
A. Yu. Smirnov

International Centre for Theoretical Physics, Trieste, Italy

Invisibles network INT Training lectures June 25-29, 2012

Factorization

If oscillation effect in production/detection regions can be neglected

$$
r_{D}, r_{S} \ll I_{v}
$$

factorization

Production propagation and detection can be considered as three independent processes

Oscillation probability

Amplitude of (survival) probability

$$
A\left(v_{e}\right)=\left\langle v_{e} \mid v(x, t)\right\rangle=\cos ^{2} \theta g_{1}\left(x-v_{1} t\right)+\sin ^{2} \theta g_{2}\left(x-v_{2} t\right) e^{i \phi}
$$

Probability in the moment of time \dagger

$$
\begin{gathered}
=\cos ^{4} \theta+\sin ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta \cos \phi \int d x g_{1}\left(x-v_{1} t\right) g_{2}\left(x-v_{2} t\right) \\
\text { If } \int d x\left|g_{k}\right|^{2}=1
\end{gathered}
$$

If $g_{1}=g_{2}$

$$
P\left(v_{e}\right)=1-2 \sin ^{2} \theta \cos ^{2} \theta(1-\cos \phi)=1-\sin ^{2} 2 \theta \sin ^{2} \frac{1}{2} \phi
$$

$$
\phi=\frac{\Delta m^{2} x}{2 E}=\frac{2 \pi x}{I_{v}}
$$

depth of oscillations

$$
I_{v}=\frac{4 \pi E}{\Delta m^{2}} \quad \text { Oscillation length }
$$

Formation of the wave packet

Solving the wave problem: pion moves and emits neutrino waves

In most of the cases precise form of the shape factor and therefore details of its formation are not important

It is important in the cases of

production region is comparable with oscillation length

$$
r_{s} \sim l_{v}
$$

Integration of the neutrino waves emitted from space-time points where pion lives

Formation of the wave packet
 Pion decay:
 E. Akhmedov, D. Hernandez, A.S.

$$
g_{i}(x, t) e^{i \phi_{i}}=\int d p \int d x_{s} d t_{S} M \psi_{\pi}\left(x_{s}, t_{s}\right) \overline{\psi_{\mu}}\left(x_{s}, t_{s}\right) \exp \left[i p\left(x-x_{S}\right)-i E_{i}\left(t-t_{s}\right)\right]
$$

Pion wave function:

$$
\begin{aligned}
& \psi_{\pi}\left(x_{S}, t_{S}\right)=\exp \left[-\frac{1}{2} \Gamma \dagger_{S}\right] g_{\pi}\left(x_{S}, \dagger_{S}\right) \exp \left[-i \phi_{\pi}\left(x_{S}, t_{S}\right)\right] \\
& \text { usually: } \quad g_{\pi}\left(x_{S}, \dagger_{S}\right) \sim \delta\left(x_{S}-v_{\pi} \dagger_{S}\right)
\end{aligned}
$$

Muon wave function:

$$
\psi_{\mu}\left(x_{S}, t_{S}\right)=\frac{g_{\mu}\left(x^{\prime}-x_{S}, t^{\prime}-t_{S}\right) \exp \left[i \phi_{\mu}\left(x^{\prime}-x_{S}, t^{\prime}-t_{S}\right)\right]}{\text { determined by detection of muon }}
$$

If muon is not detected: plane wave \rightarrow phase factor \rightarrow disappears from probability

Neutrino wave packets

 absorber

D. Hernandez, AS
E. Kh Akhmedov,
D. Hernandez, AS
arXiv:1110.5453
v wave packet

Doppler effect
The length of the v wave packet emitted in the forward direction

$$
\sigma=I_{p} \frac{v-v_{\pi}}{v_{\pi}} \quad \text {-shorten }
$$

Shape factor

$$
g=g_{0} \exp \left(\frac{\Gamma}{2\left(v-v_{\pi}\right)}(x-\sigma)\right) \Pi(x,[0, \sigma])
$$

Decoherence at production
 D. Hernandez, AS
 $$
\Delta E_{i j} \sim \Gamma
$$
 $$
\xi=\Delta m^{2} / 2 E \Gamma
$$
 decoherence parameter
 $K=\xi \sin \phi_{L}-e^{-\Gamma I_{P}}\left[\cos \left(\phi_{L}-\phi_{p}\right)-\xi \sin \left(\phi_{L}-\phi_{p}\right)\right]$
 $\phi_{L}=\Delta m^{2} L / 2 E \quad \phi_{p}=\Delta m^{2} I_{p} / 2 E$
 MINOS: $\xi \sim 1$
 β-beam?

Coherent v-emission

- long WP

Incoherent v-emission

- short WP

Space-time diagrams

If loss of coherence and other complications related to WP picture are irrelevant "' point-like" picture

$$
i \frac{d \Psi}{d t}=H \Psi
$$

$$
\Psi=\left(\begin{array}{l}
\psi_{\mathrm{e}} \\
\psi_{\mu} \\
\psi_{\tau}
\end{array}\right)
$$

$$
\text { with } H=\frac{M M^{+}}{2 E}+V(t)
$$ mater effects

M is the mass matrix
$V=\operatorname{diag}\left(V_{e}, 0,0\right)$ - effective potential

Neutrino polarization vectors

$$
\psi=\binom{v_{e}}{v_{\tau_{\prime}}} \Rightarrow \begin{gathered}
\text { Polarization vector: } \\
P=\psi^{+} \sigma / 2 \psi
\end{gathered} \quad \mathbf{P}=\left(\begin{array}{l}
\operatorname{Re} v_{e}{ }^{+} v_{\tau_{\prime}} \\
\operatorname{Im} v_{e}^{+} v_{\tau_{\prime}} \\
v_{e}^{+} v_{e}-1 / 2
\end{array}\right)
$$

Evolution equation:

$$
\begin{array}{r}
i \frac{d \Psi}{d t}=H \Psi \Rightarrow\left|\frac{d \Psi}{d t}=(B \sigma) \Psi\right| \\
B=\frac{2 \pi}{I_{m}}\left(\sin 2 \theta_{m}, 0, \cos 2 \theta_{m}\right)
\end{array}
$$

Differentiating P and using equation of motion

$$
\frac{d P}{d t}=(B \times P)
$$

Coincides with equation for the electron spin precession in the magnetic field

Graphical representation

$\vec{v}=P=$
$\left(\operatorname{Re} v_{e}^{+} v_{\tau}, \operatorname{Im} v_{e}{ }^{+} v_{\tau}, v_{e}{ }^{+} v_{e}-1 / 2\right)$

$$
B=\frac{2 \pi}{I_{m}}\left(\sin 2 \theta_{m}, 0, \cos 2 \theta_{m}\right)
$$

Evolution equation

$$
\frac{\overrightarrow{d v}}{d t}=(\vec{B} \times \vec{v})
$$

$\phi=2 \pi \dagger / I_{m}$ - phase of oscillations

$$
P=v_{e}^{+} v_{e}=v_{Z}+1 / 2=\cos ^{2} \theta_{Z} / 2 \quad \text { probability to find } v_{e}
$$

Oscillations

Conclusion:

OScilation ic difoc di din between eigenstaite of propagation (mass igenstate) ln carrse of propeadition in pracedime

Matter effects: Oscillations \& flador conversion

Matter potential

at low energies $\operatorname{Re} A \gg \operatorname{Im} A$ inelelastic interactions can be neglected

Refraction index:

$$
\mathrm{n}-1=\mathrm{V} / \mathrm{p}
$$

for $E=10 \mathrm{MeV}$

$$
n-1= \begin{cases}\sim 10^{-20} & \text { inside the Earth } \\ <10^{-18} & \text { inside the Sun }\end{cases}
$$

Refraction length:

$$
\mathrm{I}_{0}=\frac{2 \pi}{\mathrm{~V}}
$$

$$
\text { for } v_{e} v_{\mu}
$$

difference of potentials

$$
\mathrm{V}=\mathrm{V}_{\mathrm{e}}-\mathrm{V}_{\mu}=\sqrt{2} \mathrm{G}_{\mathrm{F}} \mathrm{n}_{\mathrm{e}}
$$

$\mathrm{V} \sim 10^{-13} \mathrm{eV}$ inside the Earth

Matter potential

At low energies: neglect the inelastic scattering and absorption effect is reduced to the elastic forward scattering (refraction) described by the potential V:

$$
\mathrm{H}_{\mathrm{int}}(v)=\langle\psi| \mathrm{H}_{\mathrm{int}}|\psi\rangle=\mathrm{V} \bar{v} v
$$

CC interactions with electrons

$$
\mathrm{H}_{\mathrm{int}}=\frac{\mathrm{G}_{\mathrm{F}}}{\sqrt{2}} \bar{v} \gamma^{\mu}\left(1-\gamma_{5}\right) v \overline{\mathrm{e}} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{e}
$$

ψ is the wave function of the medium

$\left\langle\overline{\mathrm{e}} \gamma_{0}\left(1-\gamma_{5}\right) \mathrm{e}\right\rangle=\mathrm{n}_{\mathrm{e}} \quad$ - the electron number density
$\langle\overrightarrow{\mathrm{e}} \vec{\gamma} \mathrm{e}\rangle=\mathrm{n}_{\mathrm{e}} \overrightarrow{\mathrm{v}}$
$\left\langle\overline{\mathrm{e}} \vec{\gamma} \gamma_{5} \mathrm{e}\right\rangle=\mathrm{n}_{\mathrm{e}} \vec{\lambda}_{\mathrm{e}} \quad$ - averaged polarization vector of e
For unpolarized medium at rest:

$$
\mathrm{V}=\sqrt{2} \mathrm{G}_{\mathrm{F}} \mathrm{n}_{\mathrm{e}}
$$

Mixing in matter

 Effective Hamiltonian
 H_{0}

 $m_{1}^{2} / 2 E, m_{2}^{2} / 2 E$
Eigenvalues

Evolution equation
 $\mathrm{i} \frac{\mathrm{d} v_{\mathrm{f}}}{\mathrm{dt}}=\mathrm{H}_{\mathrm{tot}} v_{\mathrm{f}}$
 $$
v_{f}=\binom{v_{e}}{v_{\mu}}
$$

$\mathrm{H}_{\text {tot }}=\mathrm{H}_{\mathrm{vac}}+\mathrm{V}$ is the total Hamiltonian
$H_{\text {vac }}=\frac{M^{2}}{2 E} \quad$ is the vacuum (kinetic) part
$\mathrm{V}=\left(\begin{array}{cc}\mathrm{V}_{\mathrm{e}} & 0 \\ 0 & 0\end{array}\right) \quad$ matter part $\quad \mathrm{V}_{\mathrm{e}}=\sqrt{2} \mathrm{G}_{\mathrm{F}} \mathrm{n}_{\mathrm{e}} \quad \mathrm{H}_{\text {tot }}$
$\mathrm{i} \frac{\mathrm{d}}{\mathrm{dt}}\binom{\mathrm{v}_{\mathrm{e}}}{v_{\mu}}=\left(\begin{array}{cc}-\frac{\Delta \mathrm{m}^{2}}{2 \mathrm{E}} \cos 2 \theta+\mathrm{V}_{\mathrm{e}} & \frac{\Delta \mathrm{m}^{2}}{4 \mathrm{E}} \sin 2 \theta \\ \frac{\Delta \mathrm{~m}^{2}}{4 \mathrm{E}} \sin 2 \theta & 0\end{array}\right)\binom{v_{\mathrm{e}}}{v_{\mu}}$

Mixing in matter

Diagonalization of the Hamiltonian:

$$
\sin ^{2} 2 \theta_{\mathrm{m}}=\frac{\sin ^{2} 2 \theta}{\left(\cos 2 \theta-2 E V / \Delta \mathrm{m}^{2}\right)^{2}+\sin ^{2} 2 \theta} \quad V=\sqrt{2} G_{\mathrm{F}} n_{e}
$$

Mixing is maximal if

$$
\begin{aligned}
& \mathrm{V}=\frac{\Delta \mathrm{m}^{2}}{2 \mathrm{E}} \cos 2 \theta \\
& \sin ^{2} 2 \theta_{\mathrm{m}}=1
\end{aligned}
$$

Difference of the eigenvalues

$$
\mathrm{H}_{2 \mathrm{~m}}-\mathrm{H}_{1 \mathrm{~m}}=\frac{\Delta \mathrm{m}^{2}}{2 \mathrm{E}} \sqrt{\left(\cos 2 \theta-2 E V / \Delta \mathrm{m}^{2}\right)^{2}+\sin ^{2} 2 \theta}
$$

Resonance

In resonance:

$$
\sin ^{2} 2 \theta_{m}=1
$$

Flavor mixing is maximal

$$
1_{v}=1_{0} \cos 2 \theta
$$

Resonance width: $\Delta n_{R}=2 n_{R} \tan 2 \theta$
Resonance layer: $\quad n=n_{R}+/-\Delta n_{R}$

Level crossing
 V. Rubakov, private comm.

N. Cabibbo, Savonlinna 1985
H. Bethe, PRL 57 (1986) 1271

Dependence of the neutrino eigenvalues on the matter potential (density)

$$
\frac{\mathrm{l}_{\mathrm{v}}}{\mathrm{l}_{0}}=\frac{2 \mathrm{E} \mathrm{~V}}{\Delta \mathrm{~m}^{2}}
$$

$\sin ^{2} 2 \theta=0.8254_{4}$

$$
\frac{l_{v}}{l_{0}}=\cos 2 \theta
$$

Crossing point - resonance

- the level split is minimal
- the oscillation length is maximal

Level crossings

Normal mass hierarchy

Resonance region
High energy range

Oscillations in matter

Constant density medium

$$
\begin{gathered}
H_{0} \rightarrow H=H_{0}+V \\
v_{k} \rightarrow v_{m k}
\end{gathered}
$$

eigenstates
of H_{0}
eigenstates of H

$$
\theta \rightarrow \theta_{m}(n)
$$

Resonance - maximal mixing in matter oscillations with maximal depth

$$
\theta_{m}=\pi / 4
$$

Resonance condition:

$$
V=\cos 2 \theta \frac{\Delta \mathrm{~m}^{2}}{2 \mathrm{E}}
$$

Oscillations in matter

Oscillation probability constant density

$$
\mathrm{P}\left(v_{\mathrm{e}}->\mathrm{v}_{\mathrm{a}}\right)=\sin ^{2} 2 \theta_{\mathrm{m}} \sin ^{2}\left(\frac{\pi \mathrm{~L}}{1_{\mathrm{m}}}\right) \text { half-phase } \phi
$$

$\theta_{\mathrm{m}}(\mathrm{E}, \mathrm{n})$ - mixing angle in matter
$1_{m}(\mathrm{E}, \mathrm{n})$ - oscillation length in matter

$$
1_{\mathrm{m}}=2 \pi /\left(\mathrm{H}_{2 \mathrm{~m}}-\mathrm{H}_{\mathrm{lm}}\right)
$$

In vacuum:

$$
\begin{array}{|l|}
\theta_{\mathrm{m}} \rightarrow \theta \\
1_{\mathrm{m}} \rightarrow 1_{\mathrm{v}} \\
\hline
\end{array}
$$

Maximal effect:

$$
\begin{aligned}
& \sin ^{2} 2 \theta_{\mathrm{m}}=1 \quad \Rightarrow \quad \text { MSW resonance condition } \\
& \phi=\pi / 2+\pi \mathrm{k}
\end{aligned}
$$

Oscillation length in matter

Oscillation
length in vacuum

$$
l_{v}=\frac{4 \pi \mathrm{E}}{\Delta \mathrm{~m}^{2}}
$$

Refraction length

$$
1_{0}=\frac{2 \pi}{\sqrt{2} G_{\mathrm{F}} \mathrm{n}_{\mathrm{e}}}
$$

- determines the phase produced by interaction with matter

Resonance enhancement

Constant density

For neutrinos propagating
in the mantle of the Earth

Large mixing $\sin ^{2} 2 \theta=0.824$
Layer of length $\mathrm{L} \mathrm{k}=\pi \mathrm{L} / \mathrm{I}_{0}$
thin layer $k=1$

thick layer $\mathrm{k}=10$

Small mixing $\sin ^{2} 2 \theta=0.08$

Adianadic coinersion

Varying density

Evolution equation for eigenstates

In non-uniform medium the Hamiltonian depends on time:

$$
H_{\text {tot }}=H_{\text {tot }}\left(n_{e}(t)\right)
$$

$$
\mathrm{i} \frac{\mathrm{~d} v_{\mathrm{f}}}{\mathrm{dt}}=\mathrm{H}_{\mathrm{tot}} \mathrm{v}_{\mathrm{f}}
$$

$$
v_{\mathrm{f}}=\binom{v_{\mathrm{e}}}{v_{\mu}}
$$

Inserting $v_{f}=U\left(\theta_{m}\right) v_{m}$

$$
v_{\mathrm{m}}=\binom{v_{1 \mathrm{~m}}}{v_{2 \mathrm{~m}}}
$$

$$
\theta_{\mathrm{m}}=\theta_{\mathrm{m}}\left(\mathrm{n}_{\mathrm{e}}(\mathrm{t})\right)
$$

$$
i \frac{d}{d t}\binom{v_{1 m}}{v_{2 m}}=\left(\begin{array}{cc}
0 & i \frac{d \theta_{m}}{d t} \\
-i \frac{d \theta_{m}}{d t} & H_{2 m}-H_{1 m}
\end{array}\right)\binom{v_{1 m}}{v_{2 m}}
$$

off=diagonal terms imply transitios
$v_{1 m} \Leftrightarrow v_{2 m}$
$\underbrace{\text { However }}_{\text {if }}\left|\frac{d \theta_{m}}{d t}\right| \ll H_{2 m}-H_{1 m}$
off-diagonal elements can be neglected no transitions between eigenstates propagate independently

Adiabaticity condition

$$
\left|\left|\frac{\mathrm{d} \theta_{\mathrm{m}}}{\mathrm{dt}}\right| \ll H_{2 m}-H_{1 m}\right.
$$

transitions between the neutrino eigenstates can be neglected

External conditions (density) change slowly the system has time to adjust them

The eigenstates propagate independently

> Shape factors of the eigenstates do not change

Crucial in the resonance layer:

- the mixing changes fast
- level splitting is minimal
if vacuum mixing is small $\begin{array}{ll}1_{R}=l_{v} / \sin 2 \theta \quad \text { oscillation length in resonance } \\ \Delta r_{R}=n_{R} /(d n / d x)_{R} \tan 2 \theta & \text { width of the res. layer }\end{array}$ $\Delta r_{R}=n_{R} /(d n / d x)_{R} \tan 2 \theta \quad$ width of the res. layer

Adiabatic parameter
 $$
\kappa=\frac{\mathrm{H}_{2 \mathrm{~m}}-\mathrm{H}_{\mathrm{lm}}}{\left|\frac{\mathrm{~d} \theta_{\mathrm{m}}}{\mathrm{dt}}\right|}
$$

most crucial in the resonance where the mixing angle in matter changes fast

$$
\kappa_{\mathrm{R}}=\frac{\Delta \mathrm{r}_{\mathrm{R}}}{\mathrm{l}_{\mathrm{R}}}
$$

$\Delta r_{R}=h_{n} \tan 2 \theta$ is the width of the resonance layer
$h_{n}=\frac{n}{d n / d x}$ is the scale of density change
$l_{R}=l_{v} / \sin 2 \theta$ is the oscillation length in resonance

Explicitly:

$$
\kappa_{\mathrm{R}}=\frac{\Delta \mathrm{m}^{2} \sin ^{2} 2 \theta \mathrm{~h}_{\mathrm{n}}}{2 \mathrm{E} \cos 2 \theta}
$$

Adianatic conversion

if density changes slowly

- the amplitudes of the wave packets do not change
- flavors of the eigenstates follow the density change

Adelibatic conversion

Sun, Supernova
From high to low densities
Initial state:

$$
v(0)=v_{e}=\cos \theta_{m}{ }^{0} v_{1 m}(0)+\sin \theta_{m}{ }^{0} v_{2 m}(0)
$$

Adiabatic evolution to the surface of the Sun (zero density):

$$
\begin{aligned}
& v_{1 m}(0) \rightarrow v_{1} \\
& v_{2 m}(0) \rightarrow v_{2}
\end{aligned}
$$

Mixing angle in matter in initial state

Final state:

$$
v(f)=\cos \theta_{m}{ }^{0} v_{1}+\sin \theta_{m}{ }^{0} v_{2} e^{-i \phi}
$$

Probability to find $v_{e} P=\left|\left\langle v_{e} \mid v(f)\right\rangle\right|^{2}=\left(\cos \theta \cos \theta_{m}{ }^{0}\right)^{2}+\left(\sin \theta \sin \theta_{m}{ }^{0}\right)^{2}$ averaged over oscillations

$$
=0.5\left[1+\cos 2 \theta_{m}{ }^{0} \cos 2 \theta\right]
$$

$$
P=\sin ^{2} \theta+\cos 2 \theta \cos ^{2} \theta_{m}{ }^{0}
$$

Spatial

 OscillationsAdiabatic conversion

distance
survival probability

distance

Adiabaticity violation
 If density $n_{e}(\dagger)$ changes fast

$$
\kappa \sim 1 \quad\left|\frac{\mathrm{~d} \theta_{\mathrm{m}}}{\mathrm{dt}}\right| \sim\left|\mathrm{H}_{2 \mathrm{~m}}-\mathrm{H}_{\mathrm{lm}}\right|
$$

the off-diagonal terms in the Hamiltonian can not be neglected transitions

$$
v_{1 \mathrm{~m}} \Longleftrightarrow \mathrm{v}_{2 \mathrm{~m}}
$$

Admixtures of $v_{1 m} v_{2 m}$ in a given neutrino state change
' 'Jump probability" penetration under barrier:

$$
\begin{gathered}
\mathrm{P}_{12}=\mathrm{e}^{-\frac{\Delta H}{\mathrm{E}_{\mathrm{n}}}} \\
\mathrm{E}_{\mathrm{n}} \sim 1 / \mathrm{h}_{\mathrm{n}} \begin{array}{l}
\text { is the energy associated } \\
\text { to change of parameter } \\
\text { (density) }
\end{array} \\
\mathrm{P}_{12}=\mathrm{e}^{-\pi \kappa_{\mathrm{R}} / 2} \quad \text { Landau-Zener }
\end{gathered}
$$

Adiabatic conversion

Pure adiabatic conversion

Partialy adiabatic conversion

Oscillations veifsus MISW

Oscillations

Vacuum or uniform medium with constant parameters

Phase difference increase between the eigenstates

Adiabatic conversion
Non-uniform medium or/and medium with varying in time parameters

Change of mixing in medium $=$ change of flavor of the eigenstates

In non-uniform medium: interplay of both processes

Conclusioni

Evolution equation

$$
\begin{aligned}
& i \frac{d \Psi}{d x}=H \Psi \\
& H=\frac{M M^{+}}{2 E}+V(x)+\ldots
\end{aligned}
$$

$$
\Psi=\left(\begin{array}{l}
\psi_{\mathrm{e}} \\
\psi_{\mu} \\
\psi_{\tau}
\end{array}\right)
$$

M is the mass matrix
$V=\operatorname{diag}\left(V_{e}, 0,0\right)$ - effective potential due to scattering on electrons
$M M^{+}=U M_{\text {diag }^{2}}{ }^{2} U^{+}$
mixing matrix in vacuum

Adiabatic approximation perturbation theory

Small/large density
limits

Approximate decoupling

 of some states
Neutrinos and antineutrinos

- Continuity: neutrino and antineutrino semiplanes normal and inverted hierarchy
- Oscillations (amplitude of oscillations) are enhanced in the resonance layer

$$
\begin{aligned}
& E=\left(E_{R}-\Delta E_{R}\right)-\left(E_{R}+\Delta E_{R}\right) \\
& \Delta E_{R}=E_{R} \tan 2 \theta=E_{R}{ }^{0} \sin 2 \theta
\end{aligned}
$$

$$
\mathrm{E}_{\mathrm{R}}{ }^{0}=\Delta \mathrm{m}^{2} / 2 \mathrm{~V}
$$

\square With increase of mixing: $\quad \theta \rightarrow \pi / 4$

$$
\begin{gathered}
\mathrm{E}_{\mathrm{R}} \rightarrow 0 \\
\Delta \mathrm{E}_{\mathrm{R}} \rightarrow \mathrm{E}_{\mathrm{R}}^{0}
\end{gathered}
$$

Neutrinos and antineutrinos

- Continuity: neutrino and antineutrino semiplanes normal and inverted hierarchy
- Oscillations (amplitude of oscillations) are enhanced in the resonance layer

$$
\begin{aligned}
& E=\left(E_{R}-\Delta E_{R}\right)-\left(E_{R}+\Delta E_{R}\right) \\
& \Delta E_{R}=E_{R} \tan 2 \theta=E_{R}{ }^{0} \sin 2 \theta
\end{aligned}
$$

$$
\mathrm{E}_{\mathrm{R}}{ }^{0}=\Delta \mathrm{m}^{2} / 2 \mathrm{~V}
$$

\square With increase of mixing: $\quad \theta \rightarrow \pi / 4$

$$
\begin{gathered}
\mathrm{E}_{\mathrm{R}} \rightarrow 0 \\
\Delta \mathrm{E}_{\mathrm{R}} \rightarrow \mathrm{E}_{\mathrm{R}}^{0}
\end{gathered}
$$

Evolution equation

Input neutrinos are ultrarelativistic $E \sim p+m^{2} / 2 E$

- no spin-flip, no change of the spinor structure
- lowest order in m / E

In vacuum the mass states are the eigenstates of Hamiltonian

$$
\mathrm{i} \frac{\mathrm{~d} v_{\text {mass }}}{\mathrm{dt}}=\left(\mathrm{pI}+\frac{1}{2 \mathrm{E}}\left(\begin{array}{ll}
\mathrm{m}_{1}^{2} & 0 \\
0 & \mathrm{~m}_{2}^{2}
\end{array}\right)\right) v_{\text {mass }} \quad \quad v_{\text {mass }}=\binom{v_{1}}{v_{2}}
$$

Using relation $v_{\text {mass }}=\mathrm{U}^{+} v_{f}$ find equation for the flavor states:

$$
\mathrm{i} \frac{\mathrm{~d} v_{f}}{\mathrm{dt}}=\frac{\mathrm{M}^{2}}{2 \mathrm{E}} v_{\mathrm{f}}
$$

$$
v_{f}=\binom{v_{e}}{v_{\mu}}
$$

where

$$
\mathrm{M}^{2}=\mathrm{U}\left(\begin{array}{ll}
\mathrm{m}_{1}{ }^{2} & 0 \\
0 & \mathrm{~m}_{2}^{2}
\end{array}\right) \mathrm{U}^{+}
$$

the term pI proportional to unit matrix is omitted

Spatial picture

The picture is universal in terms of variable $y=\left(n_{R}-n\right) / \Delta n_{R}$ no explicit dependence on oscillation parameters, density distribution, etc. only initial value y_{0} matters

Degrees of freedom

Arbitrary state:

$$
v(\mathrm{t})=\cos \theta_{\mathrm{a}} v_{1 \mathrm{~m}}+\sin \theta_{\mathrm{a}} v_{2 \mathrm{~m}} \mathrm{e}^{-\mathrm{i} \phi(\mathrm{t})}
$$

> $\theta_{a}=\theta_{a}(\dagger)$-determines the admixtures of the eigenstates
$>\phi(t)$ is the phase difference between the two eigenstates

$$
\phi(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{Hdt}
$$

> Flavors (flavor composition) of the eigenstates are determined by the mixing angle in matter

Oscillations

Effects associated to different degrees of freedom

Adiabaticity violation

Adiabatic conversion

$$
\left\langle v_{\mathrm{e}} \mid v_{1 \mathrm{~m}}\right\rangle=\cos \theta_{\mathrm{m}} \quad\left\langle v_{\mu} \mid v_{1 \mathrm{~m}}\right\rangle=-\sin \theta_{\mathrm{m}}
$$

> Combination of effects

$$
\begin{aligned}
& \theta_{a}(t)+\phi(t) \text {-> parametric effects, etc. } \\
& \theta_{m}(t)+\phi(t) \rightarrow \text { ad. conv. + oscillations }
\end{aligned}
$$

Survival Probability

source

