Supernova Neutrino Oscillations

Crab Nebula

Max-Planck-Institut für Physik, München, Germany Georg G. Raffelt

Neutrino oscillations in matter

L. Wolfenstein

3400 citations Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 (Received 6 October 1977; revised manuscript received 5 December 1977)

The effect of coherent forward scattering must be taken into account when considering the oscillations of neutrinos traveling through matter. In particular, for the case of massless neutrinos for which vacuum oscillations cannot occur, oscillations can occur in matter if the neutral current has an off-diagonal piece connecting different neutrino types. Applications discussed are solar neutrinos and a proposed experiment involving transmission of neutrinos through 1000 km of rock.

Lincoln Wolfenstein

Suppression of Oscillations in Supernova Core

Effective mixing angle in matter

 $\sin 2\theta$ $\tan 2\theta_{\rm m} = \frac{31120}{\cos 2\theta - N_e 2E\sqrt{2}G_F/\Delta m^2}$

Supernova core

$$
\rho = 3 \times 10^{14} \text{ g cm}^{-3}
$$

\n
$$
Y_e = 0.35
$$

\n
$$
N_e = 6 \times 10^{37} \text{ cm}^{-3}
$$

\n
$$
E \sim 100 \text{ MeV}
$$

Solar mixing

 $\Delta m^2 \sim 75 \text{ meV}^2$ $\sin 2\theta \sim 0.94$

Matter suppression effect

 $N_e 2E\sqrt{2}G_F/\Delta m^2 \sim 2 \times 10^{13}$

• Inside a SN core, flavors are "de-mixed" • Very small oscillation amplitude • Trapped e-lepton number can only escape by diffusion

Flavor Oscillations in Core-Collapse Supernovae

Neutrino Oscillations in Matter

2-flavor neutrino evolution as an effective 2-level problem

$$
i\frac{\partial}{\partial z} \begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = H \begin{pmatrix} v_e \\ v_\mu \end{pmatrix}
$$

\nWith a 2×2 Hamiltonian matrix
\n
$$
H = \frac{1}{2E} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} m_1^2 & 0 \\ 0 & m_2^2 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \pm \sqrt{2} G_F \begin{pmatrix} N_e - \frac{N_n}{2} & 0 \\ 0 & -\frac{N_n}{2} \end{pmatrix}
$$

\nMass-squared matrix, rotated by
\nmissing angle θ relative to interaction
\nbasis, drives oscillations
\n
$$
\frac{\Delta m^2}{2E} \sim \begin{pmatrix} 4 \text{ peV} & \text{for 12 mass splitting} \\ 120 \text{ peV} & \text{for 13 mass splitting} \end{pmatrix}
$$

\nSolar, reactor and supernova neutrinos:
\n
$$
E \sim 10 \text{ MeV}
$$

\n
$$
dV_{weak} \sim 10 \text{ eV}
$$

\n
$$
dV_{weak} \sim 10 \text{ eV}
$$

Mikheev-Smirnov-Wolfenstein (MSW) effect

Eigenvalue diagram of 2 ×2 Hamiltonian matrix for 2-flavor oscillations

Adiabatic Faraday Effect in Analogy to MSW Effect

Photon helicity reversed adiabatically, reversing the rotation measure

Dasgupta & Raffelt, arXiv:1006.4158

Three-Flavor Eigenvalue Diagram

Dighe & Smirnov, Identifying the neutrino mass spectrum from a supernova neutrino burst, astro-ph/9907423

Signature of Flavor Oscillations (Accretion Phase)

Assuming collective effects are not important during accretion phase (Chakraborty et al., arXiv:1105.1130, Sarikas et al. arXiv:1109.3601)

Signature of Flavor Oscillations (Accretion Phase)

Assuming collective effects are not important during accretion phase (Chakraborty et al., arXiv:1105.1130, Sarikas et al. arXiv:1109.3601)

Three Phases of Neutrino Emission

- \bullet Spherically symmetric model (10.8 M $_{\bigodot}\!$) with Boltzmann neutrino transport
	- Explosion manually triggered by enhanced CC interaction rate Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871]

Neutronization Burst as a Standard Candle

Rise Time as Hierarchy Discriminator

Rise time of counting rate in IceCube can distinguish hierarchy (for "large" θ_{12}), but depends on numerical model calibration

Chakraborty, Fischer, Hüdepohl, Janka, Mirizzi, Serpico, arXiv:1111.4483

Oscillation of Supernova Anti-Neutrinos

Basel accretion phase model (10.8 M_{\odot})

Detection spectrum by $\overline{v}_e + p \rightarrow n + e^+$ (water Cherenkov or scintillator detectors)

Oscillation of Supernova Anti-Neutrinos

Detected Positron Energy [MeV]

Detecting Earth effects requires good energy resolution (Large scintillator detector, e.g. LENA, or megaton water Cherenkov)

Flavor Oscillations in Core-Collapse Supernovae

Flavor-Off-Diagonal Refractive Index

2-flavor neutrino evolution as an effective 2-level problem

$$
i\frac{\partial}{\partial t} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}
$$

Effective mixing Hamiltonian

$$
i\frac{\partial}{\partial t}(v_{\mu}) = H(v_{\mu})
$$

\n
$$
H = \frac{M^2}{2E} + \sqrt{2}G_F \begin{pmatrix} N_e - \frac{N_n}{2} & 0 \\ 0 & -\frac{N_n}{2} \end{pmatrix} + \sqrt{2}G_F \begin{pmatrix} N_{\nu_e} & N_{\langle \nu_e | \nu_\mu \rangle} \\ N_{\langle \nu_\mu | \nu_e \rangle} & N_{\nu_\mu} \end{pmatrix}
$$

flavor basis: causes vacuumoscillations

Mass term in Wolfenstein's weak potential, causes MSW "resonant" conversion together with vacuum term

Flavor-off-diagonal potential, caused by flavor oscillations. (J.Pantaleone, PLB 287:128,1992)

Flavor oscillations feed back on the Hamiltonian: Nonlinear effects!

Spectral Split

Figures from Fogli, Lisi, Marrone & Mirizzi, arXiv:0707.1998

Explanations in Raffelt & SmirnovarXiv:0705.1830and 0709.4641Duan, Fuller, Carlson & Qian arXiv:0706.4293

Collective Supernova Nu Oscillations since 2006

Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/0511275, Duan et al. astro-ph/0606616

Balantekin, Gava & Volpe [0710.3112]. Balantekin & Pehlivan [astro-ph/0607527]. Blennow, Mirizzi & Serpico [0810.2297]. Cherry, Fuller, Carlson, Duan & Qian [1006.2175, 1108.4064]. Cherry, Wu, Fuller, Carlson, Duan & Qian [1109.5195]. Cherry, Carlson, Friedland, Fuller & Vlasenko [1203.1607]. Chakraborty, Choubey, Dasgupta & Kar [0805.3131]. Chakraborty, Fischer, Mirizzi, Saviano, Tomàs [1104.4031, 1105.1130]. Choubey, Dasgupta, Dighe & Mirizzi [1008.0308]. Dasgupta & Dighe [0712.3798]. Dasgupta, Dighe & Mirizzi [0802.1481]. Dasgupta, Dighe, Raffelt & Smirnov [0904.3542]. Dasgupta, Dighe, Mirizzi & Raffelt [0801.1660, 0805.3300]. Dasgupta, Mirizzi, Tamborra & Tomàs [1002.2943]. Dasgupta, Raffelt & Tamborra [1001.5396]. Dasgupta, O'Connor & Ott [1106.1167]. Duan, Fuller, Carlson & Qian [astroph/0608050, 0703776, 0707.0290, 0710.1271]. Duan, Fuller & Qian [0706.4293, 0801.1363, 0808.2046, 1001.2799]. Duan, Fuller & Carlson [0803.3650]. Duan & Kneller [0904.0974]. Duan & Friedland [1006.2359]. Duan, Friedland, McLaughlin & Surman [1012.0532]. Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl [0807.0659]. Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl [0706.2498, 0712.1137]. Fogli, Lisi, Marrone & Mirizzi [0707.1998]. Fogli, Lisi, Marrone & Tamborra [0812.3031]. Friedland [1001.0996]. Gava & Jean-Louis [0907.3947]. Gava & Volpe [0807.3418]. Galais, Kneller & Volpe [1102.1471]. Galais & Volpe [1103.5302]. Gava, Kneller, Volpe & McLaughlin [0902.0317]. Hannestad, Raffelt, Sigl & Wong [astro-ph/0608695]. Wei Liao [0904.0075, 0904.2855]. Lunardini, Müller & Janka [0712.3000]. Mirizzi, Pozzorini, Raffelt & Serpico [0907.3674]. Mirizzi & Serpico [1111.4483]. Mirizzi & Tomàs [1012.1339]. Pehlivan, Balantekin, Kajino & Yoshida [1105.1182]. Pejcha, Dasgupta & Thompson [1106.5718]. Raffelt [0810.1407, 1103.2891]. Raffelt & Sigl [hep-ph/0701182]. Raffelt & Smirnov [0705.1830, 0709.4641]. Raffelt & Tamborra [1006.0002]. Sawyer [hep-ph/0408265, 0503013, 0803.4319, 1011.4585]. Sarikas, Raffelt, Hüdepohl & Janka [1109.3601]. Sarikas, Tamborra, Raffelt, Hüdepohl & Janka [1204.0971]. Saviano, Chakraborty, Fischer, Mirizzi [1203.1484]. Wu & Qian [1105.2068].

Three Ways to Describe Flavor Oscillations

Schrödinger equation in terms of "flavor spinor"

$$
i\partial_t \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \frac{\Delta m^2}{2E} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}
$$

Neutrino flavor density matrix

$$
\rho = \begin{pmatrix} \langle v_e | v_e \rangle & \langle v_e | v_\mu \rangle \\ \langle v_\mu | v_e \rangle & \langle v_\mu | v_\mu \rangle \end{pmatrix}
$$

Equivalent commutator form of Schrödinger equation

 $i\partial_t \rho = [H, \rho]$

Expand 2×2 Hermitean matrices in terms of Pauli matrices

$$
\rho = \frac{1}{2} [\text{Tr}(\rho) + \mathbf{P} \cdot \mathbf{\sigma}] \quad \text{and} \quad H = \frac{\Delta m^2}{2E} \mathbf{B} \cdot \mathbf{\sigma} \quad \text{with} \quad \mathbf{B} = (\sin 2\theta, 0, \cos 2\theta)
$$

Equivalent spin-precession form of equation of motion

$$
\dot{\mathbf{P}} = \omega \mathbf{B} \times \mathbf{P}
$$
 with $\omega = \frac{\Delta m^2}{2E}$

P is "polarization vector" or "Bloch vector" or "flavor isospin vector"

Flavor Oscillation as Spin Precession

Flavor Matrices of Occupation Numbers

Neutrinos described by Dirac field

$$
\Psi(t,x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \left[a_{\mathbf{p}}(t) u_{\mathbf{p}} + b_{-\mathbf{p}}^{\dagger}(t) v_{-\mathbf{p}} \right] e^{i \mathbf{p} \cdot \mathbf{x}}
$$

in terms of the spinors in flavor space, providing spinor of flavor amplitudes

$$
\Psi = \begin{pmatrix} \Psi_1 \\ \Psi_2 \\ \Psi_3 \end{pmatrix}, \quad a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \quad \text{and} \quad \begin{vmatrix} v_1(t, \mathbf{p}) \\ v_2(t, \mathbf{p}) \\ v_3(t, \mathbf{p}) \end{vmatrix} = \begin{pmatrix} a_1^\top(t, \mathbf{p}) \\ a_2^\top(t, \mathbf{p}) \\ a_3^\top(t, \mathbf{p}) \end{pmatrix} \quad |0\rangle
$$

Measurable quantities are expectation values of field bi-linears $(\Psi^{\dagger}\Psi)$, therefore use "occupation number matrices" to describe the ensemble and its kinetic evolution (Boltzmann eqn for oscillations and collisions)

(v)
$$
\rho_{ij} = \langle a_j^{\dagger} a_i \rangle
$$

\n $\langle \overline{v} \rangle$ $\overline{\rho}_{ij} = \langle b_j b_i^{\dagger} \rangle = 1 - \langle b_i^{\dagger} b_j \rangle$
\nDrops out in commutators

Describe $\overline{\nu}$ with negative occupation numbers, reversed order of flavor indices (holes in Dirac sea)

Equations of Motion for Occupation Number Matrices

ININREev-SIMIHOV-Wollensteln term

\nOrdinary matter effect caused by matrix of charged lepton densities

\n
$$
L = \begin{pmatrix} N_e - N_{\overline{e}} & 0 & 0 \\ 0 & N_{\mu} - N_{\overline{\mu}} & 0 \\ 0 & 0 & N_{\tau} - N_{\overline{\tau}} \end{pmatrix}
$$
\nand

\n
$$
\Sigma_{\mathbf{q}} \left(\rho_{\mathbf{q}} + \overline{\rho}_{\mathbf{q}} \right)
$$
\nis matrix of net neutrino densities (not diagonal)\n
$$
\dot{\rho}_{\mathbf{p}} = \frac{1}{2E} \left[M^2, \rho_{\mathbf{p}} \right] + \sqrt{2} G_{\text{F}} \left[L, \rho_{\mathbf{p}} \right]
$$
\n
$$
\dot{\rho}_{\mathbf{p}} = -\frac{1}{2E} \left[M^2, \overline{\rho}_{\mathbf{p}} \right]
$$
\n
$$
\frac{1}{2E} \left[M^2, \overline{\rho}_{\mathbf{p}} \right]
$$
\nand

\n
$$
\Sigma_{\mathbf{q}} \left(1 - \cos \theta_{\mathbf{p} \mathbf{q}} \right) \left[(\rho_{\mathbf{q}} + \overline{\rho}_{\mathbf{q}}), \rho_{\mathbf{p}} \right]
$$
\nand

\n
$$
\Sigma_{\mathbf{q}} \left(1 - \cos \theta_{\mathbf{p} \mathbf{q}} \right) \left[(\rho_{\mathbf{q}} + \overline{\rho}_{\mathbf{q}}), \rho_{\mathbf{p}} \right]
$$

- Vacuum oscillations driven by mass-squared matrix in flavor basis
- Opposite sign for ν and $\overline{\nu}$

Mikheev-Smirnov-Wolfenstein term

- Treat $\overline{\nu}$ modes as ν modes with negative energy:
	- $\omega = \Delta m^2/2E \rightarrow -\omega$ for same momentum **p**

Pontecorvo term

Pantaleone term

Collective Nu Oscillations as a Many-Body Problem

Hamiltonian for interacting "flavor spins" (classical in mean-field approach)

$$
H = \sum_{i=1}^{N} \omega_i \mathbf{B} \cdot \mathbf{P}_i + \lambda \mathbf{L} \cdot \sum_{i=1}^{N} \mathbf{P}_i + \mu \sum_{i,j=1}^{N} (1 - \cos \theta_{ij}) \mathbf{P}_i \cdot \mathbf{P}_j
$$

Unit vector
in mass direction
in flavor direction
current-current structure

"Spin-pairing H" for isotropic system (or single angle), ignoring matter effect $H = \sum \omega_i \mathbf{B} \cdot \mathbf{P}_i + \mu \mathbf{P}_{\text{tot}}^2$

BCS theory (using Anderson's pseudo-spin), nuclear physics, ... Integrable system (as many "Gaudin invariants" as spins) \rightarrow Pehlivan, Balantekin, Kajino & Yoshida [arxiv:1105.1182] for introduction

N-mode coherent solutions ("Normal and anomalous solitons")

- Emil Yuzbashian, Phys. Rev. **B** 78, 184507 (2008) Super-conductivity (BCS)
- Georg Raffelt, Phys. Rev. **D** 83, 105022 (2011) Collective Nus

current-current structure

Adding Matter

Schrödinger equation including matter

$$
i\partial_t \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{bmatrix} \frac{\Delta m^2}{2E} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} + \sqrt{2} G_F \begin{pmatrix} N_e - \frac{N_n}{2} & 0 \\ 0 & -\frac{N_n}{2} \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}
$$

Corresponding spin-precession equation

$$
\dot{\mathbf{P}} = \underbrace{(\omega \mathbf{B} + \lambda \mathbf{L})}_{\mathbf{H}_{\text{eff}}} \times \mathbf{P} \quad \text{with} \quad \omega = \Delta m^2 / 2E \quad \text{and} \quad \lambda = \sqrt{2} G_{\text{F}} N_e
$$

B unit vector in mass direction $H_{\text{eff}} = \omega B + \lambda L$ $L = e_z$ unit vector in flavor direction $H_{\text{matter}} = \sqrt{2} G_{\text{F}} N_e L$ $\frac{\Delta m^2}{2E}$ B H_{vac} $2\theta_{\rm matter}$ $2\theta_{\rm vac}$ $\boldsymbol{\succ} \boldsymbol{\chi}$

MSW Effect

Decreasing Matter Density

Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

Adding Neutrino-Neutrino Interactions

Precession equation for each v mode with energy E, i.e. $\omega = \Delta m^2 / 2E$

$$
\dot{\mathbf{P}}_{\omega} = \underbrace{(\omega \mathbf{B} + \lambda \mathbf{L} + \mu \mathbf{P})}_{\mathbf{H}_{\text{eff}}} \times \mathbf{P}_{\omega} \quad \text{with} \quad \lambda = \sqrt{2} G_{\text{F}} N_e \quad \text{and} \quad \mu = \sqrt{2} G_{\text{F}} N_v
$$

Total flavor spin of entire ensemble

$$
\mathbf{P} = \sum_{\omega} \mathbf{P}_{\omega} \quad \text{normalize} \quad |\mathbf{P}_{t=0}| = 1
$$

Individual spins do not remain aligned – feel "internal" field $H_{\nu\nu} = \mu P$

Synchronizing Oscillations by Neutrino Interactions

- Vacuum oscillation frequency depends on energy $\omega = \Delta m^2 / 2E$
- Ensemble with broad spectrum quickly decoheres kinematically
- v-v interactions "synchronize" the oscillations: $\omega_{\text{sync}} = \langle \Delta m^2 / 2E \rangle$

Pastor, Raffelt & Semikoz, hep-ph/0109035

Two Spins Interacting with a Dipole Force

Simplest system showing v - v effects:

Isotropic neutrino gas with 2 energies E_1 and E_2 , no ordinary matter

 $\dot{\mathbf{P}}_1 = (\omega_1 \mathbf{B} + \mu \mathbf{P}) \times \mathbf{P}_1$ with $\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2$ and $\omega_{1,2} = \Delta m^2 / 2E$ $\dot{\mathbf{P}}_2 = (\omega_2 \mathbf{B} + \mu \mathbf{P}) \times \mathbf{P}_2$

Go to "co-rotating frame" around **B** direction

$$
\dot{\mathbf{P}}_1 = (\omega_c \mathbf{B} - \omega \mathbf{B} + \mu \mathbf{P}) \times \mathbf{P}_1
$$

$$
\dot{\mathbf{P}}_2 = (\omega_c \mathbf{B} + \omega \mathbf{B} + \mu \mathbf{P}) \times \mathbf{P}_2
$$

with
$$
\omega_c = \frac{1}{2}(\omega_2 + \omega_1)
$$
 and $\omega = \frac{1}{2}(\omega_2 - \omega_1)$

No interaction ($\mu = 0$)

 $P_{1,2}$ precess in opposite directions Strong interactions ($\mu \to \infty$)

 $P_{1,2}$ stuck to each other (no motion in co-rotating frame, perfectly synchronized in lab frame)

Two Spins with Opposite Initial Orientation

No interaction ($\mu = 0$) Free precession in opposite directions

Even for very small mixing angle, large-amplitude flavor oscillations

Collective Pair Conversion

Gas of equal abundances of v_e and \overline{v}_e , inverted mass hierarchy Small effective mixing angle (e.g. made small by ordinary matter)

Dense neutrino gas unstable in flavor space: $v_e\overline{v}_e \leftrightarrow v_\mu\overline{v}_\mu$ Complete pair conversion even for a small mixing angle

Instability in Flavor Space

Two-mode example in co-rotating frame, initially $P_1 = \downarrow$, $P_2 = \uparrow$ (flavor basis)

- Initially aligned in flavor direction and $P = 0$
- Free precession $\pm \omega$

After a short time, transverse P develops by free precession

Inverse-Energy Spectrum

Fermi-Dirac energy spectrum

$$
\frac{dN}{dE} \propto \frac{E^2}{e^{E/T - \eta} + 1}
$$

 η degeneracy parameter, $-\eta$ for $\overline{\nu}$

Spectrum in terms of $\omega = T/E$

- Antineutrinos $E \rightarrow -E$
- and dN/dE negative (flavor isospin convention)

$$
\omega > 0: v_e = \uparrow \text{ and } v_\mu = \downarrow
$$

$$
\omega < 0: \overline{v}_e = \downarrow \text{ and } \overline{v}_\mu = \uparrow
$$

Flavor Pendulum

Single "positive" crossing (IH) (potential energy at a maximum)

Single "negative" crossing (NH) (potential energy at a minimum)

Dasgupta, Dighe, Raffelt & Smirnov, arXiv:0904.3542 For movies see http://www.mppmu.mpg.de/supernova/multisplits

Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

Decreasing Neutrino Density

Certain initial neutrino density
initial neutrino density
initial neutrino density

Dasgupta, Dighe, Raffelt & Smirnov, arXiv:0904.3542 For movies see http://www.mppmu.mpg.de/supernova/multisplits

Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

Spectral Split

Figures from Fogli, Lisi, Marrone & Mirizzi, arXiv:0707.1998

Explanations in Raffelt & SmirnovarXiv:0705.1830and 0709.4641Duan, Fuller, Carlson & Qian arXiv:0706.4293

Linearized Stability Analysis

Schrödinger equation for flavor matrices of neutrino fluxes $\Phi_{\omega,u}$ $\omega = \pm \Delta m^2 / 2E$ $u = \sin^2(\text{emission angle})$ $v_u = \text{radial velocity at } r$ $i\partial_r \Phi_{\omega,u} = \left| \frac{\omega + \sqrt{2} G_F N_\ell}{v_u} + \frac{\sqrt{2} G_F}{4\pi r^2} \int d\omega' du' \Phi_{\omega',u'} \frac{1 - v_u v_{u'}}{v_u v_{u'}} , \Phi_{\omega,u} \right|$

Linearize in small off-diagonal flux terms and Fourier transform

$$
\Phi_{\omega,u} = \frac{g_{\omega,u}}{2} \begin{pmatrix} 1 & Q_{\omega,u} \ e^{-i\Omega r} \\ Q_{\omega,u}^* \ e^{i\Omega r} & -1 \end{pmatrix}
$$

Eigenvalue equation for $Q_{\omega,u}$ in terms of eigenfrequency $\Omega = \gamma + i \kappa$, where κ is the exponential growth rate

$$
\left[\omega + u\left(\lambda + \int d\omega' du' g_{\omega',u'}\right) - \Omega\right]Q_{\omega,u} = \mu \int d\omega' du' \left(u + u'\right)g_{\omega',u'}Q_{\omega',u'}
$$

Straightforward to solve for eigenvalue Ω and eigenfunction $Q_{\omega,u}$

Banerjee, Dighe & Raffelt, arXiv:1107.2308

Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

Stability Analysis for Simplified SN Example

Normal vs Inverted Hierarchy

Continuous angle distribution, NH stable for single-angle case

Multi-Angle Matter Effect

Precession equation in a homogeneous ensemble

 $\partial_t \mathbf{P}_{\omega, v} = (\omega \mathbf{B} + \lambda \mathbf{L} + \mu \mathbf{P}) \times \mathbf{P}_{\omega, v}$, where $\lambda = \sqrt{2} G_F N_e$ and $\mu = \sqrt{2} G_F N_v$ Matter term is "achromatic", disappears in a rotating frame

Neutrinos streaming from a SN core, evolution along radial direction

$$
(\mathbf{v} \cdot \nabla_r) \mathbf{P}_{\omega, \mathbf{v}} = (\omega \mathbf{B} + \lambda \mathbf{L} + \mu \mathbf{P}) \times \mathbf{P}_{\omega, \mathbf{v}}
$$

Projected on the radial direction, oscillation pattern compressed: Accrues vacuum and matter phase faster than on radial trajectory Matter effect can suppress collective conversion unless $N_{\nu} \gtrsim N_e$

Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl, arXiv:0807.0659

Accretion-Phase Matter Profiles (Basel 10.8 M $_{sun}$ **)**

Chakraborty, Fischer, Mirizzi, Saviano & Tomàs, arXiv:1105.1130

Multi-Angle Multi-Energy Stability Analysis

Sarikas, Raffelt, Hüdepohl & Janka, arXiv:1109.3601

Multi-Angle Matter Effect (Basel Model 10.8 M $_{sun}$ **)**

Schematic single-energy, multi-angle simulations with realistic density profile

Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

Looking forward to the next galactic supernova

Looking forward to the next galactic supernova

Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012 http://antwrp.gsfc.nasa.gov/apod/ap060430.html