

University of DELHI

Brajesh C Choudhary University of DELHI, India

The Galileo Galilei Institute for Theoretical Physics

Arcetri, Florence

24.06.2012, GGI, Arcetri, Firenze What is v? Invisible ITN 1st General Meeting

University of DELHI

- ✓ Founded in 1922
 - with 3 Colleges and 750 Students
- \checkmark Today it has
 - > 16 Faculties
 - > 88 Departments
 - > 77 colleges
 - ~150K regular students &
 - > ~250K distant learning students
- Brajesh Chandra Choudhary University of DELHI

Department of Physics & Astrophysics since 1923

- ✓ At present we have ~55 Faculty members (out of ~80 that we should have)
- ✓ Teaching M.Sc Two year Four Semester Course ~300 students/batch
- ✓ PhD ~about 170 students
- Research in HEP, EHEP, Nuclear Physics, Material Sciences, Condensed Matter (including soft), Nano Materials, Atomic & Molecular Physics, Plasma Physics, Bio Physics, Astrophysics & Cosmology
- ✓ EHEP Collaborations at Fermilab since : 1985 93- E706, 1992 2012 D0.
- ✓ CERN (CMS) since late 1990's continuing
- ✓ INO since 2004 continuing

FNAL Neutrino Program – MIPP, MINOS/MINOS+, NOvA, LBNE – since 2010
 24.June.2012
 Brajesh Chandra Choudhary - University of DELHI

DELHI Node in neutrinos, dark matter & dark energy physics

Brajesh Choudhary

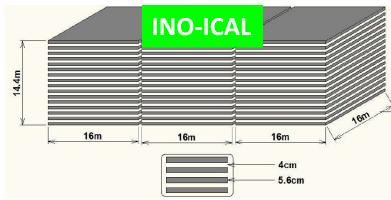
In EHEP since 1987 – E706 – Direct Photon production D0 – EW, Top, Higgs Neutrinos – MACRO, MINOS CMS – QCD, Exotica Neutrinos at FNAL - MINOS+, NOVA, LBNE – Lead India-US v Collaboration Neutrinos in India - INO

Debajyoti Choudhury

Poonam Mehta

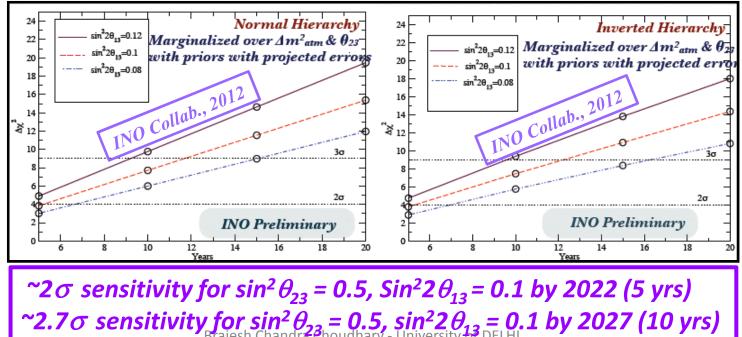
In HEP Theory since 1987 – QFTs, Collider Theory & Phenomenology, B-Physics, Neutrinos Theory & Phenomenology, Cosmology Dark Matter Neutrinos in India - INO

In HEP Theory since 2000 – Neutrino Oscillation – Theory & Phenomenology BSM Topics – CPT violation, Neutrino Decay, Quantum Decoherence Cosmo-Particle Physics - V MH from Cosmology

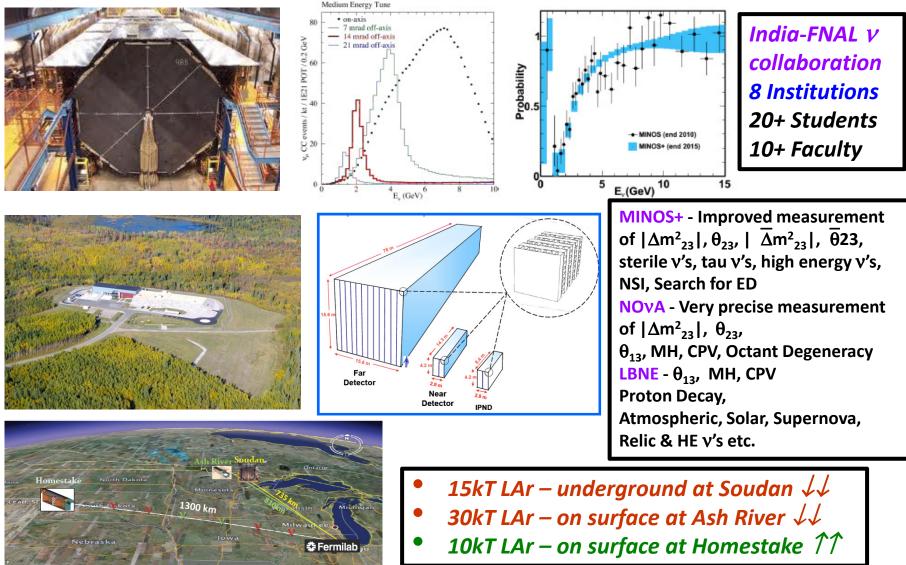


Neutrino and Dark Matter - Interests

- Neutrino Experiments Neutrino Mass and Mixing
 - INO-ICAL
 - **FNAL Neutrino Program MIPP, MINOS/MINOS+, NOVA, LBNE**
- Neutrino Phenomenology : New Physics effects in
 - Atmospheric Neutrinos
 - Long-baseline Neutrino Experiments
 - High Energy Astrophysical Neutrinos
- Leptogenesis
- Collider signature of Dark Matter
- Neutrino Mass Hierarchy from Cosmology
- # +++ others.....

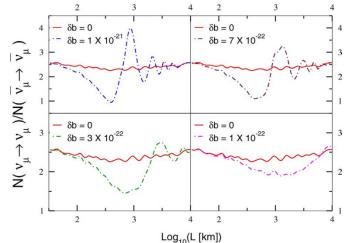


Experimental Neutrino Program at DU – INO-ICAL


- SokT magnetized (1.3T) Fe-RPC Calorimeter
- * Atmospheric neutrino experiment
- ***** Charge separation of μ + and μ -
- Physics Measure Mass hierarchy
- * Octant Degeneracy

Mass Hierarchy with INO-ICAL

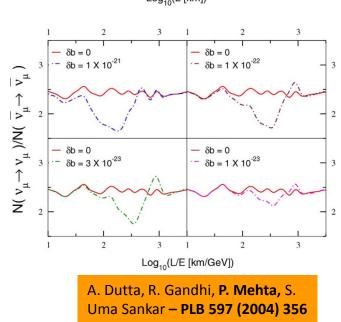
FNAL - Experimental Neutrino Program at DU


CPT Violation using Atmospheric Neutrinos

Atmospheric neutrinos and CPT violation

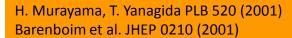
 $L_{eff} = ar{
u}^{lpha}_L b^{\mu}_{lphaeta} \gamma_{\mu}
u^{eta}_L$ Colladay & Kostelecky – arXiv: hep-ph/9809521v1

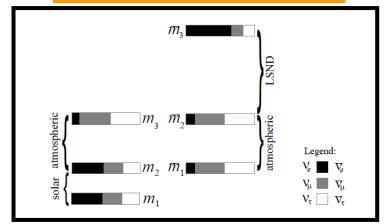
Two-flavor muon survival probability

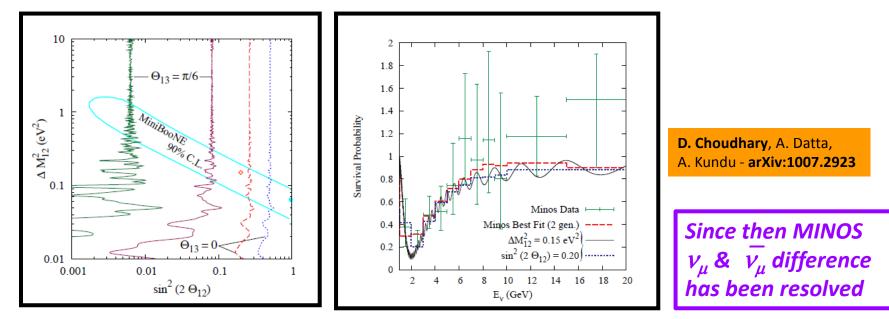

$$P_{\alpha\alpha}(L) = 1 - \sin^2 2\theta \sin^2 \left[\left(\frac{\delta m^2}{4E} + \frac{\delta b}{2} \right) L \right]$$

E-independent part

$$\Delta P_{\alpha\alpha}^{\rm CPT} = -\sin^2 2\theta \sin\left(\frac{\delta m^2 L}{2E}\right) \sin(\delta b L).$$


- Observable: a muon to anti-muon events in a magnetized detector that can identify charge (ex: INO-ICAL)
- Sensitivity studied in context of INO with 400kT-yr - similar to neutrino factory





CPT Violation with MINOS + MiniBoonE

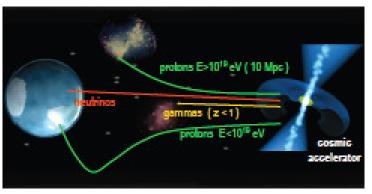
 MINOS v_µ disappearance & Mini-BoonE v_µ → v_e results
 Can be reconciled by using different mass parameters for v_µ and v_µ → CPT violation

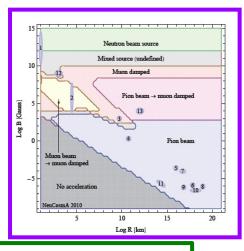
NSI Effects during Propagation

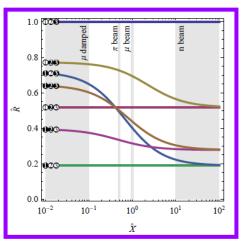
$$\mathcal{L}_{NSI} = -2\sqrt{2}G_F \epsilon_{\alpha\beta}^{ff'C} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_Cf')$$
$$P_L = 1 - \gamma_5 \quad P_C = 1 \pm \gamma_5$$

 Flavor "preserving" or "violating" terms, f=f' for v's
 NSI in 3-flavor context in the e-*τ* sector for atmospheric and LBL neutrinos

$$i\frac{d}{dt}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} = \frac{1}{2E}\left(U\begin{pmatrix}0&0&0\\0&\delta m^2&0\\0&0&\delta m^2_{31}\end{pmatrix}U^{\dagger} + A\begin{pmatrix}1+\epsilon_{ee}&0&\epsilon_{e\tau}\\0&\epsilon_{\mu\mu}&0\\\epsilon^{\star}_{e\tau}&0&\epsilon_{\tau\tau}\end{pmatrix}\right)\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix}$$


S.Davidson, C.Pena-Garay and N.Rius, JHEP 0303:011,2003


v_μ interactions are strongly constrained
 With high precision on oscillation parameters – try to constrain NSI parameter effects


DURHAM + DELHI+ HRI

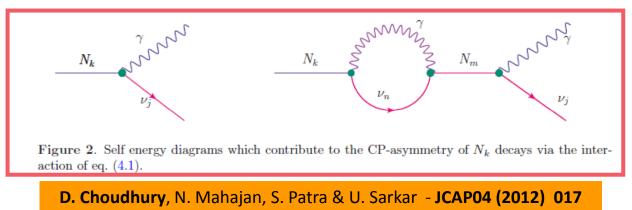
HE Astrophysical Neutrinos & New Physics Effect

Cosmic accelerator

- E and L beyond terrestrial experiments
- With Ice-cube like experiments allows for precise tests of new physics
- Flavor ratio of muon tracks to cascade carries imprint of new physics scenarios such as decay and decoherence in propagation from energy dependent source flavor ratios

 Image: sector sector

P. Mehta and W. Winter JCAP03 (2011) 041

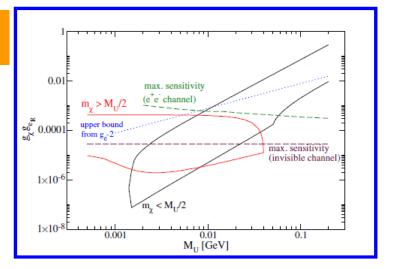


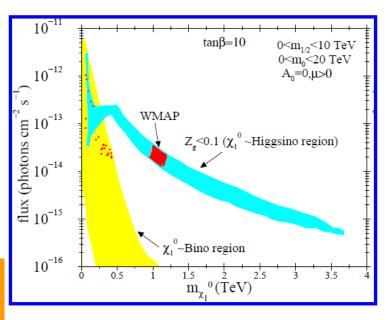
Scan parameter space on new physics .2012 Brajesh Chandra Choudhary - University of DILHI

Radiative Leptogenesis at the TeV scale

Electromagnetic (radiative) leptogenesis: An idea with explicit models proceeding via the radiative decay of heavy RH ν into a light LH ν and a γ

- Generates correct leptogenesis with resonant enhancement & required neutrino mass
 - via TeV scale seesaw mechanism
- Consistent with low energy phenomenology
- **@** Signatures at future colliders or even at LHC

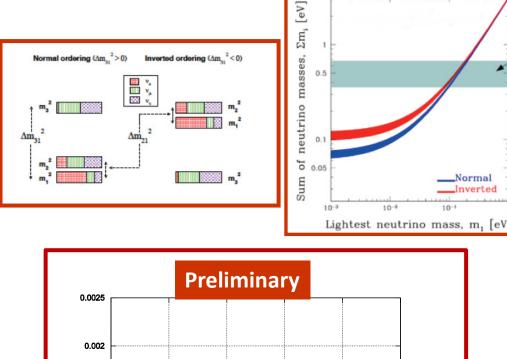


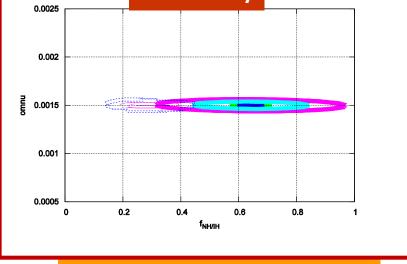

Collider Signatures of Dark Matter

N. Borodatchenkova, **D. Choudhrury** & M. Drees – PRL 96, 141802 (2006)

- INTEGRAL saw an excess of 511 keV photons from center of our galaxy:
 - MeV dark matter particles can annihilate into e+e- pairs
 - Signals in B-factories and DAφNE
- Search for heavy Higgsino LSP in collider and dark matter experiments

U. Chattopadhyay, **D. Choudhrury,** M. Drees, P. Konar & D. P. Roy **PLB 632, 114 (2006)** Brajesh Chandra Choudhrary - Oniversity of DELHI





Neutrino Mass Hierarchy – via Cosmology

- Complementary approach $\checkmark \Omega_{\nu} h^2 = \sum m_{\nu} / 94 \, eV$
- > Lab limits:
 - \checkmark Min $\sum m_{\nu} \sim 0.05 eV$ \rightarrow min $\Omega_{\nu} \sim 0.1\%$ \checkmark Max $\sum m_{\nu} \sim 7.0 \, eV$ \rightarrow min Ω_{ν} ~ 12%
- > Future ✓ PLANK + LSST Model-dependent

P. Mehta and S. K. Sethi in preparation

Normal Inverted

10-1

24.June.2012