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production 
region 

detection 
region 

baseline L 

factorization 
If oscillation effect in  
production/detection   
regions can be neglected  

ni 
S D 

Production propagation and  
detection can be considered  
as three independent processes  

rD , rS  << ln 



  

 A(ne) = <ne|n (x,t)> = cos2q g1(x – v1 t)  + sin2q g2(x – v2t) e if 

Amplitude of  (survival) probability 

 P(ne) =    dx |<ne|n (x,t)>|2 =  
 
=  cos4q + sin4q + 2sin2q cos2q cos f   dx g1(x – v1 t) g2(x – v2t)  

Probability in the moment of time t 

depth of  
oscillations 

 4 p E 

 Dm2 

  f =              =  

If g1 = g2    

 P(ne) = 1 - 2 sin2q cos2q (1 - cos f)  =  1 - sin2 2q sin2 ½f  

Dm2  x 
   2E 

2 p x 
  ln  

ln = Oscillation length 

interference 

! 

If    dx| gk|
2 = 1    ! 

+ 
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production 
region 

ni 

S 

p p 

xS, tS 

m In most of the cases precise  
form of the shape factor  and 
therefore details of its 
formation  are  not  important 

of partial 
separation of   
wave packets 

production region  
is comparable with  
oscillation length 

It is important 
in the cases of  

Solving the wave problem:  
pion moves and emits 
neutrino waves 

Integration of the neutrino 
waves  emitted from space-time 
points where pion lives 



  

 gi(x,t) e    =   dp  dxS dtS  M yp (xS, tS) ym (xS, tS) exp[ip ( x - xS) – iEi (t – tS)]  

y p (xS, tS) = exp[ –½GtS] gp(xS, tS) exp[ -ifp(xS, tS)] 

E. Akhmedov, D. Hernandez, A.S. Pion decay: 

integration over  
production region 

ifi 

part of matrix  
element 

y m (xS, tS) = gm(x’ - xS, t’ - tS) exp[ ifm (x’ - xS , t’ - tS)] 

gp(xS, tS) ~ d (xS - vptS) 

Pion wave function: 

plane wave  
for neuutrino 

determined by detection of muon 

Muon wave function: 

usually: 

If muon is not detected: plane wave  phase factor   
disappears from  probability 

! 



  

L lp  

x 

p n 

D. Hernandez, AS 

p 

target decay tunnel detector absorber 

E. Kh Akhmedov,  
D. Hernandez, AS  
arXiv:1110.5453 

s = lp  
The length of the  n wave packet 
emitted in the forward direction 

g = g0 exp                (x - s)  P(x, [0, s])  Shape factor 
      G 
2(v - vp) 

Doppler effect 

v – vp  
   vp 

box function 

n wave packet 

-shorten  

frequency increases 



  

P = P +                             [cos fL +  K] 
  sin22q  
2(1 + x2) 

  1   
1 – e -Glp  

K = x sin fL - e    [cos(fL - fp) - xsin (fL - fp)] 
-Glp  

L 

lp  

fL = Dm2 L/2E fp = Dm2 lp/2E 

x = Dm2/2EG   

decoherence parameter 

x 

Equivalence 

Coherent n-emission 
- long WP  

p n 

Incoherent n-emission 
- short WP  

x 

D. Hernandez, AS 

MINOS:  x ~ 1 
b-beam ? 

DEij
   ~ G   

for point-
like pion 



  x 

t 

detector 

pion 

target 

XD 

p 

m 

n 
lp 

detector 

Coherent emission  
of neutrino by pion  
along its trajectory 

XT Slopes are determined   
by group velocities 
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detector 

pion 

target 

XD 
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n 

lp 

detector 

If pion ``pointlike – result  
coincides with usual incoherent  
computations; otherwise –  
integration – corrections ~ sp 

XT 

integration 
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d Y 
d t   

i         =  H Y  

M M+ 
  2E 

H =             + V(t) 

         ye  

Y =   ym 

          yt  

M  is the mass matrix 

V = diag (Ve ,  0,  0) – effective potential 

M M+  = U Mdiag
2 U+  

 Mdiag
2 =  diag (m1

2,  m2
2,  m3

2)  

Mixing matrix  
in vacuum 

If loss of coherence  
and other complications  
related to WP picture 
are irrelevant – 
`` point-like’’ picture 

E ~ p +  
  m2 
  2E generalization 

with 
mater 
effects 



  
         Re ne

+ nt,  
P =    Im ne

+ nt,      
         ne

+ ne - 1/2  

B =        (sin 2qm,  0,  cos2qm)  
2p  
 lm 

     =  ( B x  P )  
d P  
dt 

Coincides with equation for the electron  
spin  precession in the magnetic field 

y =  
ne  
nt,  

Polarization vector: 

 P =  y+ s/2 y  

Evolution equation:  

i         =  H Y  
d Y 
d t   

d Y 
d t   i         =  (B s ) Y  

Differentiating  P and using equation of motion 



  

n  = P =   
(Re ne

+ nt,   Im ne
+ nt,   ne

+ ne - 1/2)  

B =        (sin 2qm,  0,  cos2qm)  
2p  
 lm 

     =  ( B x  n )  
dn  
dt 

Evolution equation 

f  = 2pt/ lm  - phase of oscillations 

P = ne
+ne = nZ + 1/2 = cos2qZ/2 probability to find   ne  

ne  

nt,  



  



  



  



  



  



  



  



  



  



  

  

difference of  potentials   

for  ne   nm    

ne 

ne e 

e 

W 

V =  Ve - Vm =    2 GF ne  

Elastic forward  
scattering 

potentials 

Ve,   Vm  

L. Wolfenstein, 1978 

Refraction index: 

n - 1 =  V / p 

~ 10-20   inside the Earth 
< 10-18    inside the Sun 

V ~ 10-13 eV inside the Earth  

n – 1 = 

Refraction length: l0 =  
  2p   

  V 

at low energies Re A >> Im A  
inelelastic interactions can be neglected  

for  E = 10 MeV 



At low energies: neglect the inelastic scattering and absorption 
effect is reduced to the elastic forward scattering  (refraction)   
described by the potential V: 

y   is the wave function  
of the  medium  

Hint =           n gm(1 - g 5) n  e gm(1 - g5) e GF 

 2 

Hint(n) =  < y | Hint | y >  =  V  n n    

ne 

ne e 

e 

W 

< e g  e> = ne v 

< e g g5 e >  =  ne le  

-  the electron number density   

- averaged polarization vector of  e 

For  unpolarized  
medium at rest: 

V =   2 GFne  

CC interactions with electrons 

derivation 

< e g0 (1 - g 5 ) e>  = ne 



  

q 

Mixing angle determines flavors  
(flavor composition) of the eigenstates  

n1m,   n2m  

H =  H0  + V 
Effective 
Hamiltonian 

Eigenstates depend  
on ne, E  

Eigenvalues 

H0 

n1,   n2  

m1
2/2E,  m2

2/2E  H1m,  H2m 

nm  

ne 

n2m 

n1m 

n2 

n1 

qm  

nmass  

nH  

q 

qm  

instantaneous 

nf  



  

M2 

2E 

dnf 

dt 
 i         =   Htot nf         nf = 

ne 

nm 

-          cos 2q  + Ve                  sin 2q                        

 

 

             sin 2q                              0 

  H tot =  H vac + V  is the total Hamiltonian 

H vac  = is the vacuum (kinetic) part 

Ve
       0 

0       0 
V = matter part 

Dm2 

4E 

Dm2 

2E 

Dm2 

4E 
i                     =  

d 

dt 

ne  

 

 

nm 

ne  

 

 

nm 

Htot 
Ve=    2 G Fne 



  

sin22qm = 
sin22q 

( cos2q - 2EV/Dm2)2    +  sin 22q 

sin22qm = 1 

Mixing is maximal  if 

 V   =             
    cos 2q 

Dm2 

 2E 
He =  Hm 

Difference of  the eigenvalues  

H2m - H1m =  
Dm2 

 2E ( cos2q - 2EV/Dm2)2  + sin22q 

Diagonalization of the Hamiltonian: 

V =  2 GF ne  

Resonance  
condition 



  

sin2 2qm   = 1  

Flavor mixing  is maximal 

In resonance: 

ln  =  l0 cos 2q 

Vacuum 
oscillation  
length 

Refraction 
length 

~ ~ 

ln / l0  

sin2 2qm 

sin22q13  = 0.08  sin22q12  = 0.825  

n n 

~ n E 

Resonance width:    DnR =  2nR tan2q 

Resonance layer:      n =  nR +/- DnR   



  
V. Rubakov, private comm.  

N. Cabibbo, Savonlinna 1985 

H. Bethe,  PRL  57 (1986) 1271 

Dependence of the neutrino eigenvalues  
on  the matter potential (density) 

 ln / l0 

 ln / l0 

Him 

n2m 

n2m 

n1m 

nm 

ne 

n1m 

ne 

nm 

resonance 

sin2 2q = 0.825 

sin2 2q = 0.08 

 ln 

 l0 
2E V 

Dm2 
= 

Large  
mixing 

Small  
mixing 

 ln 

 l0 
= cos 2q 

Crossing point - resonance 
  -   the level split is minimal 
  -  the oscillation length is maximal 



  

EL EH E 

Normal mass hierarchy 

Resonance region High energy range 
0.1 GeV 6 GeV 



  

n2m 
x 

n1m 

Constant density medium 

Mixing changed 

phase difference changed 

H0  H =  H0  +  V 

  eigenstates  
  of H 

 nk  nmk   

  eigenstates  
  of H0 

 q  qm (n)  

   qm = p/4  

Resonance - maximal mixing in matter –  
oscillations with maximal depth 

Resonance condition:  

Dm2 

2E 
V =  cos2q 



  

 P(ne -> na)  =  sin22qm sin2 
pL  

 lm 

Oscillation  
probability 
constant density 

Amplitude of  
oscillations 

half-phase f 

oscillatory factor 

 - mixing angle in matter 
lm(E, n )  

qm(E, n )  

– oscillation length in matter 

sin 22qm = 1 

f =  p/2  +  pk  

MSW resonance condition 

qm  q 

lm  ln 
In vacuum: 

lm = 2 p/(H2m – H1m) 

Maximal effect: 



ln =  
  4p E 

  Dm2 
Oscillation  
length in vacuum 

Refraction  
length 

l0 =    2p   

 2 GFne 
- determines the phase produced 
  by interaction with  matter 

lm 

E 

l0  

ER 

Resonance energy: 

ln (ER) = l 0 cos2q 

ln /sin2q ln =  l 0  /cos2q)  (maximum at 

~ ln   

  2p 

H2 - H1   
lm =  



  

Constant density 



  

Constant density 

Source Detector 

F0(E) F(E) 

n 
ne 

layer of length L 

ne 

For neutrinos propagating 
in the mantle of the Earth 

Depth of oscillations determined by  sin22qm  
 as well as the oscillation length,  lm 
depend on neutrino energy 



  

F (E) 
F0(E) 

E/ER E/ER 

thin layer thick layer 

k = pL / l0  

Large mixing  sin22q = 0.824 

n 

k = 1 k = 10 

Layer of length L 

sin2 2qm 



  

F (E) 
F0(E) 

E/ER E/ER 

thin layer thick layer k = 1 k = 10 

Small mixing  sin22q = 0.08 

sin2 2qm 



  

Varying density 



  

dnf 

dt 
 i         = Htot nf         nf = 

ne 

nm 

    0                                         

 

                    H2m - H1m                

  H tot =  H tot(ne(t)) 

dqm
 

dt i                       =  
d 

dt 

n1m  

 

 

n2m 

In non-uniform medium the Hamiltonian  
depends on time:   

Inserting  nf  = U(qm) nm 
nm = 

n1m 

n2m 

dqm
 

dt 
-i 

i 
n1m  

 

 

n2m 

off=diagonal 
terms imply  
transitios 
 n1m          n2m 

qm = qm(n e(t)) 

if dqm
 

dt 
<< H2m - H1m  

off-diagonal elements can be neglected 
no transitions between eigenstates 
propagate independently 
  



  

dqm
 

dt 
Adiabaticity condition << H2m - H1m  

Crucial in the resonance layer:  
-  the mixing  changes fast  
-  level splitting is minimal 

DrR    >  lR 

 lR = ln / sin2q  

DrR = nR / (dn/dx)R  tan2q  

External conditions  
(density) change slowly  
the system has time to  
adjust  them   

transitions between  
the neutrino eigenstates  
can be neglected 

n1m   n2m  The eigenstates 
propagate independently 

if vacuum mixing is small 

If  vacuum mixing is large,  the point  
of maximal adiabaticity violation  
is shifted to larger densities 

n(a.v.) ->  nR
0   >  nR 

nR
0 =  Dm2/ 2  2 GF E 

oscillation length in resonance 

width of the res. layer 

Shape factors of the 
eigenstates do not change 



  

dqm
 

dt 

Adiabaticity 

condition:  

k > 1 

H2m - H1m  
k =  

most crucial in the resonance where 
the mixing angle in matter changes fast kR  =  

DrR 

 lR 

Explicitly: 
Dm2 sin22q hn 

  2E cos2q 
kR  =  

 lR = ln/sin2q 

 is the width of the resonance layer DrR = hn tan2q 

 hn  = 
   n 

dn/dx 
is the scale of density change  

is the oscillation length in resonance 



  

n2m 

x 

n1m 

resonance 

if density  
changes  
slowly 

- the amplitudes of the wave packets do not change 
- flavors of the eigenstates follow the density change  



  

Initial state:   n(0) = ne = cosqm
0 n1m(0) + sinqm

0 n2m(0) 

Adiabatic evolution  
to the surface of  
the Sun (zero density):  

n1m(0)   n1   

n2m(0)   n2  

Final state:   n(f) =   cosqm
0 n1  + sinqm

0 n2  e 
-if  

Probability to find ne  
averaged over  
oscillations 

P = |< ne| n(f) >|2  =  (cosq cosqm
0)2  +  (sinq sinqm

0)2 

 P = sin2q  +  cos 2q cos2qm
0 

=  0.5[ 1 +  cos 2qm
0 cos 2q ]   

Sun, Supernova From high to low densities 

Mixing angle in 
matter in initial 
state 
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distance 

distance 

Oscillations 

Adiabatic conversion 



  

 ~  | H2m - H1m |                

n1m                n2m 

If density ne(t) changes fast   
dqm

 

dt 

the off-diagonal terms in the Hamiltonian can not be neglected  

transitions  

Admixtures of                in a given neutrino state  change n1m   n2m 

k  ~ 1 

``Jump probability’’ 

H 

n 

DH 

P12= e 

H2m 

H1m 

DH 

 En 

En  ~ 1/hn  is the energy associated 
to change of parameter 
(density) 

P12= e 
-pkR/2 

Landau-Zener 

penetration under barrier: 

SN shock waves 



  

Pure adiabatic conversion Partialy adiabatic conversion 

nm 

n e 



  

Vacuum or uniform medium 
 with constant  parameters 

Non-uniform medium or/and medium  
with varying in time  parameters 

Phase difference increase 
between the eigenstates 

Change of  mixing in medium =  
change of flavor of the eigenstates 

Different  
degrees of  
freedom  

In non-uniform medium:  
interplay of both processes 

f qm 



  

Can be resonantly  
enhanced in matter 



  



  

d Y 
d x   

i           = H Y  

M M+ 
  2E H =             + V(x) + … 

         ye  

Y =   ym 

          yt  

M  is the mass matrix 

V = diag (Ve ,  0,  0) – effective potential due to  
                                  scattering on electrons                                         

M M+  = U Mdiag
2 U+  

 Mdiag
2 =  diag (m1

2,  m2
2,  m3

2)  

mixing matrix  
in vacuum 

Approximate decoupling  
of some states 
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Continuity:  
neutrino and antineutrino semiplanes  
normal and inverted hierarchy 

Oscillations (amplitude of oscillations)  
are enhanced  in the resonance  layer 

E = (ER - DER)  --  (ER + DER) 

resonance 
layer 

ER
0
  =  Dm2 / 2V  

DER = ERtan 2q  =  ER
0sin 2q 

With increase of  mixing:  

ER    ->   0 

DER   ->  ER
0 

q -> p/4 

ln / l0 

ln / l0 

P 

P 

n 

n n 

n 
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Continuity:  
neutrino and antineutrino semiplanes  
normal and inverted hierarchy 

Oscillations (amplitude of oscillations)  
are enhanced  in the resonance  layer 

E = (ER - DER)  --  (ER + DER) 

resonance 
layer 

ER
0
  =  Dm2 / 2V  

DER = ERtan 2q  =  ER
0sin 2q 

With increase of  mixing:  

ER    ->   0 

DER   ->  ER
0 

q -> p/4 

ln / l0 

ln / l0 

P 

P 

n 

n n 

n 



  

`Physics 
  derivation’ 

Input neutrinos are ultrarelativistic      E ~ p + m2/2E 
no spin-flip, no change of the spinor structure 
lowest order in m/E 

In vacuum the mass states are the eigenstates of Hamiltonian  

dnmass 

dt 
i              =     p I  +                              nmass  

M2 

2E 

dnf 

dt 

 1 

2E 

m1
2      0 

0       m 
2

2 
nmass = 

n1 

n2 

Using relation  nmass  =  U+n 
f    find equation for the flavor states: 

      i         =         n f         nf = 
ne 

nm 

M2  =  U                    U+ 
m1

2      0 

0       m 
2

2 
mass matrix  
in flavor basis 

the term  pI   
proportional  
to unit matrix  
is omitted   where 
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  The picture  is universal in terms of  variable  y = (nR - n ) / DnR  

no explicit dependence on oscillation parameters, density distribution, etc. 
only initial value  y0  matters 

(nR - n) / DnR 

su
rv

iv
al

 p
ro

b
ab

il
it

y 

resonance 

production 
point 
y0 = - 5 

averaged 
probability 

oscillation 
band 

(distance) 

resonance layer 



  

n (t) =  cosqa n1m  + sinqa n2m e 
-if(t) 

   f (t)  is the phase difference between the two eigenstates 

   qa = qa(t) - determines the admixtures of the eigenstates 

f (t)  =     H dt`  

 <ne |n1m>  = cosqm  

  Flavors (flavor composition) of the  eigenstates  
     are determined  by the mixing angle in matter  

Effects associated  
to different  
degrees of freedom 

Arbitrary state: 

  t 

 

0 

Oscillations 

Adiabatic  
conversion 

Adiabaticity  
  violation 

  Combination of  effects 

 <nm  |n1m>  = - sin qm  

qa(t)  + f (t) -> parametric effects,  etc.   

qm(t)  + f (t) -> ad. conv. + oscillations   



  

Survival Probability 
Non-uniform medium 

Matter filter 

source detector 

Vacuum 
oscillations 

Non-adiabatic 
conversion 

Non-oscillatory 
adiabatic conversion 

P(averged over oscillations) 

E 

Adiabatic 
edge 

sin2q 

1 -      sin22q 
1 

2 

n(0)  = ne =  n2m             n2 

adiabaticity P = |< ne| n2 >|2 = sin2q 

Resonance 
at the highest 
density 

n 


