefer" those with "some tension" between theory and near future data!

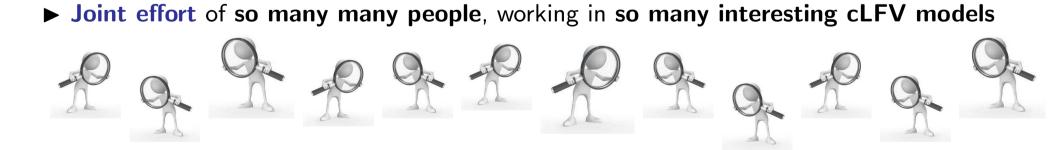
► Nature has been "kind" - large Chooz angle... maybe $0\nu 2\beta$? or NP at LHC?

While waiting: explore new avenues, as many as possible! (here - just "tip of iceberg!")
different models, cLFV observables, correlations...

and "indirect links" to other problems: dark matter, supernovae, BAU...

Overview

Flavour violated in **neutral leptons (and quarks)**...


only logical and natural that charged lepton flavour also violated in Nature! and great! New Physics beyond SM + massive ν s!

Many (interesting) models predict cLFV - some in relation with ν-mass generation cLFV can play a unique rôle in disentangling models, info on ν-dynamics "prefer" those with "some tension" between theory and near future data!

▶ Nature has been "kind" - large Chooz angle... maybe $0\nu 2\beta$? or NP at LHC?

While waiting: explore new avenues, as many as possible! (here - just "tip of iceberg!") different models, cLFV observables, correlations...

and "indirect links" to other problems: dark matter, supernovae, BAU...

Overview

Flavour violated in neutral leptons (and quarks)... only logical and natural that charged lepton flavour also violated in Nature! and great! New Physics beyond SM + massive vs!

► Many (interesting) models predict cLFV - some in relation with *ν*-mass generation cLFV can play a unique rôle in disentangling models, info on *ν*-dynamics "prefer" those with "some tension" between theory and near future data!

▶ Nature has been "kind" - large Chooz angle... maybe $0\nu 2\beta$? or NP at LHC?

While waiting: explore new avenues, as many as possible! (here - just "tip of iceberg!") different models, cLFV observables, correlations...

and "indirect links" to other problems: dark matter, supernovae, BAU...

"we will come up with a theory **And then one day** ... **cLFV is observed** and *so simple, so beautiful, so elegant - that it can only be true!*" One day... - maybe 2013?

Delivered to some British castle via a very Invisible g³-mail?

... "The new Standard Model of Particle Physics" ...

[g³-mail : three-ghost mail (triplet, s-triplet, triplino representation!)]