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The SM 
as a renormalizable theory



An extremely successful synthesis of particle physics

in compact notations

i = 1,2,3: family index

+ neutrinos mass operator: LLHH
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1
4
F a

µ⇥F aµ⇥ gauge

Lren
SM = +⇥ij�i�jH + h.c. flavor

+|DµH|2 � V (H) symmetry breaking

few ‰

few %

? (indirect)

The (ren) Standard Model lagrangian



The gauge sector

SU(3)c SU(2)L U(1)Y
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A nice property

The fermion content is chiral

I.e. no explicit (GSM symmetric) fermion mass term is allowed

A puzzle or what expected?

Extra fermions should be vectorlike                              
(unless they get mass through EWSB) 



Another nice property

Anomaly cancellation

Is Tijk ≡ Tr (τi {τj, τk}) = 0?     τi = TA, Ta, Y

(nice, but why??)

SU(3)

3
vectorlike

SU(3)

2 ⇥ SU(2) Tr(⇥a) = 0

SU(3)

2 ⇥ U(1) 2 Yq + Yuc
+ Ydc

= 0

SU(3)⇥ (not SU(3))
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SU(2)
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U(1)
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2Y 3

l + 6Y 3
q + 3Y 3

uc + 3Y 3
dc + Y 3

ec = 0

grav. anomaly 2Yl + 6Yq + 3Yuc
+ 3Ydc

+ Yec
= 0



Tree level tests of the gauge sector

Fermion gauge interactions:

Gauge boson self-interactions: from

in terms of mass eigenstates:
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The flavour sector

The flavour sector allows to tell the 
three families: gauge interactions are 
U(3)5 symmetric

1 2 3

l

ec

q

uc

dc

l1 l2 l3

(ec)1 (ec)2 (ec)3

q1 q2 q3

(uc)1 (uc)2 (uc)3

(dc)1 (dc)2 (dc)3

gauge irreps
(vertical)

well understood

family number
(horizontal)

not understood
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+|DµH|2 � V (H) symmetry breaking



Lflavor

SM
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U(3)5

The flavour (Yukawa) lagrangian is is not U(3)5 invariant (unless λij=0)

U(3)5 :
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The flavour lagrangian breaks U(3)5 x U(1)H to                                  
U(1)e x U(1)μ x U(1)τ x U(1)B x U(1)Y

In an appropriate flavour basis (i.e. through U(5)5 transformation)

Le Lμ Lτ: individual lepton numbers

L = Le + Lμ + Lτ: (total) lepton number - arises automatically! (at ren level)

B: Baryon number - arises automatically! (at ren level)

(neutrino masses and mixing are a source of LFV; here they are likely to be 
associated to the NR part of the lagrangian)

Accidental symmetries (ren lagrangian)
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Fermion masses: 

In terms of mass eigenstates: 

H =

�

⇤
0

v +
h�
2

⇥

⌅ (unitarity gauge)

No tree level FCNC
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Experimental values

In an appropriate basis

(the top Yukawa coupling is O(1); the bottom and tau 
Yukawas are also small but can be large in the MSSM)

In particular,

λ1,2 « λ3 

VCKM = 

� =

�

⇤
0 0 0
0 0 0
0 0 �33

⇥

⌅ + small (U , D, E)

�

⇤
1 0 0
0 1 0
0 0 1

⇥

⌅ + small



Approximate flavour symmetry

The flavour lagrangian is approximately U(2)5                      
flavour symmetric (exactly symmetric in the limit                                  
which also implies V = 13)

This (or equivalently the smallness of λ1,2 and Vij i≠j) is the 
origin of the anomalously small FCNC processes in the SM (and 
the origin of the flavour problem)

� =

�

⇤
0 0 0
0 0 0
0 0 �33

⇥

⌅



� � 10�6 experiment

Anomalously small loop-induced FCNC

Because of the approximate U(2)5 (GIM)

                                             

i = 3: f = O(1), |VtdVts| « 1

i = 1,2: |VidVis| = O(1), f « 1

Same for CP-violating effects
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Challenge for new physics at TeV



Electroweak symmetry breaking
Indirect tests, hints from direct tests (but...)

“Observed” fields: 

Gauge bosons:

Femions: 

“3/4” of the Higgs field:      (long. part of massive gauge bosons, 
Goldstones of the spontanously broken gauge symmetry)

SM masses arise from the symmetry breaking scale v = 174 GeV 
(Ga decay constant)

Mission #1 of the LHC: what is the mechanism underlying EWSB?    
Or where do the Ga and v = 174 GeV come from?

The Higgs mechanism in the SM: 

 Ga + h  →                                 ≈ (1,2,½)

Ga

Qi uc
i dc

i Li ec
i

gA
µ W a

µ Bµ

H =

�

⇤
G+

v +
h + iG0

�
2

⇥

⌅



The Higgs sector
Most general gauge invariant ren. lagrangian for H: 

λH > 0

μ2 < 0 ⇒ <H> ≠ 0 ⇒ electroweak symmetry breaking

(μ2 > 0 ⇒ still electroweak symmetry breaking, but at Λ ≈ mπ)

LH = (DµH)†(DµH)� V (H†H)

V (H†H) = µ2H†H +
�H

2
(H†H)2



QED unbroken

Fix the Higgs quantum numbers from fermion masses. Then the 
electric charge is automatically conserved

3 broken generators ↔ 3 massive vectors ↔ 3 unphysical 
Goldstone bosons ↔ 1 real physical Higgs particle

⇧H⌃ =
�

0
v

⇥
, v > 0, v2 =

|µ2|
�H

⇥ (174 GeV)2

T = aY + baTa, a, ba real, Ta =
⇤

2
, Y =

1
2

0 = T ⇧H⌃ =
v

2

�
b1 � ib2

a� b3

⇥
⇤ T ⌅ Q



Constraints on the Higgs mass I                              
Avoiding the strong coupling regime: mH < O(TeV)

A(WLWL → WLWL) = ∑l al Al,  al = partial wave amplitude

Unitarity bound: |a0| ≤ 1

Tree level, no Higgs:              , s = (p1+p2)2, v ≈ 174 GeV

Unitarity bound saturated at s ≈ (1.2 TeV)2 

Bad behaviour of a0 due to the longitudinal part of the W 
propagator ∼ pμpν/(MW)2, cancelled by Higgs exchange

a0 �
s

16�v2

7/23/09 2:09 PM#math223# WW WW scattering
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Constraints on the Higgs mass II           
Triviality and stability

Assume that the SM holds up to the scale Λ:

λH(Λ) finite (perturbative) ⇒ upper limit on mH

λH(Λ) > 0 ⇒ lower limit on mH

(if λH(Λ) < 0, the absolute minimum of the effective potential 
resides at or above  Λ)

λH(Λ)V(h)

Λ

V (h) � µ2(h)
2

h2 +
�H(h)

8
h4



The lower limit can be relaxed if we live in a metastable vacuum

Λ » v introduces a naturalness problem

mt = 175 GeV
αs(MZ) = 0.118

allowed

[Hambye, Riesselmann]



Constraints on the Higgs mass III           
Experiment

Indirect upper limit from EW                                   
precision tests (see below):             
161 GeV @ 95% CL (assumes no new 
physics contributions)

Direct experimental limit (within SM):                              
115.5 GeV < mH < 127 GeV @ 95% CL                     
or mH > 600 GeV (trivial combination)

G. Tonelli, CERN/INFN/UNIPI                                          HIGGS_CERN_SEMINAR                                         December 13 2011           !38!

Freshly squeezed EWK plots 

mH (GeV)



Tests of the gauge (electroweak) sector

The gauge sector (fermion gauge interactions) is the best 
tested part of the SM

Wide range of predictions:   ↔                                          

g, g’, v ↔ (α), sW, v ↔ QED, W&Z masses, their self-

interactions and all fermion gauge interactions (tree level)

Measurements at the ‰ level: sensitivity to quantum 
corrections (mt, mH)

Good agreement with the experiment



High energy tests

At LEP II, LEP I, SLC, Tevatron

MZ, ΓZ,

Z resonance in e+e-→ff

Nν = 2.9841±0.0083: 3 light neutrinos + anomaly 
cancellation = 3 families

MW, ΓW from e+e-→W++W- at LEP II

σh,l 

WWγ, WWZ couplings ∝	 e, gcW

 

AFB ...

-

Af
LR =

�(Z ⇥ fLf̄R)� �(Z ⇥ fRf̄L)
�(Z ⇥ fLf̄R) + �(Z ⇥ fRf̄L)



Accuracy in most cases is at the  ‰ 
level → sensitivity to 1-loop corrections, 
which involve 

g, g’, v 

mt, αs(MZ), Δαhad(MZ)

mh

and bring together 

the gauge sector: g2/(4π)2, g’2/(4π)2

the flavour sector: λ2/(4π)2

the EW-breaking sector:                 
g2/(4π)2 log(mh/MW)

The agreement works for relatively low 
values of mh

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02767
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959
σhad [nb]σ0 41.540 ± 0.037 41.478
RlRl 20.767 ± 0.025 20.742
AfbA0,l 0.01714 ± 0.00095 0.01643
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1480
RbRb 0.21629 ± 0.00066 0.21579
RcRc 0.1721 ± 0.0030 0.1723
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.399 ± 0.025 80.378
ΓW [GeV]ΓW [GeV] 2.098 ± 0.048 2.092
mt [GeV]mt [GeV] 173.1 ± 1.3 173.2

March 2009

LEP EW WG



Custodial symmetry

 

Not guaranteed by gauge invariance nor by the breaking 
pattern

Peculiar of EW breaking by a doublet (triplets ruled out) 

Reminder

θW = Weinberg angle

W+
µ ⇥

W 1
µ � iW 2

µ⇤
2

, Zµ ⇥ cW W 3
µ � sW Bµ,

�
cW ⇥ cos �W = g/

⇥
g2 + g�2

sW ⇥ sin �W = g�/
⇥

g2 + g�2

Dµ = ⇥µ + igW a
µ

�a

2
+ i

g�

2
Bµ

⇥ � M2
W

M2
Z cos2 �W

= 1 (tree level)



ρ ≈ 1 ↔ custodial SU(2)

The vector boson masses arise from (Dμ<H>)*(Dμ<H>)

Same mass term for W1,2,3 because of a custodial O(3) ≈ SU(2) 
symmetry. Which is a remnant of a O(4) ≈ SU(2)L x SU(2)R 
symmetry, spontaneously broken to the diagonal SU(2) ≈ O(3):

                                   ⇒ V(H) is symmetric under                        
O(4) ≈ SU(2)L x SU(2)R, broken by <H> to the diagonal SU(2) 

The symmetry is exact in the limit g’ = 0, λU = λD → loop 
corrections to ρ = 1

An indication of a fundamental symmetry? (SU(2)L x SU(2)R)

Dµ ⇥H⇤ =
iv

2

�
g(W 1

µ � iW 2
µ)

gW 3
µ � g�Bµ

⇥
=

iv

2

� ⌅
2gW+

µ⇤
g2 + g�2Zµ

⇥

|H|2 = h2
1R + h2

1I + h2
2R + h2

2I

� =
�

�

�
h1

h2

⇥� �
h1

h2

⇥⇥
, �� UL�U†

R, H†H = Tr(�†�)/2



Direct limits



Atlas (Gianotti 13.12.2011)

Significance: 
2.8σ (local)

1.5σ (anywhere) 

In the region mH < 141 GeV (not excluded at 
95% C.L.) 3 events are observed: two 2e2μ 
events (m=123.6 GeV, m=124.3 GeV) and one 

4μ event (m=124.6 GeV)



Hγγ, H ττ 
H WW(*) lνlν
H ZZ(*)  4l, H ZZ  llνν
H ZZ  llqq, H WWlνqq
W/ZH lbb+X not included

LEP ATLAS+CMS
Combination

ATLAS
today

115.5 GeV < mH < 131 GeV
237 GeV < mH < 251 GeV

mH > 453 GeV
allowed 95%

Maximum deviation from background-only 
expectation observed for mH~126 GeV

Local p0-value: 1.9 10-4  

 local significance of the excess: 3.6σ 
~ 2.8σ H γγ, 2.1σ H 4l, 1.4σ H lνlν

Global p0-value : 0.6% 2.5σ  LEE over 110-146 GeV
Global p0-value : 1.4% 2.2σ  LEE over  110-600 GeV

Expected from SM Higgs: ~2.4σ local (~1.4σ per channel)



Total



CMS (Tonelli 13.12.2011)
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mH < 127 GeV or mH > 600 GeV @ 95% CL

G. Tonelli, CERN/INFN/UNIPI                                          HIGGS_CERN_SEMINAR                                         December 13 2011           ! 41!

Anatomy of an excess: local and global p-values 

Maximum local significance 2.6*.!
LEE-corrected significance (full mass range: 110-600GeV)= 0.6*!
LEE-corrected significance (low mass range: 110-145GeV)= 1.9*#

The excess we see in the low mass region has a modest statistical 

significance and could be reasonably a fluctuation of the 

background. 



Preliminary details
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Figure 1: Left: The Higgs boson rate favoured at 1� (dark blue) and 2� (light blue) in a global

SM fit as function of the Higgs boson mass. Right: assuming mh = 125GeV, we show the

measured Higgs boson rates at ATLAS, CMS, CDF, D0 and their average (horizontal gray band

at ±1�). Here 0 (red line) corresponds to no Higgs boson, 1 (green line) to the SM Higgs boson.

line is the background-only rate expected in the absence of a Higgs. The grey band shows the
±1� range for the weighted average of all data. It lies along the SM prediction. Furthermore,
the global �2 of the SM fit is 16 for 15 dof.

However, it is interesting to split data into three categories according to the final states and
compute the average for each one of them:

observed rate

SM rate
=

8
<

:

2.0± 0.5 photons
0.5± 0.3 vectors: W and Z

1.3± 0.5 fermions: b and ⌧

. (10)

This shows the main anomalous features in current measurements. First, the �� channels
exhibit some excess, mainly driven by the vector boson fusion data presented at the Moriond
2012 conference. Second, there is a deficit in the vector channels. Finally, the average rate of
fermionic channels lies along the SM prediction; here the new Tevatron combination for h ! bb̄

plays an important rôle.

3 Reconstructing the Higgs boson properties

3.1 Reconstructing the Higgs boson branching fractions

The Higgs boson observables that can be most easily a↵ected by new physics contributions are
those that occur at loop level: the h ! �� and h $ gg rates. They are particularly relevant
for the LHC Higgs searches because �� is the cleanest final state, and because gg ! h is the
dominant Higgs boson production mechanism. The left panel of Fig. 2 shows, as yellow contours

5



Beyond the SM 



Experimental “problems” of the SM
Gravity
Dark matter
Baryon asymmetry

Experimental “hints” of physics beyond the SM
Neutrino masses
Quantum number unification

Theoretical puzzles of the SM
<H> « MPl

Family replication
Small Yukawa couplings, pattern of masses and mixings
Gauge group, no anomaly, charge quantization, quantum numbers

Theoretical problems of the SM
Naturalness/unitarity problem
Cosmological constant problem
Strong CP problem
Landau poles

Many reasons to go beyond the SM



Claim

Either physics becomes strongly interacting (again) at TeV or

Physics is weakly interacting up to well beyond the TeV scale           
in this case the Higgs h exists and                                   
m2h ≈ (m2h)0 + (115GeV)2 (QNP/0.5TeV)2

In the latter case, QNP » TeV needs delicate cancellations, so that

NP @ TeV cuts-off δm2h and the electroweak scale is “natural”, or

the electroweak scale is accidentally smaller than its radiative 
corrections, or the naturalness argument is not relevant at all

The unitarity/naturalness argument

Known fields: gµ
A Wµ

a Bµ Qi uc
i dc

i Li ec
i Ga



�m2
h �

3GF⇥
2⇥2

m2
t Q

2
NP

–    <H> = 174 GeV

–    MPl

–    QNP

NP

SM

E

Naturalness

h
t

h

Analogously: contributions from
gauge and Higgs self-interaction 



More on renormalizability and naturalness

 

Renormalization:

The naturalness problem arises if Q corresponds to a physical 
threshold

�m2
h � �m2

h(top) ⇥
h

t
h

= 12�2
t

�
k3dk

8⇥2

1
k2

+ . . .
cut-o�����⇥ 3GF⇤

2⇥2
m2

t Q
2 + . . .

(m2
h)phys � (m2

h)tree +
3GF⌅
2�2

m2
t Q

2, Q⇥⇤



Another caveat: the cosmological constant problem 

41

+ +
x x

�m2
H ⇤ Q2

NP ⇥ QNP � mH �� ⇤ Q4
x ⇥ Qx � 10�3 eV???

SUSY: �m2
H ⇤ m̃2 log

QSUSY

m̃
SUSY: �� ⇤ m̃2Q2

SUSY

+



The SM 
as an effective theory



The SM as an effective theory

<H>    –

Λ     –

E

SM + eff. 
interactions

QED + QCD + eff. 
interactions

?

SM Le⇥
E�� = Lren

SM + LNR
SM

Analogously..

(in the limit Λ » MZ)



The SM as an effective theory

Consistent renormalization at each order in (E/Λ)

Low E effects suppressed by (E/Λ)n                                        
(ren.bility not fundamental in 4D QFT?)

Allows a general parameterization of any new physics at Λ » E in 
terms of light fields only (“indirect effects”)

Identification of O(n) allows to understand the underlying physics         
(example: from Fermi theory to SM)

No clear hint of O(n) from the TeV scale (only hint: neutrino masses)

Le⇥
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�
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Best chance for indirect NP effects to emerge is if they violate 
symmetries      , also called “accidental symmetries”: Li, B

NP effects can also emerge if are suppressed in the presence 
of       only, e.g. if they contribute to 

Flavour Changing Neutral Current (FCNC) processes

CP-violating (CPV) processes

Electroweak precision tests (EWPT)

Lren
SM

Lren
SM



Hints of NR terms?
Surprisingly, the most solid hints are associated to scales Λ » TeV:

Neutrino masses

Unification



Neutrino masses
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Renormalizable origin of neutrino masses
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See-saw type I
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See-saw type III
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ljli

hh

See-saw type II

(Any number of Nh, Th, Δh)

Δ ≈ (1,3,1)

T ≈ (1,3,0)

N ≈ (1,1,0)

(SU(3)c,SU(2)L,Y)
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Unification
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Bounds on NR terms

B number  e.g.                  (proton decay)     Λ > c1/2 1015 GeV

L number  e.g.                (neutrino masses)    Λ ≈ c 0.5 1015 GeV

Li numbers e.g.                         (μ → eγ)    Λ > c1/2 103 TeV

Quark FCNC, CP e.g.                   (εK, ΔmK)    Λ > c1/2 500 TeV

                                            (EWPTs)    Λ > c1/2 5 TeV
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Lack of signals, also indirect, from the TeV scale → proliferation of 
theory models  

Higgsless: TC, ETC, walking-TC, EWSB in 5D or more, etc

TeV cutoff for δm2h: 

Fundamental scale (large, TeV, susy, flat, warped, etc)

Higgs compositeness (plain, various Little, etc)

Supersymmetry breaking scale (MSSM, xMSSM, etc)

Fine-tuned models (SM, SpS, SuperSpS, etc)

The experiment provides an interesting perspective

the LEP&C heritage: EWPTs and the “little hierarchy” problem

quantum number and gauge coupling unification

the flavour problem

The landscape of theory models
and its consequences



–    <H> = 174 GeV

–    MPl

–    QNP

NP

SM

E

The little residual hierarchy
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2
NP

B, L-violating NP: QNP > c1/2 1012 TeV

Bi, Li, CP-violating NP: QNP > c1/2 103 TeV

B, L, Fl, CP conserving: QNP > c1/2 5 TeV

ν’s, p-decay, 
GUTs (4D, 5D)

why is TeV 
flavour violation

“small”?
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conservative
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0.5 TeV 1-loop perturbative
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What do we really know 
about the Higgs sector?



The “established” SM
“Observed” fields: 

Gauge bosons:

Femions: 

“3/4” of the Higgs field:      (long. part of massive gauge bosons, 
Goldstones of SU(2)LxU(1)Y → U(1)em)

Ga

Qi uc
i dc

i Li ec
i

gA
µ W a

µ Bµ



The “established” lagrangian
Most general gauge invariant lagrangian for the observed fields

LSM = LEW + LEWSB 

LEW = Gauge bosons, fermions, gauge interactions

LEWSB = Goldstone effective lagrangian and interactions

Manohar 9606222
Colangelo Isidori 0101264

Ecker 9501357

Callan Coleman Wess 
Zumino PRD 177 1969

Contino 1005.4269



large energies ✏µL(p) = pµ/mW + O(mW/E), so that each diagram naively grows as E4.
When all the diagrams are summed, however, the leading E4 term cancels out, and
the amplitude grows as E2. We will see shortly that this cancellation can be easily
understood by performing the calculation in a renormalizable gauge. By projecting on
partial wave amplitudes,

al =
1

32⇡

Z +1

�1

d cos ✓ A(s, ✓)Pl(cos ✓), (4)

where Pl(x) are the Legendre polynomials (P0(x) = 1, P1(x) = x, P2(x) = 3x2/2�1/2,
etc.), one finds the following expression for the s-wave amplitude (l = 0):

a0(W
+
L W�

L ! W+
L W�

L ) ' 1

32⇡

s

v2
. (5)

The loss of perturbative unitarity in the s-wave scattering thus occurs for 1

⇡ ⇡ � ' 2Re(a0) , i.e. for:
p

s ⇡ ⇤ = 4⇡v ' 3 TeV . (6)

The role of the longitudinally polarized vector bosons suggests that the inconsis-
tency of the Lagrangian (1) is in the sector that breaks spontaneously the electroweak
symmetry and gives mass to the vector bosons. The connection can be made explicit
by introducing, as propagating degrees of freedom, the Nambu-Goldstone bosons �a

that correspond to the longitudinal polarizations of the W and Z bosons:

⌃(x) = exp(i�a�a(x)/v), Dµ⌃ = @µ⌃ � ig
�a

2
W a

µ⌃ + ig0⌃
�3

2
Bµ . (7)

In terms of the chiral field ⌃, the mass terms can be rewritten as follows: 2

Lmass =
v2

4
Tr
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(Dµ⌃)† (Dµ⌃)

i
� vp
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X
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ū(i)
L d(i)
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ij u(j)

R
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ij d(j)

R
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+ h.c. (8)

The local SU(2)L ⇥ U(1)Y invariance is now manifest, since ⌃ transforms as

⌃ ! UL(x) ⌃ U †
Y (x) ,

UL(x) = exp
�
i↵a

L(x)�a/2
�

UY (x) = exp
�
i↵Y (x)�3/2

�
,

(9)

1A slightly stronger bound,
p

s . 2
p

2⇡v = 2.2 TeV, is obtained by including the e↵ect of the
channel W+W� ! ZZ, see Ref. [10]. Notice that sometimes the bound Re(al)  1/2 or |al|  1 is
imposed, instead of �  ⇡. All are in fact acceptable as an estimates of the energy where perturbative
unitarity is lost. The di↵erence in the values of the cuto↵ ⇤ thus obtained can be interpreted as the
theoretical uncertainty of the estimate.

2For simplicity, from here on I will omit the lepton terms and concentrate on the quark sector.
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although it is non-linearly realized on the �a fields:

�a(x) ! �a(x) +
v

2
↵a
L(x) � v

2
�a3 ↵Y (x) . (10)

In the unitary gauge, h⌃i = 1, the chiral Lagrangian (8) reproduces the mass term
of eq.(1) with

⇢ ⌘ M2
W

M2
Z cos2 ✓W

= 1 . (11)

This relation is consistent with the experimentally measured value to quite good ac-
curacy. It follows as the consequence of a larger approximate invariance of (8) under
SU(2)L ⇥ SU(2)R global transformations,

⌃ ! UL ⌃ U †
R , (12)

which is spontaneously broken to the diagonal subgroup SU(2)c by h⌃i = 1, and
explicitly broken by g0 6= 0 and �u

ij 6= �d
ij. In the limit of vanishing g0 the fields �a

transform as a triplet under the “custodial” SU(2)c, so that MW = MZ . This equality
is replaced by Eq.(11) at tree level for arbitrary values of g0. Further corrections
proportional to g0 and (�u � �d) arise at the one-loop level and are small. In fact, the
success of the tree-level prediction ⇢ = 1 a posteriori justifies the omission in the chiral
Lagrangian (8) of the additional term

v2 Tr
⇥
⌃†Dµ⌃ �3

⇤2
(13)

that is invariant under the local SU(2)L ⇥ U(1)Y but explicitly breaks the global
SU(2)L ⇥ SU(2)R. In other words, the coe�cient of such additional operator is exper-
imentally constrained to be very small.

The chiral Lagrangian (8) makes the origin of the violation of perturbative unitarity
most transparent. Let us work in a renormalizable ⇠-gauge, with a gauge-fixing term

LGF = � 1

2⇠

⇣
@µW

3
µ + ⇠

gv

2
�3
⌘2

� 1

2⇠

✓
@µBµ + ⇠

g0v

2
�3

◆2

� 1

2⇠

����@µW
+
µ + ⇠

g0v

2
�+

����
2

.

(14)

The Equivalence Theorem [11,10] states that at large energies the amplitude for the
emission or absorption of a Goldstone field � becomes equal to the amplitude for the
emission or absorption of a longitudinally-polarized vector boson:

=

Wµ
L �

⇥
 

1+O

✓
m2

W

E2

◆!
.

7

+ aT

dynamics which is perturbative and thus calculable. As an important application we
compute the form factors that parametrize the couplings of the composite Higgs and
obtain an analytic expression for its potential. We conclude with a few words on the
phenomenology of composite Higgs models.

In selecting the above topics I had necessarily to omit some other important ones,
as for example warped extra dimensional models and holography in curved spacetimes,
and Little Higgs theories. Fortunately excellent reviews exist on these subjects, such
as for example the Les Houches lectures by T. Gherghetta on holography [1] and the
review by M. Schmaltz and D. Tucker-Smith on Little Higgs models [2]. The lectures
by R. Sundrum [3] at TASI 2004 and the review [4] by M. Serone partly overlap
with Section 4 and contain interesting complementary topics and discussions. General
introductions to flat and warped extra dimensions are given for example in the parallel
TASI lectures by H. C. Cheng [5] and T. Gherghetta, the TASI lectures by C. Csaki [6],
G. Kribs [7], and the Cargese lectures by R. Rattazzi [8]. Extra dimensional models
as theories of electroweak symmetry breaking are for example discussed in the TASI
lectures by C. Csaki, J Hubisz and P. Meade [9]. More detailed references are given
throughout the text. They are meant to introduce the reader to the vast literature on
the subject and form a necessarily incomplete and partial list. I apologize in advance
for the omissions.

2 Two paradigms for Electroweak Symmetry Breaking

The vast amount of data collected so far in high-energy experiments can be explained
and compactly summarized by the Lagrangian

L = L0 + Lmass

L0 = �1

4
W a

µ⌫W
aµ⌫ � 1

4
Bµ⌫B

µ⌫ � 1

4
Gµ⌫G
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L M e
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ij⌫

(j)
R

⌘

+ h.c. ,

(1)

where  = {qiL, ui
R, di

R, liL, eiR, ⌫i
R} is a collective index for the Standard Model fermions

and i, j are generation indices. A remarkable property of L is that while all the fun-
damental interactions among the particles (determined by L0) are symmetric under
local SU(2)L ⇥ U(1)Y transformations, the observed mass spectrum (determined by
Lmass) is not. In other words, the electroweak symmetry is hidden, i.e. spontaneously
broken by the vacuum. Although successful at the energies explored so far, the above

4

+ O(p4)

ρ≈1 ⇒ aT≈0
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emission or absorption of a longitudinally-polarized vector boson:

=

Wµ
L �

⇥
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✓
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W

E2

◆!
.
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2 problems:

1) The theory is strongly interacting at TeV

although it is non-linearly realized on the �a fields:

�a(x) ! �a(x) +
v

2
↵a
L(x) � v

2
�a3 ↵Y (x) . (10)

In the unitary gauge, h⌃i = 1, the chiral Lagrangian (8) reproduces the mass term
of eq.(1) with

⇢ ⌘ M2
W

M2
Z cos2 ✓W

= 1 . (11)

This relation is consistent with the experimentally measured value to quite good ac-
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SU(2)L ⇥ SU(2)R global transformations,

⌃ ! UL ⌃ U †
R , (12)
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explicitly broken by g0 6= 0 and �u

ij 6= �d
ij. In the limit of vanishing g0 the fields �a
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is replaced by Eq.(11) at tree level for arbitrary values of g0. Further corrections
proportional to g0 and (�u � �d) arise at the one-loop level and are small. In fact, the
success of the tree-level prediction ⇢ = 1 a posteriori justifies the omission in the chiral
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v2 Tr
⇥
⌃†Dµ⌃ �3

⇤2
(13)
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emission or absorption of a longitudinally-polarized vector boson:

=

Wµ
L �
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In particular, the amplitude for the scattering of two longitudinal W ’s becomes equal,
at energies E � mW , to the amplitude for the scattering of two Goldstone bosons.
For the latter process there is only one diagram which contributes at leading order in
E/mW :

A(�+�� ! �+��) =
1

v2
(s + t) . (15)

The growth of the amplitude with E2 thus originates from the derivative interaction
among four Goldstones contained in the kinetic term of ⌃ in Eq.(8). Ultimately, the
violation of perturbative unitarity can be traced back to the non-renormalizability of
the Lagrangian (8). The merit of the chiral formulation is that of isolating the problem
to the sector of the Lagrangian which leads to the mass terms for the vector bosons
and the fermions.

There are thus two possibilities: i) either new particles associated to new dynamics
come in to restore unitarity before perturbativity is lost, or ii) the �� scattering grows
strong until the interaction among four �’s becomes non-perturbative. This latter pos-
sibility must also be seen as the emergence of new physics, as the description of the
theory changes, at the strong scale, in terms of new, more fundamental, degrees of
freedom. These two paradigms for the electroweak symmetry breaking are well exem-
plified by the two theories that we will discuss in the next sections: the Higgs model,
and Technicolor theories. Whatever mechanism Nature has chosen, it is generally true
that

There has to be some new symmetry-breaking dynamics acting as an ultraviolet
completion of the electroweak chiral Lagrangian (8).

As required by the experimental evidence, such new dynamics must be (approximately)
custodially symmetric, so as to prevent large corrections to the ⇢ parameter. The most
important question then is the following: is this dynamics weak or strong ?

2.1 The Higgs model

The most economical example of new custodially-invariant dynamics is that of just one
new scalar field h(x), singlet under SU(2)L ⇥ SU(2)R. Assuming that h is coupled to
the SM gauge fields and fermions only via weak gauging and (proto)-Yukawa couplings,
the most general EWSB Lagrangian has three free parameters a, b, c 3 at the quadratic

3In general c can be a matrix in flavor space. We will assume it is proportional to unity, so that
no flavor-changing neutral current e↵ects originate from the tree-level exchange of h.
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(while EWPT seem to indicate that strong interactions
can appear only above about 5 TeV)

2) Hints of a Higgs



Add scalar h, SU(2)LxSU(2)R singletorder in h [12]:

LH =
1

2
(@µh)2 + V (h) +

v2

4
Tr
h
(Dµ⌃)† (Dµ⌃)

i✓
1 + 2a

h

v
+ b

h2

v2
+ . . .

◆

� vp
2

X

i,j

⇣
ū(i)
L d(i)

L

⌘
⌃

✓
1 + c

h

v
+ · · ·

◆ 
�uij u(j)

R

�dij d(j)
R

!
+ h.c.

(16)

Here V (h) denotes the potential, including a mass term, for h. Each of these parame-
ters controls the unitarization of a di↵erent sector of the theory. For a = 1 the exchange
of the scalar unitarizes the �� ! �� scattering 4

A(�+�� ! �+��) =
1

v2


s � a2 s2

s � m2
h

+ (s $ t)

�

=
s + t

v2

�
1 � a2

�
+ O

✓
m2

h

E2

◆
.

Since we have introduced a new particle in the theory, we have to check that also the
inelastic channels involving h are unitarized. The �� ! hh scattering (equivalent to
WLWL ! hh at high energy), is perturbatively unitarized for b = a2:

A(�+�� ! hh) =
s

v2

�
b � a2

�
+ O

✓
m2

h

E2

◆
.

Finally, the �� !   ̄ scattering (equivalent to WLWL !   ̄ at high energy) is unita-
rized for ac = 1

4In the diagrams showed in present section, dashed and solid lines denote respectively the fields �
and h, whereas solid lines with an arrow denote fermions.
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Here V (h) denotes the potential, including a mass term, for h. Each of these parame-
ters controls the unitarization of a di↵erent sector of the theory. For a = 1 the exchange
of the scalar unitarizes the �� ! �� scattering 4
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v2
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�
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h
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◆
.

Since we have introduced a new particle in the theory, we have to check that also the
inelastic channels involving h are unitarized. The �� ! hh scattering (equivalent to
WLWL ! hh at high energy), is perturbatively unitarized for b = a2:

A(�+�� ! hh) =
s

v2

�
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�
+ O

✓
m2

h

E2

◆
.

Finally, the �� !   ̄ scattering (equivalent to WLWL !   ̄ at high energy) is unita-
rized for ac = 1

4In the diagrams showed in present section, dashed and solid lines denote respectively the fields �
and h, whereas solid lines with an arrow denote fermions.
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a ≈ 1



Add scalar h, SU(2)LxSU(2)R singletorder in h [12]:

LH =
1

2
(@µh)2 + V (h) +

v2

4
Tr
h
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Here V (h) denotes the potential, including a mass term, for h. Each of these parame-
ters controls the unitarization of a di↵erent sector of the theory. For a = 1 the exchange
of the scalar unitarizes the �� ! �� scattering 4

A(�+�� ! �+��) =
1

v2


s � a2 s2

s � m2
h

+ (s $ t)

�

=
s + t

v2

�
1 � a2
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+ O

✓
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◆
.

Since we have introduced a new particle in the theory, we have to check that also the
inelastic channels involving h are unitarized. The �� ! hh scattering (equivalent to
WLWL ! hh at high energy), is perturbatively unitarized for b = a2:

A(�+�� ! hh) =
s

v2

�
b � a2

�
+ O

✓
m2

h

E2

◆
.

Finally, the �� !   ̄ scattering (equivalent to WLWL !   ̄ at high energy) is unita-
rized for ac = 1

4In the diagrams showed in present section, dashed and solid lines denote respectively the fields �
and h, whereas solid lines with an arrow denote fermions.
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b ≈ 1

order in h [12]:

LH =
1

2
(@µh)2 + V (h) +

v2

4
Tr
h
(Dµ⌃)† (Dµ⌃)
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v
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Here V (h) denotes the potential, including a mass term, for h. Each of these parame-
ters controls the unitarization of a di↵erent sector of the theory. For a = 1 the exchange
of the scalar unitarizes the �� ! �� scattering 4

A(�+�� ! �+��) =
1

v2


s � a2 s2

s � m2
h

+ (s $ t)

�

=
s + t

v2

�
1 � a2

�
+ O

✓
m2

h

E2

◆
.

Since we have introduced a new particle in the theory, we have to check that also the
inelastic channels involving h are unitarized. The �� ! hh scattering (equivalent to
WLWL ! hh at high energy), is perturbatively unitarized for b = a2:

A(�+�� ! hh) =
s

v2

�
b � a2

�
+ O

✓
m2

h

E2

◆
.

Finally, the �� !   ̄ scattering (equivalent to WLWL !   ̄ at high energy) is unita-
rized for ac = 1

4In the diagrams showed in present section, dashed and solid lines denote respectively the fields �
and h, whereas solid lines with an arrow denote fermions.
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Add scalar h, SU(2)LxSU(2)R singletorder in h [12]:

LH =
1

2
(@µh)2 + V (h) +

v2

4
Tr
h
(Dµ⌃)† (Dµ⌃)
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Here V (h) denotes the potential, including a mass term, for h. Each of these parame-
ters controls the unitarization of a di↵erent sector of the theory. For a = 1 the exchange
of the scalar unitarizes the �� ! �� scattering 4

A(�+�� ! �+��) =
1

v2


s � a2 s2
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+ (s $ t)
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=
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.

Since we have introduced a new particle in the theory, we have to check that also the
inelastic channels involving h are unitarized. The �� ! hh scattering (equivalent to
WLWL ! hh at high energy), is perturbatively unitarized for b = a2:

A(�+�� ! hh) =
s

v2

�
b � a2

�
+ O

✓
m2

h

E2

◆
.

Finally, the �� !   ̄ scattering (equivalent to WLWL !   ̄ at high energy) is unita-
rized for ac = 1

4In the diagrams showed in present section, dashed and solid lines denote respectively the fields �
and h, whereas solid lines with an arrow denote fermions.
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c ≈ 1

A(�+�� !   ̄) =
m 

p
s

v2
(1 � ac) + O

✓
m2

h

E2

◆
.

Only for a = b = c = 1 the EWSB sector is weakly interacting (provided the scalar h
is light), as for example a 6= 1 implies a strong WW ! WW scattering with violation
of perturbative unitarity at energies

p
s ⇡ 4⇡v/

p
1 � a2, and similarly for the other

channels.
The point a = b = c = 1 in fact defines what I will call the “Higgs model”: LH (with

vanishing higher-order terms in h) can be rewritten in terms of the SU(2)L doublet

H(x) =
1p
2

ei�
a�a(x)/v

✓
0

v + h(x)

◆
(17)

and gets the usual form of the Standard Model Higgs Lagrangian. In other words, �a

and h together form a linear representation of SU(2)L ⇥ SU(2)R. The unitarity of the
model can be thus traced back to its renormalizability. In terms of the Higgs doublet
H, the custodial invariance of the Lagrangian appears like an accidental symmetry:
at the renormalizable level, all the (SU(2)L ⇥U(1)Y )-invariant operators are functions
of H†H =

P
i !

2
i , where !i are the four real components parametrizing the complex

doublet H. This implies that the theory is invariant under an SO(4) ⇠ SU(2)L ⇥
SU(2)R invariance, broken down to SO(3) ⇠ SU(2)c in the vacuum hH†Hi = v2,
under which the !i components are rotated.

The weakly-interacting Higgs model has two main virtues: it is theoretically at-
tractive because of its calculability, and it is insofar phenomenologically successful, as
it satisfies the LEP and SLD electroweak precision tests [13]. Both calculability (which
stems from perturbativity) and the success in passing the precision tests follow from
the Higgs boson being light. It is however well known that an elementary light scalar,
such as h, is unstable under radiative corrections: its mass receives quadratically diver-
gent corrections, which makes a light Higgs scalar highly unnatural in absence of some
symmetry protection. In this sense, the Higgs model should perhaps be regarded as
a parametrization rather than a dynamical explanation of the electroweak symmetry
breaking.

2.2 Technicolor models

The Higgs model is an extremely economical way to perturbatively unitarize the theory
and parametrize the symmetry breaking, but we know that it is not the solution that
Nature has chosen in another similar physical system: QCD. At low energy the con-
densation of the color force dynamically breaks the SU(2)L ⇥SU(2)R chiral symmetry

10
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under which the !i components are rotated.

The weakly-interacting Higgs model has two main virtues: it is theoretically at-
tractive because of its calculability, and it is insofar phenomenologically successful, as
it satisfies the LEP and SLD electroweak precision tests [13]. Both calculability (which
stems from perturbativity) and the success in passing the precision tests follow from
the Higgs boson being light. It is however well known that an elementary light scalar,
such as h, is unstable under radiative corrections: its mass receives quadratically diver-
gent corrections, which makes a light Higgs scalar highly unnatural in absence of some
symmetry protection. In this sense, the Higgs model should perhaps be regarded as
a parametrization rather than a dynamical explanation of the electroweak symmetry
breaking.

2.2 Technicolor models

The Higgs model is an extremely economical way to perturbatively unitarize the theory
and parametrize the symmetry breaking, but we know that it is not the solution that
Nature has chosen in another similar physical system: QCD. At low energy the con-
densation of the color force dynamically breaks the SU(2)L ⇥SU(2)R chiral symmetry
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LH = SM Higgs + Yukawa lagrangian



The “established” lagrangian

The SM Higgs is a special, especially appealing case, 
with

✓$exact unitarization
✓$agreement with EWPT

✓$understanding of custodial symmetry as 
accidental symmetry

✗$hierarchy problem

Manohar 9606222
Colangelo Isidori 0101264

Ecker 9501357

Callan Coleman Wess 
Zumino PRD 177 1969

Contino 1005.4269



Higgs as a pseudo-NGB
a ≠ 1, b ≠ 1, c ≠ 1 are a sign of composite Higgs:              
Λstrong just pushed higher than TeV (better for EWPT)

Composite Higgs welcome as a solution of the hierarchy problem 
(trade-off between HP and EWPT)

Why mH « Λstrong?

Perhaps for the same reason why mπ « ΛQCD                          
H pseudo-NGB of approximate global symmetry                     
of strong dynamics at Λstrong » mH 



Composite Higgs 
and extra dimensions



Realization in Extra Dimensions

S1:

S1/Z2:       S1 +  y ∼〜～ -y:

0

2⇡R

⇡R

0 ⇡R 0 ⇡R

=

2⇡R � x5

x5

Z2

Figure 13: The orbifold construction: opposite points on the circle are identified by a Z2

symmetry. The resulting space is equivalent to a segment of length L = ⇡R.

where �M are the 5-dimensional gamma matrices,

�M =
�
�µ, �i�5

 
,

�
�M ,�N

 
= 2 ⌘MN . (134)

The smallest irreducible representation of the 5-dimensional Lorentz group SO(4, 1) is
a Dirac fermion, so that the bulk fermion  has both a left-handed and a right-handed
component 19

 (x, x5) =


 L(x, x5)

 R(x, x5)

�
. (135)

A gauge-invariant mass m for the fermion field is thus allowed in the bulk. Notice
that the 5D gauge coupling has dimension of mass�1/2, [1/g2

5] = 1, and this is a sign
that the theory described by the action (133) is non-renormalizable. Indeed, it is valid
up to energies of the order ⇤S ⇡ 16⇡2/g2

5, below which it can be considered as the
low-energy e↵ective description of some more fundamental theory. In spite of the non-
renormalizability, there are important physical observables – we will see that the Higgs
potential is one of those – which are UV finite and thus calculable.

Since the spacetime has boundaries, the action (133) alone does not completely
define the theory: one has to specify the fields’ boundary conditions at x5 = 0 and
x5 = L. These must be chosen so that the variation of the action vanishes, upon
evaluation on the equations of motion, both in the bulk and on the boundaries. For
example, in the case of the fermion  , the variation of the action reads

�S =
�S

� 
� + � ̄

�S

� ̄

=

Z
d4x

Z L

0

dx5
⇥
� ̄D + D � 

⇤
+

1

2

Z
d4x

⇥
 ̄�5� � � ̄�5 

⇤L
0

.

(136)

The first term on the second line of the previous formula vanishes upon evaluation on

19Here ‘left’ and ‘right’ refer to the chirality in 4 dimensions, that is: �5 R,L = ± R,L.

47

y
+   y ∼〜～ y + 2πR:

Fixed points Boundaries

Bulk

Quiros 0302189
Serone 0909.5619

Gherghetta 0601213



Z2 parity (boundary conditions)
Can be used to break symmetries in a novel way

Gauge symmetries can be broken “on the boundaries”

Boundary conditions for

5D fermions: chirality

5D vectors: massless (tree level) 4D scalars ↔ broken 
generators ↔ pseudo Goldstone bosons



RS
S1/Z2 5D model with curved 5th dimension: ds2 = e-2ky dx2 + dy2 

IR redshift of energies: y = πR (IR brane) wrt y = 0 (UV brane)

All scales are O(MPl), including k,1/R, within O(10) factor

Fields localized near UV see O(MPl), near IR see O(MPl)e-2πkR 

kR ≈ 12 → O(MPl)e-2πkR ≈ TeV

Solution of hierarchy problem if the graviton is near UV, the 
Higgs is near IR

SM in the bulk (instead of on the IR brane as in original RS)

eases FCNC problem

gives (very) hierarchical fermion masses

Dual description: fields near IR are mostly composite



Extra-dims accessible at LHC and 
compositeness together with high 
scale extrapolation 

RS + bulk fermions + H as (A5)0 + 
deconstruction =  Little Higgs + UV 
completion

Flavour, 4D dual                              
UV brane: elementary dofs               
IR brane: composite dofs (H, tR)

Qstrong > 5 TeV as usual            
mKK > TeV, watch Z → bb

Gauge coupling unification in a 
novel way (but limited calculability)–    <H> = 174 GeVSM

E

–    QNP = mKK

–    Qstrong = ΛIR

a few weakly 
coupled KK

CFT
(dual to

AdS)

AdS 5

π R

)UV (M  P IR (TeV)

y0

Figure 1: A slice of AdS5: The Randall-Sundrum scenario.

the warped down scale

1

M2
5

Ψ̄iΨjΨ̄kΨl → 1

(M5e−πkR)2
Ψ̄iΨjΨ̄kΨl , (3)

1

M5
ννHH → 1

M5e−πkR
ννHH , (4)

where Ψi is a Standard Model fermion and ν is the neutrino. This leads to generic
problems with proton decay and FCNC effects, and also neutrino masses are no longer
consistent with experiment. Thus, while the hierarchy problem has been addressed
in the Higgs sector by a classical rescaling of the Higgs field, this has come at the
expense of introducing proton decay and FCNC problems from higher-dimension op-
erators that were sufficiently suppressed in the Standard Model.

• Exercise: The classical rescaling Φ → edΦπkRΦ where dΦ = 1(3
2) for scalars

(fermions), suffers from a quantum anomaly and leads to the addition of the La-
grangian term

δLanomaly = πkR
∑

i

β(gi)

4g3
i

Tr F 2
µν,i , (5)

where β(gi) is the β-function for the corresponding gauge couplings gi. Show that this
anomaly implies that quantum mass scales, such as the gauge coupling unification
scale MGUT , are also redshifted by an amount MGUT e−πkR.

Instead in the slice of AdS5 with the Standard Model fields confined on the IR brane
one has to resort to discrete symmetries to forbid the offending higher-dimension
operators. Of course it is not adequate just to forbid the leading higher-dimension

4

(0)e

Aµ
(0)

(0)t

)UV (M  P

H

IR (TeV)

Figure 2: The Standard Model in the warped five-dimensional bulk.

requires that lepton number is conserved on the UV brane. Instead in the “reversed”
scenario one can place the right (left) handed neutrino near the IR (UV) brane. In
this case even though lepton number is violated on the UV brane, the neutrinos will
still obtain naturally tiny Dirac masses [21].

3.2 Higher-dimension operators

Let us consider the following generic four-fermion operators which are relevant for
proton decay and K − K̄ mixing

∫
d4x

∫
dy

√
−g

1

M3
5

Ψ̄iΨjΨ̄kΨl ≡
∫

d4x
1

M2
4

Ψ̄(0)
i+ Ψ(0)

j+Ψ̄(0)
k+Ψ(0)

l+ , (38)

where the effective 4D mass scale M4 for 1/2 <∼ ci
<∼ 1 is approximately given by[11]

1

M2
4

% k

M3
5

e(4−ci−cj−ck−cl)πkR . (39)

If we want the suppression scale for higher-dimension proton decay operators to be
M4 ∼ MP then (39) requires ci % 1 assuming k ∼ M5 ∼ MP . Unfortunately for these
values of ci the corresponding Yukawa couplings would be too small. Nevertheless, the
values of c needed to explain the Yukawa coupling hierarchies still suppresses proton
decay by a mass scale larger than the TeV scale [11, 22]. Thus there is no need to
impose a discrete symmetry which forbids very large higher-dimension operators.

On the other hand the suppression scale for FCNC processes only needs to be
M4

>∼ 1000 TeV. This can easily be achieved for the values of c that are needed
to explain the Yukawa coupling hierarchies. In fact the FCNC constraints can be
used to obtain a lower bound on the Kaluza-Klein mass scale mKK . For example

12

–

Warping and compositeness

[Contino Nomura Pomarol hep-ph/0306259   
Agashe Contino Pomarol hep-ph/0412089     

hep-ph/0605341]

mh ⇠ M5e
�2⇡kR

k = curvature
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Supersymmetric 
extensions of the SM



Motivations

Phenomenological

• Solves the naturalness (hierarchy) problem

• Precisely predicts gauge coupling unification

• Provides a natural DM candidate (needs RP)

• See below...

Theoretical

• Unification of fermions and bosons

• Local supersymmetry = supergravity + crucial in string theory

• Completes the list of possible symmetries of S (under hypotheses)

• Powerful technical tool
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Note that it is crucial that the coupling are exactly equal. Supersymmetry 
breaking, if it is not to spoil the solution of the hierarchy problem should 
maintain this equality

How supersymmetry solves the hierarchy problem
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Figure 7.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cot α ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0

u/H0
d ≈ 10, correspond to the mass eigenstate h0, while

the orthogonal steeper direction corresponds to the mass eigenstate H0.

∆(m2
h0) =

h0

t

+
h0

t̃

+ h0

t̃

Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [165, 166].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [167]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln

(
mt̃1

mt̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.
‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against

tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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Supersymmetry generators: b ↔ f; #b = #f

[P2, Qiα] = 0 ⇒ mb = mf :  supersymmetry must be broken

<Ω|H|Ω> ∝ ∑iα (|QiαΩ|2 + |QiαΩ|2) ≥ 0 : SSSB ⇔ vacuum energy > 0

N supersymmetries: massive 1P states contain j ≥ N/2 

                        massless 1P states contain |j| ≥ N/4 (if odd, N→N+1)

j ≤ 2 ⇒ N ≤ 8

j ≤ 1 ⇒ N ≤ 4

chiral gauge theory ⇒ N ≤ 1

(chiral ⇔ not all the fermions can have a gauge invariant mass term              

SM is very chiral ⇒ its extensions must be chiral)

76

Properties and N=1
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N=1 supersymmetry algebra
G = Poincaré + Internal group generators + Qα, Qα 

Qα → Lαβ Qβ , [Pμ, Qα] = 0

Qα → eω Qα     (“R-symmetry”) or invariant under internal symmetries

 

1 particle supersymmetry multiplets:

77

–

{Q�, Q̄⇥} = 2 �µ
�⇥Pµ {Q�, Q⇥} = 0

#B = #F 

j 1P multiplets1P multiplets1P multiplets1P multiplets

0

1/2

1

3/2

2

2 1

1 2 1

1 2 1

1 2

1

m ≠ 0

(j ≥ 1/2)

j

-1

-1/2

0

1/2

1

1

1 1

2

1 1

1

m = 0

(|j| ≥ 1/2)



j

0

1/2

1

2 1

1 2

1

j

-1

-1/2

0

1/2

1

1

1 1

2

1 1

1

(A, ψ)   “scalar” (“chiral”) multiplet
A scalar, ψ left-handed Weyl spinor
DOFs: 2B+2F (on shell)
[A] = 1, [ψ] = 3/2

(vμ, λ)   massless “vector” (“real”) multiplet
vμ real vector, λ left-handed Weyl spinor
DOFs: 2B+2F (on shell)
[vμ] = 1, [λ] = 3/2

(vμ, λ, χ, C)  massive vector multiplet
χ Weyl, C complex scalar

Field multiplets
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m ≠ 0



Defining a global N=1 renormalizable supersymmetric gauge theory

Specify the gauge group G

Specify the chiral superfield content Φi = (Ai, ψi) and quantum numbers 
under G

Associate a massless vector superfield to each generator of G:                
tA ↔ (vAμ, λA)

Specify a gauge invariant holomorphic function W(Φ) (“superpotential”)   
[W] = 3; renormalizability ⇒ W =  (λijk/3)ΦiΦjΦk + (μij/2)ΦiΦj + m2i Φi
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In terms of

Omitting FY and  θ term:

Continuous symmetries (commuting with gauge):
• commuting with supersymmetry: Q(A) = Q(ψ), Q(vμ) = Q(λ) = 0, Q(W) = 0
• R-symmetries: R(ψ) = R(A)-1, R(vμ) = 0, R(λ) = 1, R(W) = 2

The supersymmetric lagrangian (WZ gauge)
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2gAA†
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ij
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⇥
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V (A) = F †
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Non renormalization theorem 
and the solution of the hierarchy problem

Second line in Lsusy does not get perturbative radiative corrections

First line does, but it is (logarithmic) wave function renormalization

Example: W ⊇ -μij AiAj ⇒ V ⊇ (μ✝μ)ij A✝iAj, quadratically divergent?

Interpretation: supersymmetry relates scalar masses to fermion masses, 
which are protected by chiral symmetry
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+AjAi

ψh

ψk

λihk λ*jhk

From -(1/2)∂h∂kW(A) ψhψk 
W(A) ⊇ (λihk/3)AiAhAk

Ai Aj

Ak

λihk λ*jhk

From F✝hFh,  
F✝h = ∂hW(A)

+ gauge contributions

Ai Aj

Ah

Ak

λihpμ*pk

+

Proof at all orders uses superfields formalism 
or Seiberg argument (hep-ph/9309335)



Explicit (soft) supersymmetry breaking

me ≥ 100 GeV, not = 0.5 MeV
Most mechanisms of supersymmetry breaking take place at Q » TeV, give 
rise to effective, explicit, soft supersymmetry breaking terms at Q = TeV
“Soft” = do not give rise to quadratic divergences
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Figure 7.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cot α ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0

u/H0
d ≈ 10, correspond to the mass eigenstate h0, while

the orthogonal steeper direction corresponds to the mass eigenstate H0.
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h0) =

h0

t

+
h0

t̃
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t̃

Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [165, 166].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [167]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln

(
mt̃1

mt̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.
‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against

tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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Explicit (soft) supersymmetry breaking

me ≥ 100 GeV, not = 0.5 MeV
Most mechanisms of supersymmetry breaking take place at Q » TeV, give 
rise to effective, explicit, soft supersymmetry breaking terms at Q = TeV
“Soft” = do not give rise to quadratic divergences

• w(A) olomorphic, w = (aijk/3)AiAjAk + (b2ij/2)AiAj + c3i Ai 

• All terms in Lsoft proportional to a (supersymmetry breaking) mass scale
• (Mij)/2 ψiψj can be reabsorbed, w(A,A✝), MAi λAψi give quadratic 

divergences in the presence of gauge singlets (and very suppressed in 
explicit models)
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L = Lsusy + Lsoft

�Lsoft = m2
ijA

†
iAj +

�
MAB

2
�A�B + w(A) + h.c.

⇥
[Girardello Grisaru , NPB 194 (1982)]

Back to RP



Spontaneous supersymmetry breaking (SSSB)
SSSB ⇔ V > 0 ⇔ F ≠ 0 or D ≠ 0

(if Vmin = 0, there could still be SSSB in false vacua)

SSSB should not couple to the SM fields at the renormalizable + tree level:

• Tr(M2s=0) - 2 Tr(M2s=1/2) + 3 Tr(M2s=1) = 0 (tree level, canonical kinetic term) 

• no gaugino masses

Typically: SSSB in hidden sector at QSSSB » TeV, communicated to the SM 
fields by “messengers” at Qmess » QSSSB (gravity, heavy charged fields, etc)
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[Ferrara Girardello Palumbo, PRD20 (1979)]
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The MSSM



The Minimal Supersymmetric extension of the 
Standard Model (MSSM)

“Minimal” = minimal number of fields

G = SU(3)cxSU(2)LxU(1)Y = GSM

Embedding of the SM fields [in (A,ψ) (chiral) or (vμ,λ) (vector) multiplets]:

• Gauge bosons ⊆ vector multiplets (with gauginos)
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[Martin, hep-ph/9709356; Drees Godbole Roy, 
Haber Kane, Phys Rept 117 (1985)]

SM gμ Wμ Bμ qi uci dci li eci h

SU(3)c
SU(2)L
U(1)Y

8 1 1 3 3 3 1 1 1

1 3 1 2 1 1 2 1 2

0 0 0 1/6 -2/3 1/3 -1/2 1 -1/2

– – 

gA
µ ⇥ ĝA � (gA

µ , g̃A) (with “gluinos”)

W a
µ ⇥ Ŵ a � (W a

µ , W̃ a) (with “Winos”)
Bµ ⇥ B̂ � (Bµ, B̃) (with “Binos”)



The Minimal Supersymmetric extension of the 
Standard Model (MSSM)

“Minimal” = minimal number of fields

G = SU(3)cxSU(2)LxU(1)Y = GSM

Embedding of the SM fields [in (A,ψ) (chiral) or (vμ,λ) (vector) multiplets]:

• Fermions ⊆ chiral multiplets (with sfermions, s for “scalar”)
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[Martin, hep-ph/9709356; Drees Godbole Roy, 
Haber Kane, Phys Rept 117 (1985)]

SM gμ Wμ Bμ qi uci dci li eci h

SU(3)c
SU(2)L
U(1)Y

8 1 1 3 3 3 1 1 1

1 3 1 2 1 1 2 1 2
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i � (ũc
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The Minimal Supersymmetric extension of the 
Standard Model (MSSM)

“Minimal” = minimal number of fields

G = SU(3)cxSU(2)LxU(1)Y = GSM

Embedding of the SM fields [in (A,ψ) (chiral) or (vμ,λ) (vector) multiplets]:

• Higgs ⊆ chiral multiplets (with Higgsinos)
lepton number conservation:
anomaly cancellation + fermion masses:

88

[Martin, hep-ph/9709356; Drees Godbole Roy]

SM gμ Wμ Bμ qi uci dci li eci h

SU(3)c
SU(2)L
U(1)Y

8 1 1 3 3 3 1 1 1

1 3 1 2 1 1 2 1 2

0 0 0 1/6 -2/3 1/3 -1/2 1 -1/2

– – 

h �= l̃i
h⇥ ĥu � (hu, h̃u) + ĥd � (hd, h̃d)

�Uucq h� + �Ddcq h� �Uucq hu + �Ddcq hd



The MSSM superfield content
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– – 

MSSM gμ Wμ Bμ qi uci dci li eci hu hd

SU(3)c

SU(2)L

U(1)Y

8 1 1 3 3 3 1 1 1 1

1 3 1 2 1 1 2 1 2 2

0 0 0 1/6 -2/3 1/3 -1/2 1 1/2 -1/2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 

vector chiral

“sparticles” , s for “supersymmetric” 

SM field content + gauginos, sfermions, Higgsinos (and 1 extra Higgs doublet)

Gauge rep not (fully) chiral, unlike in the SM → μ problem
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SUSY: fermion ↔ scalars; SUSY partners much heavier
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Must identify the SM Yukawa interactions, e.g. λ ucq h

Candidate Yukawa interactions: 

The SM Yukawa interactions must come from superpotential terms

The SM Yukawas and the superpotential
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The most general renormalizable gauge invariant superpotential:

In the SM: L, B accidentally conserved (welcome)

In the MSSM: L, B accidentally conserved once matter parity (PM) or 
equivalently R-parity (PR or RP) is imposed

PM = +1 on hu, hd (scalar component ∈ SM)

RP = +1 on q, uc, dc, l, ec, hu, hd (SM fields + additional Higgs)

SM Yukawas 
+ Higgs and Higgsino mass 
+ more interactions

L and B violation: 
proton decay, 
neutrino masses

R-parity
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ˆ ˆ

PM = (-1)3(B-L) (remnant of B-L gauge symmetry?), commutes with SUSY

RP = (-1)3(B-L)+2s, discrete R-symmetry

PM = -1 on q, uc, dc, l, ec (fermion component ∈ SM)ˆ ˆ ˆ ˆ ˆ

RP = -1 on q, uc, dc, l, ec, hu, hd (supersymmetric partners)~ ~ ~ ~~ ~ ~
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Consequences of RP

Constrains the form of W, Lsoft (B, L accidentally conserved)

MSSM ≡ GSM + field content above + most general RP-invariant W, Lsoft

Sparticles are produced in pairs

The Lightest Supersymmetric Particle (LSP) is stable

Processes with SM external states only get susy corrections through loops
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i q̂j ĥd + �E

ij ê
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Parameter counting
3 gauge couplings, quantum numbers, θQCD

LSUSY: (3x18+2) - (9x5+2-5) = 14 = 9 fermion masses + 4 CKM parameters + 
1 Higgs/ino mass = SM - 1 (Higgs coupling predicted)

LSUSY + Lsoft: [3x18+2 (W) + 3x2 (gaugino masses) + 3x18+2 (w) + 5x9+2 
(scalar masses)] - [9x5+2 (U(3)5xU(1)2) + 1 (R-symmetry) - 3 (B, L, Y)] = 120 = 
SM + 105 = 14 + 3 gaugino masses + 3x6+3 sfermion masses + v, tanβ, mA + 
79 mixing and phases

Too large FCNC and CPV processes in most of the parameter space
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Flavour violation
LSUSY

• The only sources of U(3)5 breaking are the Yukawa matrices in W:        
λU, λD, λE (as in the SM)

• New flavour-violating interactions but controlled by the same parameters 
(“Mimimal Flavour Violation” MFV). Expect new effects but of the same 
order of magnitude as in the SM

• U(2)5 still approximate symmetry (exact in the limit                      )
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Flavour violation
LSUSY + Lsoft 

• New sources of U(3)5 violation: 

• Under a U(3)5 transformation

• New effects controlled by new parameters unrelated to SM Yukawas: 
potentially unsuppressed: ε ≈ 10-6 → O(1)

• Unless the soft terms are also approximately U(2)5 symmetric: 
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Flavour violation: examples
K0(ds) - K0(ds) oscillations (adds to the SM)

μ → e γ (negligible in the SM even adding neutrino masses)
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(a)

γ

e−µ− B̃

µ̃R ẽR

(b)

γ

e−µ−

W̃−

ν̃µ ν̃e

(c)

γ

e−µ− B̃

µ̃L ẽR

Figure 5.6: Some of the diagrams that contribute to the process µ− → e−γ in models with lepton
flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2

e , m2
L, and ae, respectively.

in eq. (4.1). Each of m2
Q, m2

u, m2
d
, m2

L, m2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (5.12) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (4.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (5.13)

m2
Q, m2

L, m2
u, m2

d
, m2

e , m2
Hu

, m2
Hd

, b ∼ m2
soft, (5.14)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (5.12)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (4.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [70] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

5.4 Hints of an Organizing Principle

Fortunately, there is already good experimental evidence that some powerful organizing principle must
govern the soft supersymmetry breaking Lagrangian. This is because most of the new parameters in
eq. (5.12) imply flavor mixing or CP violating processes of the types that are severely restricted by
experiment [71]-[96].

For example, suppose that m2
e is not diagonal in the basis (ẽR, µ̃R, τ̃R) of sleptons whose superpart-

ners are the right-handed parts of the Standard Model mass eigenstates e, µ, τ . In that case, slepton
mixing occurs, so the individual lepton numbers will not be conserved, even for processes that only
involve the sleptons as virtual particles. A particularly strong limit on this possibility comes from the
experimental bound on the process µ → eγ, which could arise from the one-loop diagram shown in
Figure 5.6a. The symbol “×” on the slepton line represents an insertion coming from −(m2

e)21µ̃∗
RẽR

in LMSSM
soft , and the slepton-bino vertices are determined by the weak hypercharge gauge coupling [see

Figures 3.3g,h and eq. (3.72)]. The result of calculating this diagram gives [73, 76], approximately,
§The parameter called b here is often seen elsewhere as Bµ or m2

12 or m2
3.
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The Constrained MSSM (CMSSM)

Assume that at some scale M0 » TeV the soft term satisfy (tree level):

• M1 = M2 = M3 ≡ M1/2 (universal gaugino masses)

• AU,D,E = A0 λU,D,E (A-term proportionality)

• (m2q)ij = (m2u)ij = (m2d)ij = (m2l)ij = (m2e)ij = m20 δij       m2hu = m2hd = m20         
(universality of scalar masses)

Motivation:

• Benchmark model with few parameters and FCNCs under control

• Minimal supergravity (msugra) gives the CMSSM (with model-dependent 
A0-B0 relation)

Parameter counting: 106 → 4 dimensionful pars + 2 phases (no new mixing 
pars, all mixing can be expressed in terms of CKM: an example of Minimal 
Flavour violation)
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Phase convention

R-symmetry: Lsusy invariant, R[λλ] = 2, R[W] = 2 ⇒ R[w] = 2

Peccey-Quinn: hu,d → hu,d eiα, PQ(ucqhu) = PQ(dcqhd) = PQ(eclhd) = 0

Standard phase convention: M1/2 > 0, m2ud > 0, phases in μ, A0

also used in the MSSM (provided that the gaugino phases differ by π)

Constraints from EDMs: |sinφμ|, |sinφA| ≲ 10-2 (supersymmetric CP “problem”)
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Complex 
parameters: μ M1/2 A0 m2ud

R-symmetry: 

Peccei-Quinn 
symmetry

μ M1/2 e2iω A0 e2iω m2ud

μ e2iα M1/2 A0 m2ud e2iα

ˆ ˆ



CP-conserving CMSSM
Physical parameters (besides gauge, fermion masses and mixings)

-∞ < m20 < ∞, -∞ < A0 < ∞, |μ| > 0, M1/2 > 0, m2ud > 0, sign(μ) = ±1

Trade |μ| for MZ, m2ud for tanβ (see below):

-∞ < m20 < ∞, -∞ < A0 < ∞, M1/2 > 0, 0 ≤ β ≤ π/2, sign(μ) = ±1
Plots often in m0-M1/2 plane for fixed β, A0, sign(μ)
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Example:
Atlas exclusion

 [GeV]0m
500 1000 1500 2000 2500 3000 3500

 [G
eV

]
1/

2
m

200

300

400

500

600

 (600)g~

 (800)g~

 (1000)g~

 (1200)g~

 (600)
q~

 (1000)
q ~

 (1400)
q ~

>0µ= 0, 
0

 = 10, A`MSUGRA/CMSSM: tan

=7 TeVs, -1 L dt = 1.04 fb0

0 lepton 2011 combinedATLAS 0 lepton 2011 combined

1
± r¾LEP2  

-1<0, 2.1 fbµ=3, `, tan q~, g~D0 
-1<0, 2 fbµ=5, `, tan q~,g~CDF 

Theoretically excluded

 observed 95% C.L. limitsCL
 median expected limitsCL

m1 ±Expected limit 
Reference point
2010 data PCL 95% C.L. limit



Analysis of the MSSM



1. Find the minimum of the potential (symmetry breaking) ϕ0 and express the 
lagrangian in terms of δϕ = ϕ - ϕ0  [lagrangian terms linear in the fields]

2. Collect the mass terms, find the mass eigenstates, express the original 
fields in terms of the mass eigenstates   [terms quadratic in the fields]

3. Write the interactions in terms of the mass eigenstates                      
[terms at least trilinear in the fields]
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Analysis of the MSSM



Issues:

1. V bounded from below?   (“UFB” directions)

2. <qi> = <uci> = <dci> = <li> = <eci> = 0?   (“CCB” (and L breaking) minima)

3. <hu>, <hd> preserve U(1)em ?

1. Not guaranteed. E.g. along

                              is unbounded from below unless

2. Not guaranteed. E.g. along

V(w) has a (deep) U(1)em minimum unless
                                 Analogously: 

3. Guaranteed (provided that 1. and 2. are fine) 

Electroweak symmetry breaking
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V = Vsusy + Vsoft = V (hu, hd, q̃i, ũ
c
i , d̃

c
i , l̃i, ẽ

c
i )

~ ~ ~~~

V = (m2
u + m2

d �m2
ud) w2

m2
u � m2

hu
+ |µ|2

m2
d � m2

hd
+ |µ|2�hu⇥ =

�
0
w

⇥
, �hd⇥ =

�
w
0

⇥
,

⇤
f̃
⌅

= 0

⇥hd⇤ =
�

w
0

⇥
,

⇤
l̃i
⌅

=
�

0
w

⇥
, ⇥ẽc

i ⇤ = �we��(AE
ii), ⇥else⇤ = 0

m2
u + m2

d > m2
ud

|AE
ii |2 < 3�2

ei

�
(m̃2

l )ii + (m̃2
ec)ii + m2

d

⇥

|AD
ii |2 < 3�2

di

�
(m̃2

q)ii + (m̃2
dc)ii + m2

d

⇥

|AU
ii |2 < 3�2

ui

�
(m̃2

q)ii + (m̃2
uc)ii + m2

u

⇥

Note: |A| ≲ λ m, A ≡ λ A ~ ˆ
Also: check positivity of mass eigenvalues



Assume <qi> = <uci> = <dci> = <li> = <eci> = 0. Then

Up to a gauge transformation:

χ ≠ 0 ⇔ U(1)em spontaneously broken

eiϕ ≠ ±1 ⇔ CP spontaneously broken

V minimum at χ = 0, eiϕ = 1 (for given vu,d)
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~ ~ ~~~

V =
g2 + g�2

8

⇥
h†

uhu � h†
dhd

⇤2
+

g2

2
��h†

uhd

��2 + |µ|2
⇥
h†

uhu + h†
dhd

⇤
from Lsusy

+ m2
hu

h†
uhu + m2

hd
h†

dhd + m2
ud (huhd + h.c.) from Lsoft

hu = vu

�
0
1

⇥
, hd = vde

i�

�
cos ⇥
sin⇥

⇥
vu,d > 0
0 � ⇥ � �/2

hu = vu

�
0
1

⇥
, hd = vd

�
1
0

⇥
vu = v sin�

vd = v cos �

v ⇥ 174 GeV
0 � � � ⇥/2



V(vu,vd) =

Quartic term dominates at large v, except for tanβ = 1 (vu = vd = v/√2), in 
which case:                                             . V bounded from below iff  

Local extrema: 
• v = 0, V = 0
• v ≠ 0: iff                     from                   : V = 

Bounds on β:
• λt Landau pole beyond MPl: tanβ ≳ 1 (see below)
• Higgs mass bound: tanβ ≳ 2 (see below)
• B-physics: tanβ ≲ 60
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m2
u � m2

hu
+ |µ|2

m2
d � m2

hd
+ |µ|2

V (v/
⇥

2, v/
⇥

2) = (m2
u + m2

d � 2m2
ud) v2/2

m2
u + m2

d � 2m2
ud(� 0)

m2
um2

d � (m2
ud)

2 vd�dV � vu�uV

vd�uV + vu�dV

g2 + g�2

4
v2 = �m2

u tan2 � �m2
d

tan�2 � 1
=

M2
Z

2
sin 2� =

2m2
ud

m2
u + m2

d

β is given by 
the solution with 

tanβ ≷ 1 if m2d ≷ m2u

g2 + g�2

8
�
v2

u � v2
d

⇥2 + m2
uv2

u + m2
dv

2
d � 2m2

udvuvd

Radiative corrections
lower m2u more than m2d

� 4
g2 + g�2

�
m2

us2
� �m2

dc
2
�

⇥2



We typically need m2hu < 0

while m2hd, m2f > 0:

an accident?
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m2d

m2u

m2u m2d = (m2ud)2

m2u + m2d = 2m2ud

tanβ < 1

tanβ > 1

~

V unbounded from below No symmetry breaking



Soft terms generated at M0 » TeV      e.g. in sugra M0 = MPl

Rad corrs to soft terms enhanced by large logs:

RGEs: 

BTW:

M1 = M2 = M3 , g1 = g2 = g3 @ MGUT ⇒ M1 : M2 : M3 = g21 = g22 = g23
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Radiative EWSB

d

dt
m̃2

q3
=

16
3

g2
3M2

3 + 3g2
2M2

2 +
1
15

g2
1M2
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⇥
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dt
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15
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m2

hu
= 3g2

2M2
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dt
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others = only gauge terms

X

d

dt
g2

i = �big
4
i ,

d

dt
Mi = �big

2
i Mi ⇥

Mi(Q1)
Mi(Q2)

=
g2

i (Q1)
g2

i (Q2)

M1 : M2 : M3 ≈ 1 : 2 : 7

[Martin Vaughn, PRD50 (1994)
Barger Berger Ohmann, PRD49 (1994)]

t =
1

(4�)2
log

M2
Pl

Q2
� 0.5
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Figure 7.4: RG evolution of scalar and gaugino mass parameters in the MSSM with typical minimal
supergravity-inspired boundary conditions imposed at Q0 = 2.5× 1016 GeV. The parameter µ2 + m2

Hu

runs negative, provoking electroweak symmetry breaking.

Figure 7.4 shows the RG running of scalar and gaugino masses in a typical model based on the
minimal supergravity boundary conditions imposed at Q0 = 2.5 × 1016 GeV. [The parameter values
used for this illustration were m0 = 80 GeV, m1/2 = 250 GeV, A0 = −500 GeV, tan β = 10, and
sign(µ)= +.] The running gaugino masses are solid lines labeled by M1, M2, and M3. The dot-dashed
lines labeled Hu and Hd are the running values of the quantities (µ2 + m2

Hu
)1/2 and (µ2 + m2

Hd
)1/2,

which appear in the Higgs potential. The other lines are the running squark and slepton masses,
with dashed lines for the square roots of the third family parameters m2

d3
, m2

Q3
, m2

u3
, m2

L3
, and m2

e3

(from top to bottom), and solid lines for the first and second family sfermions. Note that µ2 + m2
Hu

runs negative because of the effects of the large top Yukawa coupling as discussed above, providing for
electroweak symmetry breaking. At the electroweak scale, the values of the Lagrangian soft parameters
can be used to extract the physical masses, cross-sections, and decay widths of the particles, and other
observables such as dark matter abundances and rare process rates. There are a variety of publicly
available programs that do these tasks, including radiative corrections; see for example [186]-[195],[177].

Figure 7.5 shows deliberately qualitative sketches of sample MSSM mass spectrum obtained from
three different types of models assumptions. The first is the output from a minimal supergravity-
inspired model with relatively low m2

0 compared to m2
1/2 (in fact the same model parameters as used

for fig. 7.4). This model features a near-decoupling limit for the Higgs sector, and a bino-like Ñ1

LSP, nearly degenerate wino-like Ñ2, C̃1, and higgsino-like Ñ3, Ñ4, C̃2. The gluino is the heaviest
superpartner. The squarks are all much heavier than the sleptons, and the lightest sfermion is a stau.
Variations in the model parameters have important and predictable effects. For example, taking larger
m2

0 in minimal supergravity models will tend to squeeze together the spectrum of squarks and sleptons
and move them all higher compared to the neutralinos, charginos and gluino. Taking larger values of
tanβ with other model parameters held fixed will usually tend to lower b̃1 and τ̃1 masses compared to
those of the other sparticles.

The second sample sketch in fig. 7.5 is obtained from a typical minimal GMSB model, with boundary

79

2 4 6 8 10 12 14 16 18
Log10(Q/1 GeV)

0

100

200

300

400

500

600

M
as

s 
 [G

eV
]

m0

m1/2

(µ2+m0
2)1/2

squarks

sleptons

M1

M2

M3

Hd

Hu

Figure 7.4: RG evolution of scalar and gaugino mass parameters in the MSSM with typical minimal
supergravity-inspired boundary conditions imposed at Q0 = 2.5× 1016 GeV. The parameter µ2 + m2

Hu

runs negative, provoking electroweak symmetry breaking.

Figure 7.4 shows the RG running of scalar and gaugino masses in a typical model based on the
minimal supergravity boundary conditions imposed at Q0 = 2.5 × 1016 GeV. [The parameter values
used for this illustration were m0 = 80 GeV, m1/2 = 250 GeV, A0 = −500 GeV, tan β = 10, and
sign(µ)= +.] The running gaugino masses are solid lines labeled by M1, M2, and M3. The dot-dashed
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can be used to extract the physical masses, cross-sections, and decay widths of the particles, and other
observables such as dark matter abundances and rare process rates. There are a variety of publicly
available programs that do these tasks, including radiative corrections; see for example [186]-[195],[177].

Figure 7.5 shows deliberately qualitative sketches of sample MSSM mass spectrum obtained from
three different types of models assumptions. The first is the output from a minimal supergravity-
inspired model with relatively low m2

0 compared to m2
1/2 (in fact the same model parameters as used

for fig. 7.4). This model features a near-decoupling limit for the Higgs sector, and a bino-like Ñ1

LSP, nearly degenerate wino-like Ñ2, C̃1, and higgsino-like Ñ3, Ñ4, C̃2. The gluino is the heaviest
superpartner. The squarks are all much heavier than the sleptons, and the lightest sfermion is a stau.
Variations in the model parameters have important and predictable effects. For example, taking larger
m2

0 in minimal supergravity models will tend to squeeze together the spectrum of squarks and sleptons
and move them all higher compared to the neutralinos, charginos and gluino. Taking larger values of
tanβ with other model parameters held fixed will usually tend to lower b̃1 and τ̃1 masses compared to
those of the other sparticles.

The second sample sketch in fig. 7.5 is obtained from a typical minimal GMSB model, with boundary
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MSSM fields:

Mass matrices → masses + expressions in terms of mass eigenstates

Conserved quantum numbers: spin, color, charge, RP

109

gµ Wµ Bµ g̃ W̃ B̃ qi uc
i dc

i li ec
i h̃u h̃d q̃i ũc

i d̃c
i l̃i ẽc

i hu hd

Spectrum



gAμ  Waμ  Bμ

Same as in the SM, with v2 = v2u + v2d 
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Gauge bosons

M2
W =

g2

2
v2

gsg
A
µ TA + gW a

µTa + g⇥BµY

= gsg
A
µ TA+

g⇥
2
(W+

µ T+ + W�
µ T�) +

g

cW
Zµ(T3 � s2

W Q) + eAµQ

M2
Z =

g2 + g�2

2
v2



qi  uci  dci  li  eci

 

                 : mb « mt either because λb « λt (as in the SM)

              : λt(MGUT) < ∞ ⇒ tanβ ≳ 1 (depending on what goes on from MZ to MGUT) 

RP = 1 (SM) fermions
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or because tanβ » 1 
(allows λb ∼ λt, relevant for rad corrs, Yukawa unification)

�L ⇥ ⇥U
iju

c
iqjhu + ⇥D

ijd
c
iqjhd + ⇥E

ije
c
i ljhd ⇤

mU = ⇥Uv sin�

mD = ⇥Dv cos �

mE = ⇥Ev cos �

mt

mb
=

⇥t

⇥b
tan�

⇥t =
mt

v sin�



RP = -1 fermions (gauginos and Higgsinos)

gA  Wa  B  hu  hd 

 

gA  have mass M3

h+u W+ / h-d W- can mix (“charginos”)

h0u h0d W0 B can mix (“neutralinos”)
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~ ~ ~ ~ ~

h̃u =
�

h̃+
u

h̃0
u

⇥
h̃d =

�
h̃0

d

h̃�d

⇥
W̃± =

W̃1 � iW̃2⇥
2

W̃ 0 = W̃ 3

~

~ ~ ~ ~

~ ~ ~ ~



Charginos:

e.g.

Neutralinos:

The LSP can easily be a neutralino
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⌥⌥⇧

B̃
W̃ 3

h̃0
d

h̃0
u

⌅

��⌃ + h.c.



hu  hd  8 real dofs: 2x(Q=1) + 2x(Q=-1) + 2x(Q=0,CP+) + 2x(Q=0,CP-) 

3 massless Goldstones G+ G- G0 (CP-)

5 physical dofs: H+ H- A (CP-) ϕu ϕd (CP+)

V(hu, hd) breaks SU(2)wxU(1)Y, preserves U(1)em, CP
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RP = 1 scalars (Higgs sector)

(barring ϕμ,A effects
through loop corrections,

neglecting δCKM)

hu =

�

⇤
c�H+ + is�G+

vs� +
�u � i(s�G0 + c�A)⇥

2

⇥

⌅ hd =

�

⇤vc� +
�d + i(c�G0 � s�A)⇥

2
s�H� + ic�G�

⇥

⌅



Masses: the 8x8 mass matrix decomposes into 

• a vanishing 3x3 block corresponding to the Goldstones G+ G- G0

• a mass term for H+H-:

• a mass term for A:

• a 2x2 mass matrix for ϕu ϕd: 

Decoupling limit: mA » v ⇔ mH± » v ⇔ mH » v (mh ∼ v) α ≈ β-π/2
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m2
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⇥
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m2h  m2H  m2H±  m2A  α  β  ↔  MSSM parameters

Decoupling limit: m2h ≈ M2Z cos22β

In general:

 

1-loop corrections (very basic approx):

• Lower limit on m2h  → lower limit on mt → lower limit on FT

• lower tanβ requires a larger correction (upper limit on mt → lower limit on tanβ)
• m2h > 115 GeV (≈125 GeV?) can be evaded in the MSSM but requires even more FT
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In the MSSM
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Radiative corrections to mh

Full 1-loop computation: Coleman-Weinberg potential + self-energy

Moderate tanβ: corrections dominated by top-stop sector

The stop mixing (At + μcotβ) has a significant impact on the results

              -enhanced contributions:

• consider the limit

• match the MSSM at Q > m with the SM at Q < m:

• compute leading-log corrections to the SM Higgs coupling

•

117

log(m̃2
t /m2

t )

m̃2
t � m2

t

�h(mt) = �h(m̃t) + 6
h2

t

(4⇥)2
log

m̃2
t

m2
t

~ ~

m2
h = 2�h(mt)v

2
= M2

Z cos

2
2� + 12

h2
tm

2
t

(4⇡)2


log

m̃2
t

m2
t

+

X2
t

m̃2
t

✓
1� X2

t

12m̃2
t

◆�

Xt = At � µ cot�



Indirect bounds on stop mass in the MSSM 
for mH ≈ 125 GeV

Assuming degenerate stop masses, maximal Xt, tanβ = 20:                
mstop ≳ TeV, FT ≳ 200, possibly larger because of large A-terms

Either stops or A-term are multi-TeV
Hall Pinner Rudeman 1112.2703
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Minimal extension: λSHuHd (symmetries forbid μHuHd) 

harmless (unification OK)

welcome (μ = λ<S> ≈ susy scale)

Spectrum: h H → h1 h2 h3, A → a1 a2, N1…N4 → N0 N1…N4

Help with FT from Higgs bound:

                                                     gain limited by poles                                        

λ(10 TeV) < 3 (EWPTs) best, λ(MGUT) < 3 (unification) OK

light but hidden Higgs: h → aa → 4X (ma protected by PQ, R)

Persistent FT from

direct bounds on SUSY partners

arranging the invisible decay [Shuster Toro hep-ph/0512189]

Beyond MSSM: xMSSM

m2
h = M2

Z cos

2
2� + �2v2 sin2 2� + loops



Light Higgs detection
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mHu . mHu also receive large radiative corrections,
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!
, (3)

from the stop masses, mt̃1,2 , and mixing, At, which are also the parameters responsible for raising
the Higgs mass. As a result, naturalness pushes Higgsinos and stops to be light:

µ . 250 GeV, and mt̃ . 500 GeV . (4)

It is worth noting that mHd
does not a↵ect the tuning significantly at the large tan� limit, so the

rest of the Higgs sector in the MSSM can be above 1 TeV without loss of naturalness.

The LHC production of the Higgs is primarily modified by the same particles that contribute
the most to the radiative corrections of its mass and to the tuning: the stops. Even though current
LHC searches exclude the possibility of universal squark spectra up to almost 1 TeV (⇠500 GeV
with a heavy neutralino), stops can be perhaps as light as the top in models with non-universal
squark masses [4] or when SUSY is hidden, for example see [8]. As a result, stops can significantly
influence the Higgs coupling to gluons.

In the supersymmetric limit, light stops increase the LHC Higgs production cross-section [9,
10, 11, 12, 13], since the latter is related to the �-function of ↵s to which scalar fields contribute
with the same sign as fermions [14, 15]. This behavior persists after SUSY breaking in the absence
of stop mixing, while a large mixing between the stop eigenstates interferes destructively with the
top loop and the gluon fusion process can be suppressed substantially. Neglecting bottom/sbottom
and D-term contributions, the approximate formula for the gg ! h production cross-section of a
light Higgs (mH . mt) relative to the Standard Model is

�(gg ! h)

�SM(gg ! h)
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"
1 +
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, (5)

where mt̃i are the stop mass eigenvalues and ↵ is the mixing angle between the up and down type
Higgses. This e↵ect can be significant even for stops as heavy as 400 GeV (⇠ 20% in the absence
of mixing). Notice that the mixing term is always negative since (At �µ tan↵) ' (At +µ/ tan �),
which is a good approximation except in the extreme case of large mixing between the light and
the heavy Higgs.

For Higgs masses below ⇠135 GeV, the branching ratio (BR) to photons is also important.
Similarly to gluon fusion, the Higgs coupling to two photons is again related to the electroweak
�-functions. In this case, the dominant contribution comes from the W boson while the top gives
a smaller contribution with opposite sign. With large A-terms, the stop contributions, being
opposite to the top, increase the Higgs BR to photons slightly, but this enhancement is smaller
than the suppression from the production cross section due to the minor role of the top in the
diphoton channel. Chargino states also contribute to h ! ��, but once they become heavier than
roughly 100 GeV their e↵ects are subleading.

The other important deviation of the SUSY Higgs’ behavior from the SM comes from its
natural embedding in two Higgs doublets. The role of the SM Higgs is shared by two Higgs states,

3

Hu and Hd, and the mixing angle ↵ between Hu and Hd now a↵ects all the tree level couplings
of the light scalar Higgs state. The parameters that mostly influence the amount of mixing is the
pseudoscalar Higgs mass mA and tan �. In the limit of large tan� the shift of the top, bottom
and vector boson couplings of the light Higgs compared to their SM values are
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respectively. This expansion shows that mixing becomes important for a light Higgs between 115
and ⇠150 GeV, when the BR to bb̄ is dominant. Mixing in this case can suppress the Higgs
cross-section in a given channel compared to the SM value significantly (more than 20%) when
mA is lighter than roughly 400 GeV. A special region in two Higgs doublet models is the region
of maximal mixing, where the role of the SM is almost equally shared between the light and the
heavy Higgs, which are now close in mass. The e↵ects of this region will be examined separately
in section 3.4.

From the above discussion, it is obvious that the properties of the SUSY Higgs can be ade-
quately described by three parameters: the lightest stop mass mt̃2 , the SUSY breaking A-term
in the stop sector At, and the pseudoscalar Higgs mass mA

1. Another parameter that a↵ects the
LHC search strategy for the Higgs is its mass. When the Higgs is between 115 and ⇠135 GeV,
the most sensitive channel at the LHC is the Higgs decay to two photons. Above those masses,
Higgs decay to WW (⇤) becomes most important and completely dominates the Higgs BR above
2mW ⇡ 160 GeV. At the same time, the Higgs decay to ZZ(⇤) increases the LHC sensitivity and
becomes the main search channel for Higgs heavier than roughly 200 GeV. In what follows we will
consider the latest results in Higgs searches [17, 18], which are most sensitive in h ! �� when the
Higgs is lighter than 131.5 GeV, in h ! WW (⇤) for 131.5 GeV < mh < 2mW , and the combined
ZZ(⇤) and WW above the WW threshold.

It is well known that, after LEP and Tevatron bounds on the Higgs mass and the sparticle
spectrum, within the MSSM the fine-tuning of the parameters is never better than few percent
(this is achieved in the golden region of large A-terms [16]). The situation improves somewhat
in the presence of extra tree-level contributions to the Higgs mass, which relax the tuning of the
weak scale. For this reason, in the rest of the paper, we will consider, besides the case of an
MSSM Higgs, two other cases: 1) MSSM with extra D-terms (DMSSM), where an extra quartic
term for the Higgs is generated by an additional gauge sector that is broken above the electroweak

1We will not vary the sbottom sector contributions as their e↵ects are only important at extremely large values
of tan� and maximal Higgs mixing.

4



Bounds on mA and tanβ from heavier Higgs decays
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Weight of the individual channels
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Weight of the individual channels
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bb ττ γγ WW ZZ

MH(GeV/c2)
μup expected upper limit on the signal strength modifier, μ =σ/σSM ,

ΖΖ→2l2νΖΖ→2l2q
WW→

2l2ν

ΖΖ→4l

ΖΖ→2l2τ

In the combination presented today

The wi depend on the amount of integrated luminosity of each 
channel. They are computed in the asymptotic approximation.

γγ

Cowan, Cranmer, Gross, Vittels  EPJC 71:1554
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RP = -1 scalars (squarks and sleptons)

                                                     

Possible mixing between

• SU(3)c triplets, Q=2/3 (up squarks): ui uci* 

• SU(3)c triplets, Q=-1/3 (down squarks): di dci* 

• SU(3)c singlets, Q=-1 (charged sleptons): ei eci* 

• SU(3)c singlets, Q=0 (sneutrinos): νi
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Super-CKM basis: write the scalar mass matrices in the basis in flavour 
space in which the corresponding fermions are diagonal (U or D)
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FCNC/sugra-inspired ansatz for colliders:                                 
(neglecting small off-diagonal entries, Vcb,ub)

I and II families up squarks:

III family (stops): 

Analogously in the D, E sectors. Relevant LR mixing in the third family only 
for large tanβ
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Experimental signatures



Sparticle production
At LHC: mainly coloured particles (but stops suppressed)
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Sparticle decay
RP conserved: decay always contains LSP (neutralino, gravitino)

Gravitino mass: 

Gravity mediation: LSP = neutralino: missing ET 

(L,T) gauge mediation: LSP = gravitino
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Example of signals (MSSM LSP)

0 leptons: jets + missing ET 

• Reduces the SM W decay background

• Effective if the dominant susy decay is with no leptons

2 same-sign leptons + jets + missing ET 

• Does not take place in the SM

• From 2 gluinos, with gluino → q + chargino → q + (l± + ν + LSP) (twice)    
Each gluino decays into l+ or l- with equal probability

3 leptons + missing ET + (possibly) jets

• χ+χ0, χ+ → l+ ν LSP, χ0 → l+ l- LSP (2-body decay better be forbidden)

1 lepton + missing ET 

• large background from SM W decay (but relevant in some par space)
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For limits, the SR with the best expected sensitivity is used for each signal point

Simplified model with a gluino, first two 
generation squarks, and massless neutralino
m(g) > 700 GeV   m(q) > 875 GeV
m(g) = m(q) > 1075 GeV

mSUGRA/CMSSM with tan   =0,A=0,m>0 
m(g) = m(q) > 950 GeV~ ~

~ ~

6. Systematic Uncertainties

Systematic uncertainties arise from the use of the transfer
factors relating observations in the control regions to back-
ground expectations in the signal regions, and from the mod-
elling of the SUSY signal. For the transfer factors derived from
MC, the primary common sources of systematic uncertainty are
the jet energy scale and resolution, physics modelling and re-
construction performance in the presence of pile-up.

The jet energy scale uncertainty has been measured from
the complete 2010 data set using the procedure described in
Ref. [12]. It depends upon pT, η and proximity to adjacent jets,
and on average amounts to around 4%. The jet energy resolu-
tion measured with 2010 data [34] is applied to the MC jets,
with the difference between the re-calibrated and nominal MC
resolution taken as the systematic uncertainty. Additional con-
tributions are added to both of these uncertainties to take into
account of the impact of pile-up at the relatively high luminosity
delivered by the LHC in the 2011 run. Both in-time pile-up, i.e.
multiple collisions within the same bunch crossing, and out-of-
time pile-up, which arises from the detector response to neigh-
bouring bunch crossings, have effects on jet energy measure-
ments. These were studied in detail as a function of the average
number of collisions per bunch crossing and by comparing data
recorded with 75 and 50 ns bunch spacing. A worsening in the
jet energy resolution in the forward region is observed when
moving from 75 to 50 ns operation; a systematic uncertainty
of 0.07 × pT is therefore applied to jets with |η| > 2.8, used
for the Emiss

T calculation. The combined effects of in-time and
out-of-time pile-up on the jet energy scale are accounted for by
an additional conservative systematic uncertainty of up to 7%
depending on |η| and pT. All these uncertainties are propagated
to the Emiss

T measurement. The impact of in-time pile-up on
other aspects of the selection was also investigated and found
to be negligible as expected given the high energies of the jets
entering the signal samples.

The dominant modelling uncertainty in MC predictions for
the signal region and control regions arises from the treatment
of jet radiation,which affects the calculation of meff . In order
to assess this uncertainty, the main backgrounds are estimated
using alternative generators (ALPGEN rather than MC@NLO for t  t
production) or reduced jet multiplicity (ALPGEN processes with
0–4 partons instead of 0–5 partons for W/Z+jets production).
The impact of renormalisation and factorisation scale variations
and PDF uncertainties was also studied. Differences in the ab-
solute expectations for the numbers of events in the SR and CR
as high as 100% are observed for specific processes; the im-
pact on the ratios used in the transfer factors is, however, much
smaller (differences ∼<40%, channel dependent).

Additional uncertainties considered, for specific processes,
include those arising from photon and lepton trigger efficiency,
reconstruction efficiency, energy scale and resolution (CR1a,
CR1b, CR3 and CR4), b-tag/veto efficiency (CR3 and CR4),
photon acceptance and backgrounds (CR1a) and the limited
size of MC samples (all CRs). Uncertainties on the multi-jet
transfer factors are dominated by the modelling of the non-
Gaussian tails of the response function. Other sources, includ-

ing the limited number of data events, and uncertainties on the
Gaussian part of the response functions, are also considered.

Systematic uncertainties on the expected SUSY signal are es-
timated by varying the factorisation and renormalisation scales
in PROSPINO between half and twice their default values and by
considering the PDF uncertainties provided by CTEQ6. Uncer-
tainties are calculated for individual production processes (q̃q̃,
g̃g̃, and q̃g̃) and are typically ∼35% in the vicinity of the limits
expected to be set by this analysis. Jet energy scale and resolu-
tion, and pile-up uncertainties on SUSY signal expectations are
typically smaller than 30–40%.

7. Results, Interpretation and Limits

The observed signal region meff distributions for each of the
channels used in this analysis are shown in Figure 1, together
with MC background expectations prior to using the likelihood
fitting procedure. The number of observed data events and the
number of SM events expected to enter each of the signal re-
gions, determined using the likelihood fit, are shown in Table 2.
The data are found to be in good agreement with the back-
ground expectation and no excess is observed. To illustrate the
procedure, the inputs and outputs of the combined likelihood fit
for the high mass channel are shown in Table 3.

Data from the five channels are used to set the limits, taking
the channel with the best expected limit at each point in param-
eter space. The limit for each channel is obtained by comparing
the observed numbers of signal events with those expected from
SM background plus SUSY signal processes, taking into ac-
count uncertainties in the expectation including those which are
correlated between signal and background (for instance jet en-
ergy scale uncertainties). The impact of SUSY signal contam-
ination of the control regions is taken into account by applying
MC-derived model dependent correction factors ∼ 0.97–1.02
to the resulting exclusion significance values. The excluded re-
gions are obtained using the CLs prescription [41].

An interpretation of the results is presented in Figure 2 (left)
as a 95% confidence exclusion region in the (mg̃,mq̃)-plane for
a simplified set of SUSY models with m(χ̃0

1) = 0. In these
models the gluino mass and the masses of the squarks of the
first two generations are set to the values shown in the fig-
ure. All other supersymmetric particles, including the squarks
of the third generation, are decoupled by being given masses
of 5 TeV. The limits are reduced by decay chain kinematics if
m(χ̃0

1) is comparable to the squark or gluino mass. ISASUSY

from ISAJET [42] v7.80 is used to calculate the decay tables,
and to guarantee consistent electroweak symmetry breaking.

The results are also interpreted in the tan β = 10, A0 = 0,
µ > 0 slice of MSUGRA/CMSSM2 [43] in Figure 2 (right).
These limits include the effects of the mass spectrum of the

2Five parameters are needed to specify a particular MSUGRA/CMSSM
model. They are the universal scalar mass, m0, the universal gaugino mass
m1/2, the universal trilinear scalar coupling, A0, the ratio of the vacuum expec-
tation values of the two Higgs fields, tan β, and the sign of the higgsino mass
parameter, µ > 0 or < 0.
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For limits, the SR with the best expected sensitivity is used for each signal point

Simplified model with a gluino, first two 
generation squarks, and massless neutralino
m(g) > 700 GeV   m(q) > 875 GeV
m(g) = m(q) > 1075 GeV

mSUGRA/CMSSM with tan   =0,A=0,m>0 
m(g) = m(q) > 950 GeV~ ~

~ ~

6. Systematic Uncertainties

Systematic uncertainties arise from the use of the transfer
factors relating observations in the control regions to back-
ground expectations in the signal regions, and from the mod-
elling of the SUSY signal. For the transfer factors derived from
MC, the primary common sources of systematic uncertainty are
the jet energy scale and resolution, physics modelling and re-
construction performance in the presence of pile-up.

The jet energy scale uncertainty has been measured from
the complete 2010 data set using the procedure described in
Ref. [12]. It depends upon pT, η and proximity to adjacent jets,
and on average amounts to around 4%. The jet energy resolu-
tion measured with 2010 data [34] is applied to the MC jets,
with the difference between the re-calibrated and nominal MC
resolution taken as the systematic uncertainty. Additional con-
tributions are added to both of these uncertainties to take into
account of the impact of pile-up at the relatively high luminosity
delivered by the LHC in the 2011 run. Both in-time pile-up, i.e.
multiple collisions within the same bunch crossing, and out-of-
time pile-up, which arises from the detector response to neigh-
bouring bunch crossings, have effects on jet energy measure-
ments. These were studied in detail as a function of the average
number of collisions per bunch crossing and by comparing data
recorded with 75 and 50 ns bunch spacing. A worsening in the
jet energy resolution in the forward region is observed when
moving from 75 to 50 ns operation; a systematic uncertainty
of 0.07 × pT is therefore applied to jets with |η| > 2.8, used
for the Emiss

T calculation. The combined effects of in-time and
out-of-time pile-up on the jet energy scale are accounted for by
an additional conservative systematic uncertainty of up to 7%
depending on |η| and pT. All these uncertainties are propagated
to the Emiss

T measurement. The impact of in-time pile-up on
other aspects of the selection was also investigated and found
to be negligible as expected given the high energies of the jets
entering the signal samples.

The dominant modelling uncertainty in MC predictions for
the signal region and control regions arises from the treatment
of jet radiation,which affects the calculation of meff . In order
to assess this uncertainty, the main backgrounds are estimated
using alternative generators (ALPGEN rather than MC@NLO for t  t
production) or reduced jet multiplicity (ALPGEN processes with
0–4 partons instead of 0–5 partons for W/Z+jets production).
The impact of renormalisation and factorisation scale variations
and PDF uncertainties was also studied. Differences in the ab-
solute expectations for the numbers of events in the SR and CR
as high as 100% are observed for specific processes; the im-
pact on the ratios used in the transfer factors is, however, much
smaller (differences ∼<40%, channel dependent).

Additional uncertainties considered, for specific processes,
include those arising from photon and lepton trigger efficiency,
reconstruction efficiency, energy scale and resolution (CR1a,
CR1b, CR3 and CR4), b-tag/veto efficiency (CR3 and CR4),
photon acceptance and backgrounds (CR1a) and the limited
size of MC samples (all CRs). Uncertainties on the multi-jet
transfer factors are dominated by the modelling of the non-
Gaussian tails of the response function. Other sources, includ-

ing the limited number of data events, and uncertainties on the
Gaussian part of the response functions, are also considered.

Systematic uncertainties on the expected SUSY signal are es-
timated by varying the factorisation and renormalisation scales
in PROSPINO between half and twice their default values and by
considering the PDF uncertainties provided by CTEQ6. Uncer-
tainties are calculated for individual production processes (q̃q̃,
g̃g̃, and q̃g̃) and are typically ∼35% in the vicinity of the limits
expected to be set by this analysis. Jet energy scale and resolu-
tion, and pile-up uncertainties on SUSY signal expectations are
typically smaller than 30–40%.

7. Results, Interpretation and Limits

The observed signal region meff distributions for each of the
channels used in this analysis are shown in Figure 1, together
with MC background expectations prior to using the likelihood
fitting procedure. The number of observed data events and the
number of SM events expected to enter each of the signal re-
gions, determined using the likelihood fit, are shown in Table 2.
The data are found to be in good agreement with the back-
ground expectation and no excess is observed. To illustrate the
procedure, the inputs and outputs of the combined likelihood fit
for the high mass channel are shown in Table 3.

Data from the five channels are used to set the limits, taking
the channel with the best expected limit at each point in param-
eter space. The limit for each channel is obtained by comparing
the observed numbers of signal events with those expected from
SM background plus SUSY signal processes, taking into ac-
count uncertainties in the expectation including those which are
correlated between signal and background (for instance jet en-
ergy scale uncertainties). The impact of SUSY signal contam-
ination of the control regions is taken into account by applying
MC-derived model dependent correction factors ∼ 0.97–1.02
to the resulting exclusion significance values. The excluded re-
gions are obtained using the CLs prescription [41].

An interpretation of the results is presented in Figure 2 (left)
as a 95% confidence exclusion region in the (mg̃,mq̃)-plane for
a simplified set of SUSY models with m(χ̃0

1) = 0. In these
models the gluino mass and the masses of the squarks of the
first two generations are set to the values shown in the fig-
ure. All other supersymmetric particles, including the squarks
of the third generation, are decoupled by being given masses
of 5 TeV. The limits are reduced by decay chain kinematics if
m(χ̃0

1) is comparable to the squark or gluino mass. ISASUSY

from ISAJET [42] v7.80 is used to calculate the decay tables,
and to guarantee consistent electroweak symmetry breaking.

The results are also interpreted in the tan β = 10, A0 = 0,
µ > 0 slice of MSUGRA/CMSSM2 [43] in Figure 2 (right).
These limits include the effects of the mass spectrum of the

2Five parameters are needed to specify a particular MSUGRA/CMSSM
model. They are the universal scalar mass, m0, the universal gaugino mass
m1/2, the universal trilinear scalar coupling, A0, the ratio of the vacuum expec-
tation values of the two Higgs fields, tan β, and the sign of the higgsino mass
parameter, µ > 0 or < 0.
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Fine-Tuning



 

Large logs + color factors + lower bounds on gluinos and squarks:                       
A certain (at least %) fine-tuning is required to obtain MZ = 91 GeV 
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Sources of Fine-Tuning

Assuming soft terms generated at the GUT scale:

Unavoidable source of FT: M3 ≳ 800 GeV ⇒ M1/2 ≳ 300 GeV ⇒ FT ≳ 60

Bounds on stop mass

direct: weak because of small production cross section and detection 
efficiency  corresponding FT; can be avoided by taking m3 < m1,2 

indirect: from Higgs mass measurement - in the MSSM 
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Indirect bounds on stop mass in the MSSM 
for mH ≈ 125 GeV

Assuming degenerate stop masses, maximal Xt, tanβ = 20:                
mstop ≳ TeV, FT ≳ 200, possibly larger because of large A-terms

Either stops or A-term are multi-TeV
Hall Pinner Rudeman 1112.2703
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Minimal extension: λSHuHd (symmetries forbid μHuHd) 

harmless (unification OK)

welcome (μ = λ<S> ≈ susy scale)

Spectrum: h H → h1 h2 h3, A → a1 a2, N1…N4 → N0 N1…N4

Help with FT from Higgs bound:

                                                     gain limited by poles                                        

λ(10 TeV) < 3 (EWPTs) best, λ(MGUT) < 3 (unification) OK

light but hidden Higgs: h → aa → 4X (ma protected by PQ, R)

Persistent FT from

direct bounds on SUSY partners

arranging the invisible decay [Shuster Toro hep-ph/0512189]

Beyond MSSM: xMSSM

m2
h = M2

Z cos

2
2� + �2v2 sin2 2� + loops



Invisible Higgs decays: h → aa → 4X  [No loose? Ellwanger Gunion Hugonie Moretti hep-ph/0401228, ...]

3leptons → multileptons from additional steps in chargino/neutralino 
decays

C1+N2 and then 
N2 → N1+2l → N0+4l (if N0 is lightest and mainly singlino)
C1 → N0+l+ν (5l overall) or even C1 → N1+l+ν  → N0+3l+ν (7l overall)

Deviation from MSSM coupling relations: VVh = VHA = sin2(α-β), VVH = VhA 
= cos2(α-β) (optimistic)

Z’ if μ is protected by a gauge symmetry



Is fine-tuning really relevant?

Issues

• Potentially > 100 parameters (CMSSM)

• FCNCs and CP-violation in particular EDMs                                   
(SUSY breaking mechanism, symmetries)

• Proton decay from dimension 5 operators                                           
(non minimal models)

• Gravitino and moduli problem (low reheating T)

• Fine-tuning (NMSSM)

Successes of the MSSM
• Gauge coupling unification

• Natural dark matter candidate (with R-parity)

138

fermions

scalars



δm2h » m2h                                                              
mh is accidentally small or because of unspeakable reasons 
(connection with the cosmological constant problem) 

Note: often models (even MSSM benchmarks) are fine-tuned

Still, dark matter and unification may save the day

by keeping (at least part) of new physics near TeV 

giving rise to predictive models with characteristic 
signatures at LHC and other experiments

–    QNP

–    <H> = 174 GeV

–    MPl

SM

E

–    Qcutoff

NP

DM + unif

–    QNP

NP

Fine-tuned models

[Arkani-Hamed Dimopoulos 04, Giudice R 04,                                
Arkani-Hamed Dimopoulos Giudice R 04]



Unification
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LEP2 precision data included
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Figure 5: Fits of precision data. Regions shaded in red are disfavored at 1, 2, 3, . . .σ, as indicated
on the iso-lines. Regions below the thick blue line are excluded by LEP2 direct searches. We
performed a full one-loop analysis, including LEP2 precision data. We kept fixed tan β = 10,
A0 = 0, λt(MGUT) = 0.6, sign µ = +1, the gauge-mediation scale MGM = 1010 GeV.
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[Strumia et al
hep-ph/0502095]

DM: μ < 1.2 TeV (M1 < M2), mostly Bino favourable for LHC

No bounds from EWPTs

mH < 170 GeV, in terms of of m, tanβ

Long-live the gluino: R-hadrons (charged: slow, highly ionizing 
track; neutral: missing energy, mild hadronic activity; actually: 
Energy, charge, Baryon-number exchange) LHC sensitivity up to 
(1-2.5) TeV

Wilder: stopping gluinos (1-2 jets in any direction from denser 
parts of the detector + m.e.), displaced vertexes (low m), charge 
flips–    SUSY + R

Split Supersymmetry

–    <H> = 174 GeV

–    MPl

SM

E

Squarks 
Sleptons 
Heavy H

Gauginos 
Higgsinos

–    SUSY

~
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Higgs mass and Split Supersymmetry
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