GGI 2012 Neutrino Workshop

Neutrino Cosmology

0.0 0.5 1.0 Friday, June 22, 12 1

Friday, June 22, 12 2

Outline

➤ Effective number of neutrinos

➤ CMB and BBN data/theory predictions

➤ Right-handed neutrinos are necessary in...

➤ the best of all models: U(1) for everone

➤ Joint constraints on milliweak interactions (CMB-BBN-LHC)

➤ Summary and Conclusions

Work done in collaboration with: Anchordoqui, Antoniadis, Huang, Lust, Taylor, Vlcek PRL 108 (2012) 081805 and arXiv:1206.2537

Steigman, Schramm, and Gunn, PLB66 (1977) 202 Effective Number of Neutrinos ➤ Most straightforward variation of Standard Big-Bang Cosmology ☛ extra energy contributed by new relativistic particles " '' *X* \blacktriangleright When $X's$ don't share in energy released by e^\pm annihilation \blacktriangleright ☛ convenient to account for extra contribution to SM energy density by normalizing it to that of an equivalent neutrino species $>$ For each additional relativistic degree of freedom: \blacktriangleright If $X's$ have decoupled even earlier \mathcal{L} when various other particle-antiparticle pairs annihilated (or unstable particles decayed) contribution to ΔN_{ν} from each such particle will be and have failed to profit from heating \int <1 *<*4*/*7 if $T_X = T_\nu \Rightarrow$ $\left(\begin{array}{cc} \Delta N_{\nu} = 1 & \text{for} & X = \text{ any two}-\text{component fermion} \end{array} \right)$ $\Delta N_\nu = 4/7 \qquad \text{for} \qquad X = \text{ scalar}$ $\rho_X\equiv \Delta N_\nu \rho_\nu=$ 7 8 $\Delta N_{\nu} \rho_{\gamma}$ (with $\Delta N_{\nu} = N_{\nu} - 3$)

CAAB

➤ Basic equation: $\geq \Delta(\Omega_m h^2)$ from galaxy distributions and precise H_0 measurements \blacktriangleright Wilkinson Microwave Anisotropy Probe $\blacktriangleright N_\nu^{\text{eff}} = 4.34^{+0.86}_{-0.88} \; (2\sigma)$ WMAP Collaboration, ApJS 192 (2011) 18 \blacktriangleright Atacama Cosmology Telescope $\blacktriangleright N_{\nu}^{\text{eff}} = 4.56 \pm 0.75 \;(68\% \text{CL})$ ACT Collaboration, ApJ 739 (2011) 52 \blacktriangleright South Pole Telescope $\blacktriangleright N_\nu^{\text{eff}} = 3.86 \pm 0.42 \;(1\sigma)$ SPT Collaboration, ApJ 743 (2011) 28 $>$ WMAP + SPT [ACP] + H(z) $\leftarrow N_{\nu}^{\text{eff}} = 3.5 \pm 0.3 \, (1\sigma) \, [3.7 \pm 0.4 \, (1\sigma)]$ SDSS Collaboration, MNRAS 401 (2010) 2148 Riess et al., ApJ 699 (2009) 539 $\Delta N_\nu^{\text{eff}}$ N_{ν}^{eff} $\simeq 2.45\frac{\Delta(\Omega_m h^2)}{\Omega_m h^2} - 2.45\frac{\Delta z_{\rm eq}}{z_{\rm eq}}$ Moresco, Verde, Pozzetti, Jimenez, Cimatti, arXiv:1201.6658

Combined Likelihood analysis

WMAP7 + ACP + HST

☛ Planck will reach sensitivity of 0.26 (see Georg lecture from Monday)

R.D.O.F. & CMB

- ➤ Competition between gravitational potential and pressure gradients is responsible for peaks and troughs in CMB TT power spectrum
- \blacktriangleright Redshift @ matter-radiation equality $z_{\rm eq} = 2.4 \times 10^4 \, \Omega_m h^2 / (t/t')^2_p$ affects time (redshift) duration over which this competition occurs *post*
- $>$ If radiation content is increased \blacktriangleright matter-radiation equality
	- is delayed and occurs closer to recombination epoch
- ➤ This implies universe is younger @ recombination with a correspondingly smaller sound horizon s_*

 \blacktriangleright Since location of n^{th} peak scales roughly as $\,n\pi D_*/s_*$ \blacksquare peaks shift to larger l and with greater separation ➤ Key issue here: parameter degeneracy

Friday, June 22, 12 7

BBN

≻Primordial ⁴He abundance is driven by decoupling of weak interaction (when neutrinos go out of equilibrium)

$$
Y_p \propto e^{-(m_n-m_p)/T_{\rm dec}}
$$

 \blacktriangleright T_{dec} determined via $\Gamma(T_{\text{dec}}) = H(T_{\text{dec}})$

$$
T_{\rm dec}^5 \ (g/M_W)^4 M_{Pl} \sim \sqrt{N} \ T_{\rm dec}^2
$$

 α (with $M_W \sim 100 \text{ GeV}$)

- \triangleright For BBN \blacksquare $\overline{T} \sim 5 \text{ MeV}$ & $\overline{N} \sim 10$
- \blacktriangleright Y_p increases with N

➤ Observationally inferred primordial fractions of baryonic mass in **⁴**He have been constantly favoring $N_\nu^{\text{eff}}\lesssim 3$

Simha and Steigman, JCAP 06 (2008) 016

BBN Observations

➤Unexpectedly ☛ recent determination of primordial *⁴*He mass fraction

leads to $Y_p = 0.2565 \pm 0.0010(\text{stat}) \pm 0.0050(\text{syst})$

(2σ higher than value given by standard BBN)

For Aver, Olive, and Skillman, JCAP 1103 (2011) 043 ϵ or $\tau_n = 878 \pm 0.8 \text{ s}$, $N_{\nu}^{\text{eff}} = 3.80^{0.80}_{-0.70}~(2\sigma)$ Izotov and Thuan, ApJ 710 (2010) L67 ➤*⁴*He observed primordial abundance has relative large systematic errors $>$ Y_p is predicted with precision of $\sim 0.2\%$ D, ³He, and ⁷Li with precisions of roughly $5\%, \ 4\%$ and 8% $\mathbf{BUT} \hspace{-2mm}$ because of very precise measurement $\mathbf{\cdot}$ constraint on N_{ν}^{eff} from D/H is competitive with that from *Y^p* ➤Setting aside *⁴*He constraints $N_{\nu}^{\text{eff}}=3.9\pm0.44\,\,(1\sigma)$ and combining CMB with BBN theory and observed D/H

Nollett and Holder, arXiv:1112.2683

Friday, June 22, 12 9

PICTORIAL REPRESENTATION OF D-BRANE CONSTRUCT

Model Parameters

- ➤ 3 couplings *gB, gL, g^I^R*
- $>$ 3 Euler angles \blacktriangleright field rotation to coupling diagonal in Y fixes 2 angles
- > Orthogonal nature of rotation ► one constraint on couplings

$$
\frac{1}{g_Y^2} = \left(\frac{1}{2g_L}\right)^2 + \left(\frac{1}{6g_B}\right)^2 + \left(\frac{1}{2g_{I_R}}\right)^2
$$

 $>$ Baryon number coupling g_B fixed to be $1/\sqrt{6}$ of $SU(3)$ coupling at $U(3)$ unification \blacktriangleright 2 remaining d.o.f. allow further rotation leaving in addition to $\ Y$ -- only boson masses are free -- Z^\prime to couple to B (super-heavey string scale) $Z^{\prime\prime}$ to couple to linear combinaion of $\,B-L$ and $\,I_R\,$ ☛ determined elsewhere via RG running $\sqrt{ }$ 6

The Dramatis Personae The Dramatis Personae

OBTAINING DECOUPLING TEMPERATURE

 \blacktriangleright Adiabatic reheating of all particles except ${\nu_R}^\prime$ S after decoupling gives relation

$$
\Delta N_\nu^{\rm eff} = 3 \left(\frac{N(T_{\rm end})}{N(T_{\rm dec})} \right)^{4/3}
$$

 \blacktriangleright $T_{\rm end}$ \blacktriangleright temperature at end of reheating phase

 \blacktriangleright $N(T) = r(T)(N_{\rm B} + \frac{1}{9} N_{\rm F})$ \blacktriangleright effective number of r.d.o.f. at 7 8 $N_{\rm F})$ Feffective number of r.d.o.f. at T

 \blacktriangleright $r(T)=1$ for lepton/photon and $r(T)=s(T)/s_{\text{SB}}$ for qg plasma

$$
\geq N(T_{\text{dec}}) = 37 \, r(T_{\text{dec}}) + 14.25
$$

 $> N(T_{\rm end}) = 10.75$

Lattice QCD

 $>$ Lower T coincides with most rapid rise of entropy

 $\mathcal{L}_\mathcal{A}$, the most rapid rise of entropy $\mathcal{L}_\mathcal{A}$, the most rapid rise of entropy $\mathcal{L}_\mathcal{A}$

Friday, June 22, 12 16

> Excess r.d.o.f. within 1σ of central value of each if $0.46<\;\;\Delta N_{\nu}^{\text{eff}}\;\;\;\;<1.08$ \rightarrow 23 $\lt N(T_{\text{dec}})$ $\lt 44$ \rightarrow 0.24 \lt $r(T_{\text{dec}})$ \lt 0.80 \triangleright From lattice QCD study \blacktriangleright this translates to a temperature range $175 \text{ MeV} < T_{\text{dec}} < 250 \text{ MeV}$ Bazavov et al., PRD 80 (2009) 014504 > Decoupling of ν_R occurs when ν_R m.f.p. \geq horizon size \Rightarrow $\Gamma^{\text{int}}(T_{\text{dec}}) = H(T_{\text{dec}})$ Thermal equilibrium \rightarrow int = scatt + ann Chemical equilibrium \rightarrow int = ann $H(T) = 1.66 \langle N(T) \rangle^{1/2} T^2/M_{\rm Pl}$ Quark-Hadron Crossover Transition

As a check ...

behavior of trace anomaly

(which is very sensitive to behavior in crossover region)

and our range for $T_{\rm dec}$ straddles this region \blacktriangleright Including $s \blacktriangleright 0.18 < \overline{r(T)} < 0.63$

Cross Sections

- \blacktriangleright All is fixed except for Z' and Z'' masses
- $>$ For interaction rate
	- ☛ take average over angles and thermal average over energies

 \blacktriangleright By setting in turn $\Gamma^{\text{ann}}(T) = H(T) \simeq 10.4 \ T^2/M_{\text{Pl}}$

 $G_{\text{eff}}^2 \sim \sum G_i^2$ with $4\frac{G_i}{\sqrt{G}}$

and

 $\Gamma^{\rm scat}(T)$ \simeq 2.0 $G_{\rm eff}^2$ T^5

 $\Gamma^{\rm ann}(T) \qquad \simeq \qquad 0.50 \; G_{\rm eff}^2 \; T^5$

 $rac{1}{\sqrt{2}} =$

 g_6^\prime g_i^\prime

 $+\frac{g_6''}{\pi a^2}g_i''$

 $M_{Z^{\prime\prime}}^2$

 $M_{Z'}^2$

 $\Gamma^{\text{ann}}(T) + \Gamma^{\text{scatt}}(T) = H(T) \simeq 10.4 \ T^2/M_{\text{Pl}}$ one arrives at two values of $T_{\rm dec}$

Chemical equilibrium \rightarrow $T_{\text{dec}} = 2.75 \ (G_{\text{eff}}^2 \ M_{\text{Pl}})^{-1/3}$

Thermal equilibrium \rightarrow $T_{\text{dec}} = 1.60 \ (G_{\text{eff}}^2 \ M_{\text{Pl}})^{-1/3}$ > When each of these is required to lie between 175 MeV and 250 MeV \blacktriangleright allowed regions of Z' and Z'' masses are defined in each case

Constraints

- These two estimates should serve to bracket size of actual effect
- ➤ Designation of B corresponds to Z′ and B − L to Z′′

LAA and Goldberg, PRL 108 (2012) 081805

Friday, June 22, 12 20

ZOOM OUT

Friday, June 22, 12 21

Summary and Conclusions

- ❑ We developed dynamic explanation of recent hints that is equivalent to about 1 extra Weyl neutrino relativistic component of energy during BBN and CMB epochs
- \Box We work within (string base) $U(3)_C \times SU(2)_L \times U(1)_R \times U(1)_L$ gauge theory \Box Model endowed with $3\,U(1)$ gauge symmetries coupled to $B,\; L,\; I_R$ ❏ Rotation of gauge fields to basis exactly diagonal in *Y* \Box Requiring $B-L$ current be anomaly free implies existence of 3 right-handed Weyl neutrinos ❑ Task then reverts to explain why there are not 3 additional r.d.o.f. occurs during course of quark-hadron crossover transition \square We find that for certain ranges of M_B and M_{B-L} decoupling of $\nu_R{}^\prime{\rm s}$ \blacktriangleright just so that they are only partially reheated compared to ${\nu_L}'\rm s$ ❑ Corresponding upper and lower bounds on gauge field masses yield ranges to be probed at LHC and very nearly diagonal in $\,B-L\,$ and B fixes all mixing angles and gauge couplings