HN

A. Yu. Smirnov

International Centre for Theoretical Physics, Trieste, Italy

Invisibles network INT Training lectures June 25 – 29, 2012

Oscillation and flavor conversion are consequence of

- the lepton mixing and
- production of mixed (flavor) states

Normal mass hierarchy

$$
\Delta m^2_{31} = m^2_{3} - m^2_{1}
$$

$$
\Delta m^2_{21} = m^2_{2} - m^2_{1}
$$

Mixing parameters

 $tan^2\theta_{23} = |U_{\mu3}|^2 / |U_{\tau3}|^2$ | | $\sin^2\theta_{13} = |U_{e3}|^2$ $tan^2\theta_{12} = |U_{e2}|^2 / |U_{e1}|^2$

Mass states can be enumerated by amount of electron flavor

Mixing matrix:

<mark>v_f = U_{PMNS} v_{mass}</mark>

$$
\begin{bmatrix} v_e \\ v_\mu \\ v_\tau \end{bmatrix} = U_{PMNS} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}
$$

 $U_{PMNS} = U_{23}I_{\delta}U_{13}I_{-\delta}U_{12}$

o mixes neutrino

Mixing in $CC \rightarrow$ mixing in produced states

What about neutral currents?

**Can NC interactions prepare
mixed state?**

What is the neutrino state produced in the Z-decay in the presence of mixing?

> 3 $\langle f | H | Z \rangle$ 2 = 3 $|\langle \overline{v}_1 v_1 | H | Z \rangle$ 2

 f = $\frac{1}{\sqrt{2}}$ [$|\overline{v}_1 v_1 \rangle$ + $|\overline{v}_2 v_2 \rangle$ + $|\overline{v}_3 v_3 \rangle$]

Do neutrinos from Z⁰- decay oscillate?

Two detectors experiment: detection of both neutrinos

If the flavor of one of the neutrino is fixed, another neutrino oscillates

Simple and straightforward Mew aspects and still correct

Challenging theory of neutrino oscillations

New experimental setups

- LBL long tunnels
- Long leaved parents

[1] Neutrino production coherence and oscillation experiments. E. Akhmedov, D. Hernandez, A. Smirnov, JHEP 1204 (2012) 052, arXiv:1201.4128 [hep-ph]

- [2] Neutrino oscillations: Entanglement, energy-momentum conservation and QFT. E.Kh. Akhmedov, A.Yu. Smirnov, Found. Phys. 41 (2011) 1279-1306 arXiv:1008.2077 [hep-ph]
- [3] Paradoxes of neutrino oscillations. E. Kh. Akhmedov, A. Yu. Smirnov Phys. Atom. Nucl. 72 (2009) 1363-1381 arXiv:0905.1903 [hep-ph]
- [4] Active to sterile neutrino oscillations: Coherence and MINOS results. D. Hernandez, A.Yu. Smirnov, Phys.Lett. B706 (2012) 360-366 arXiv:1105.5946 [hep-ph]
- [5] Neutrino oscillations: Quantum mechanics vs. quantum field theory. E. Kh. Akhmedov, J. Kopp, JHEP 1004 (2010) 008 arXiv:1001.4815 [hep-ph]

Pisa, 1913

B. Pontecorvo

``Mesonium and antimesonium''

Zh. Eksp.Teor. Fiz. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1957)] translation

mentioned a possibility of neutrino mixing and oscillations

 Oscillations imply non-zero masses (mass squared differences) and mixing

Proposal of neutrino oscillations by B Pontecorvo was motivated by rumor that Davis sees effect in Cl-Ar detector from atomic reactor

Computing oscillation effects

Lagrangian

$$
\frac{g}{2\sqrt{2}} \bar{l} \gamma^{\mu} (1 - \gamma_5) v_{\mu} W^{+}_{\mu}
$$

-
- $I_{L} m_{l} I_{R} + h.c.$

Starting from - $\frac{1}{2}$ m_L v_L^TCv_L
- $\frac{1}{L}$ m_I l_R + h.c.
Starting from
the first principles

events, etc..

What is the problem?

Formalism should be adjusted to specific physics situation

Initial conditions

Approximations

Approximations, if one does not want to consider whole history of the Universe to compute signal in Daya Bay

> Truncating the process

Recall, the usual set-up

asymptotic states described by plane waves

- enormous simplification

single interaction region

Oscillation set-u

E. Akhmedov, A.S.

formalism should be adjusted to these condition QFT but

Finite space and time phenomenon Resource Space-time

Two interaction regions in contrast to usual scattering problem

Neutrinos: propagator

integration limits

wave packets for external particles
encode info about encode into about
finite production and
finite production finite productions

Wave packets & oscillations

B. Kayser, Phys. Rev D 48 (1981) 110

Wave packet formalism. Consistent description of oscillations requires consideration of wave packets of neutrino mass states.

31 years later, GGI lectures:

The highest level of sophistication: The highest level of sophistication.
to use proper time for neutrino mass and get correct result! Key point: phases of mass eigenstates should be compared in the same space-time point
If not - factor of 2 in the oscillations phase

How external particles Should be described?

detection/production areas are determined by localization of particles involved in neutrino production and detection not source/detector volume (still to integrate over)

wave packets for external particles

Describe by plane waves but introduce finite integration

Unique process,

neutrinos with definite masses are described by propagators, Oscillation pattern – result of interference of amplitudes due to exchange of different mass eigenstates

Very quickly converge to mass shell

Real particles – described by wave packets

If oscillation effect in Production/detection regions can be neglected

 r_D , $\mathsf{r}_\mathsf{S} \,$ \ll l_v

factorization

Production propagation and Detection can be considered as three independent processes

In terms of mass eigenstates Without flavor states

Wave packet

Wave packets and oscillations

After formation of the wave packet (outside the production region) Suppose v_a be produced in the source centered at $x = 0$, t = 0

$$
|v_{\alpha}(x,t)\rangle = \sum_{k} U_{\alpha k}^{\star} \Psi_{k}(x,t)|v_{k}\rangle
$$

$$
\Psi_k \sim \int dp f_k(p - p_k) e^{ipx - iE_k(p)t}
$$

In general

 $E_k(p)=\sqrt{p^2+m_k^2}$ - dispersion relation

 $f_{\mathsf{k}}({\mathsf{p}}-{\mathsf{p}}_{\mathsf{k}})$ - the momentum distribution function <code>peaked at</code> p_k - the mean momentum

 $E_k(p) = E_k(p_k) + (dE_k/dp)|(p - p_k) + (dE_k^2/dp^2)|(p - p_k)^2 + ...$ p_{k} , and the set of p_{k} Expanding around mean momentun v_{k} = (d $\mathsf{E}_{\mathsf{k}}/\mathsf{dp})$ = (p/ E_{k}) $|$ $|$ - group velocity of v_{k} p_{k} p_k describes spread of the wave packets

Shape	Factor	2M	Phase	Factor
$F_k(p) = E_k(p_k) + v_k(p - p_k)$	(neglecting spread of the wave packets)			
Inserting into $\Psi_k \sim \int dp f_k(p - p_k) e^{ipx - iE_k(p)t}$				
$\Psi_k \sim e^{ip_kx - iE_k(p_k)t}$	Shape factor			
$e^{i\phi_k}$	$g_k(x - v_kt)$			
$\Phi_k = p_k x - E_k t$	Depends on x and t only in combinations (x - v_kt) and therefore corresponding energy: E_k(p_k) = \sqrt{p_k^2 + m_k^2}	Depeds on x and t only in excrete with group velocity v_k without change of the shape		

 $|v(x,t)\rangle = \cos\theta g_1(x-v_1 t)e^{i\phi_1}|v_1\rangle + \sin\theta g_2(x-v_2 t)e^{i\phi_2}|v_2\rangle$

Oscillation phase

 $\frac{1}{2}$ = ϕ_2 - ϕ_1

One needs to compute the state which is produced i.e. compute

- Fundamental interactions
- Kinematics
- characteristics of parent and accompanying particles

Process dependent

If heavy neutrinos are present but can not be produced for kinematical reasons, flavor states in Lagrangian differe from the produced states, etc..

Propagation of wave packets What happens?

Phase difference change

Due to different masses (dispersion relations) \rightarrow phase velocities

Due to different group velocities

Spread of individual

Due to presence of waves with different momenta and energy in the packet

 $|v(x,t)\rangle = \cos\theta g_1(x - v_1 t)|v_1\rangle + \sin\theta g_2(x - v_2 t)e^{i\phi}|v_2\rangle$

 $\phi = \phi_2 - \phi_1$ Oscillation phase

- Destructive interference of the muon parts
- Constructive interference of electron parts

- Destructive interference of the electron parts
- Constructive interference of muon parts

Detections

As important as production Should be considered symmetrically with production

Detection effect can be included in the generalized shape factors

 $g_{\mathsf{k}}(\mathsf{x}-\mathsf{v}_{\mathsf{k}}\mathsf{t}) \,\, \Rightarrow \mathsf{G}_{\mathsf{k}}(\mathsf{L}-\mathsf{v}_{\mathsf{k}}\mathsf{t}) \,\, ,$

 $x \rightarrow L$ - distance between central points of the production and detection regions

HOMEWORK…

Oscillation probability Amplitude of (survival) probability

 $A(v_e) = \langle v_e | v(x,t) \rangle = \cos^2\!\theta g_1(x - v_1 t) + \sin^2\!\theta g_2(x - v_2 t) e^{i\phi}$

Probability
\n
$$
P(v_e) = \int dx ||^2 =
$$
\n
$$
(integration over the detection area)
$$
\n
$$
= cos4θ + sin4θ + 2sin2θ cos2θ cos φ \int dx g1(x - v1 t) g2(x - v2 t)
$$

depth of oscillations $4\,\pi$ $\mathsf E$ Δm^2 $\phi = \frac{\Delta m}{2E}$ = If $g_1 = g_2$ $P(v_e)$ = 1 - 2 sin² θ cos² θ (1 - cos ϕ) = 1 - sin² 2 θ sin² $\frac{1}{2}\phi$ Δ m² x 2E $2 \pi x$ \blacksquare $I_v = \frac{4 \pi L}{4 m^2}$ Oscillation length

All complications – absorbed in normalization or reduced to partial averaging of oscillations or lead to negligible corrections of order m/E << 1

Oscillations - effect of the phase difference Oscillations - en leur et références

> Admixtures of the mass eigenstates v_i in a given neutrino state do not change during propagation

Flavors (flavor composition) of the eigenstates
are fixed by the vacuum mixing angle

In the configuration space: separation of the wave packets due to difference of group velocities

 $\Delta v_{\text{qr}} = \Delta m^2 / 2E^2$ no overlap: $\Delta {\bm{\mathsf{v}}}_{\text{gr}}$ L > $\sigma_{\bm{\mathsf{x}}}$ separation: Δv_{qr} L = Δm^2 L/2E² coherence length: L_{coh} = σ_{x} $E^2/\Delta m^2$

In the energy space: period of oscillations $\Delta E = 4\pi E^2/(\Delta m^2 L)$

Averaging (loss of coherence) if Averaging (1055 01 conerence) 11 $\Delta E \leftarrow \sigma_E$
energy resolution σ_E is bad:

$$
\Delta E \leftarrow \sigma_E
$$

Coherence is determined by conditions of detection

If $\Delta \mathsf{E} \triangleright \sigma_\mathsf{E}$ - restoration of coherence even if the wave packets separated

Formation of the wave packet

Pion decay:

E. Akhmedov, D. Hernandez, A.S.

Pion wave function:

$$
\psi_{\pi}(x_{S}, t_{S}) = \exp[-\frac{1}{2}\Gamma t_{S}] g_{\pi}(x_{S}, t_{S}) \exp[-i\phi_{\pi}(x_{S}, t_{S})]
$$

usually: $g_{\pi}(x_{S}, t_{S}) \sim \delta(x_{S} - v_{\pi}t_{S})$

Muon wave function:

$$
\psi_{\mu}(x_S, t_S) = g_{\mu}(x' - x_S, t' - t_S) \exp[i\phi_{\mu}(x' - x_S, t' - t_S)]
$$

determined by detection of muon

$$
P = \overline{P} + \frac{\sin^2 2\theta}{2(1 + \xi^2)} \frac{1}{1 - e^{-\Gamma l_p}} [\cos \phi_L + K]
$$

x

$$
K = \xi \sin \phi_L - e^{-\Gamma l_p} [\cos(\phi_L - \phi_p) - \xi \sin (\phi_L - \phi_p)]
$$

\n
$$
\phi_L = \Delta m^2 L / 2E \quad \phi_p = \Delta m^2 l_p / 2E
$$

 $\xi = \Delta m^2/2E\Gamma$ decoherence parameter

> MINOS: $\xi \sim 1$ β -beam?

Incoherent y-emission - short WP

Coherent v -emission - long WP

Equivalence

x

If loss of coherence and other complications related to WP picture are irrelevant – point-like picture

M is the mass matrix $V = diag (V_e, 0, 0)$ – effective potential

$$
Mixing matrixin vacuummacuummdiag2 = U Mdiag2 U+Mdiag2 = diag (m12, m22, m32)
$$

Neutrino polarization vectors

 Ψ = v_{e} V_{τ} ,

Polarization vector: **P** = $\psi^* \sigma/2 \psi$

$$
\mathbf{P} = \begin{pmatrix} \text{Re } v_e^+ v_\tau, \\ \text{Im } v_e^+ v_\tau, \\ v_e^+ v_e - 1/2 \end{pmatrix}
$$

B = $\frac{2\pi}{I}$ (sin 2 θ_m , 0, cos2 θ_m) l_{m} Evolution equation: $i\frac{d^2}{dt^2}$ = H Ψ $\overline{\mathsf{d} \Psi}$ d t $d \Psi$ $i\frac{\partial f}{\partial t} = (B \sigma) \Psi$

Differentiating **P** and using equation of motion

$$
\frac{dP}{dt} = (B \times P)
$$

Coincides with equation for the electron spin precession in the magnetic field

$$
\overrightarrow{v} = P =
$$
\n(Re v_e⁺ v_τ, Im v_e⁺ v_τ, v_e⁺ v_e - 1/2)

$$
\mathbf{B} = \frac{2\pi}{I_m} (\sin 2\theta_m, 0, \cos 2\theta_m)
$$

Evolution equation

$$
\frac{dv}{dt} = (\overrightarrow{B} \times \overrightarrow{v})
$$

$$
\phi = 2\pi t / I_m
$$
 - phase of oscillations

 $P = v_e^+ v_e = v_Z$

probability to find v_e

Oscillations

Conclusion.

Oscillations is effect of
monotonous phase durerence increase
between eigenstates of propagation (mass eigenstates) In course of propagation in space-time

Oscillation probability – periodic function of

- Distance L and

- Inverse energy 1/E

leads to shift of the center of mass of the packet

The oscillation phase which describes distortion

Key point

$$
\phi_p = \frac{2\pi \sigma}{I_v (v - v_\pi)} = 2 \pi I_p / I_v
$$

equals the phase acquired over the region of formation of the wave packets

To the theory of oscillations

Theory of oscillations: Quantum mechanics at macroscopic distances

Search for new realizations of the oscillation setup Phenomenological consequences

> Collective effects

Interplay of oscillations with other non-standard effects

Academic interest?
Manipulating WITH Manipulation setup Identify origins of neutrino mass

Generic feature of oscillation set-up

Nuclei decay

Energy-momentum is conserved in whole the system
Energy-momentum is conserved in whole the system Energy-momentum is conserved in whole the system.
which includes also particles whose interactions localize
which includes also particles. which includes also part (walls, etc).

E-p are not conserved in the sub-system: particles which Directly involved in the process of neutrino production

E-p can be conserved for individual components of the wave packets. E-p can be conserved for individual components of
Uncertainty is restored when the probability is convoluted with wave packets

Exact energy-momentum conservation: kinematic entanglement

$$
\pi \to v_{\mu} + \mu \qquad \pi \to v_{\mu} + \mu \qquad i = 1,2
$$

 $|f\rangle = \sum_{i} |\mu_{i}\rangle|v_{i}$

Final state:

 μ_i is the state which (kinematically) corresponds mass eigenstate v_i

Evolved:

$$
|f\rangle = \Sigma|\mu_i\rangle|v_i\rangle e^{i\phi_i(v)} e^{i\phi_i(\mu)}
$$

Does recoil (muon) phase contribute to the oscillation phase?

For muon:
$$
p^2 = E^2 - m^2
$$

 $2p \Delta p = 2E\Delta E$
 $\Delta p = E/p \Delta E = 1/v_g \Delta E$
 $v_g = p/E$
 $\phi = \Delta Et - \Delta px = \Delta E(t - x/v_g) \sim \Delta E \sigma_x$

no mass difference between two muon components

$$
x = v_g t
$$

Related to uncertainty of the phase due to localization

As it should bem

 \mathbf{v}

 μ

production region

Flavor of neutrino state is fixed at the production

This does not depend on where and how
muon is detected and on what is in how muon is detected and on where and how
difference between the muon compact difference between the muon components

Neutrino phase difference is determined by neutrino parameters

Can NG interactions prepare dlement & EPR^d

What is the neutrino state produced in the Z-decay in the presence of mixing?

> s f = $\frac{1}{\sqrt{2}}$ [$|\overline{v}_1 v_1 \rangle$ + $|\overline{v}_2 v_2 \rangle$ + $|\overline{v}_3 v_3 \rangle$] 3

$$
\left\langle f\left|H\right|Z\right\rangle\right|\ {}^{2}=\ \ 3\left|\left\langle\overline{\nu}_{1}\nu_{1}\right|H\right|Z\right\rangle\right|\ {}^{2}
$$

Do neutrinos from Z⁰- decay oscillate?

Two detectors experiment: detection of both neutrinos

 v_i

 v_i

 $\rm Z^0$

If the flavor of one of the neutrino is fixed, another neutrino oscillates

Flavors of mass eigenstates do not change

Admixtures of mass eigenstates do not change: no $\,$ n $_{1}$ <-> $\,$ n $_{2}$ transitions

Due to difference of masses n_1 and n_2 have different phase velocities

effects of the phase difference increase which changes the interference pattern

Qscillation probability

$$
\frac{P(n_m) = \frac{A_p}{2} \left(1 - \cos \frac{2px}{l_n}\right)}{P(n_m) = \frac{A_p}{2} \left(1 - \cos \frac{2px}{l_n}\right)} = \sin^2 2q \sin^2 \frac{px}{l_n}
$$

Features of neutrino oscillations in vacuum:

Oscillations -- effect of the phase difference increase between mass eigenstates

Admixtures of the mass eigenstates n_i in a given neutrino state do not change during propagation

Flavors (flavor composition) of the eigenstates are fixed by the vacuum mixing angle

At one glance **Sources:**

All well established/confirmed results are described by

+ of three neutrinos with of three neutrinos wern and nothing more? Introduction of neutrino mass and mixing may have negligible impact on the rest of SM mass is generated by $\frac{1}{\cdot}$ L L H H Λ other effects $\sim \Lambda^{-2}$

ass and

Ne	V _u	V _v	V _v	1	1	Chiral components						
V_e	V_{μ}	V_{τ}	V_{τ}	I_{μ}	I_{ν}	I_{ν}	I_{ν}	I_{ν}	V_{ν}	V_{ν}	V_{ν}	V_{ν}
V_e	V_{μ}	V_{τ}	V_{ν}	$I = e, \mu, \tau$								
V_1	$I = e, \mu, \tau$	V_1										
V_2	V_1	V_2										
V_1	V_1	V_2										
V_1	V_2											
V_2	V_1											
V_2	V_2											
V_1	V_2											
V_1	V_2											

Origin of mixing: off diagonal mass matrices

 M_1 \neq M_{ν}

$$
M_{I} = U_{I L} m_{I}^{diag} U_{IR}^{+}
$$

$$
M_{V} = U_{V L} m_{V}^{diag} U_{V L}^{T}
$$

$$
(Majorana neutrinos)
$$

$$
m_{V}^{diag} = (m_{1}, m_{2}, m_{3})
$$

CC in terms of mass eigenstates: $\int \gamma^{\mu} (1 - \gamma_5) U_{PMNS} v_{mass}$

$$
U_{PMNS} = U_{IL} U_{VL}
$$

Flavor basis: $M_1 = m_1^{diag}$ $U_{PMNS} = U_{vL}$

Parameterization

 $U_{PMNS} = U_{23} I_{\delta} U_{13} I_{-\delta} U_{12}$ $I_8 = diag(1, 1, e^{i\delta})$

$$
U_{PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ s_{12}c_{23} + c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & -s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}s_{23} + s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}
$$

 $c_{12} = \cos \theta_{12}$, etc.

 δ is the Dirac CP violating phase θ_{12} is the ''solar" mixing angle θ_{23} is the ``atmospheric" mixing angle θ_{13} is the mixing angle determined by T2K, Daya Bay, DC, RENO ...

Challenging the theory of oscillatio

Why the standard oscillation formula is so robust? Corrections required ?

New oscillation setups Higher precision …

LBL experiments:

- Long life-time parents: pions, muons, nuclei;
- large decay pipes, straight lines of storage rings

Neutrino anomalies as consequences of modified description of oscillations

Nature of neutrino mass differs from nature of electron or top quark…

Ne	V _u	V _v	V _v	1	2	Chiral components						
V_e	V_{μ}	V_{τ}	V_{τ}	I_{μ}	I_{ν}	I_{ν}	I_{ν}	I_{ν}	V_{ν}	V_{ν}	V_{ν}	V_{ν}
V_e	V_{μ}	V_{τ}	V_{τ}	$I = e, \mu, \tau$								
V_1	V_1	V_1										
V_2	V_1	V_2										
V_1	V_1	V_2										
V_1	V_1											
V_2	V_2											
V_1	V_2											
V_2	V_1											
V_2	V_2											
<												

How external particles Should be described?

detection/production areas are determined by localization of particles involved in neutrino production and detection not source/detector volume (still to integrate over)

wave packets for external particles

Describe by plane waves But introduce finite integration

Wave packets

Neutrinos real particles described by the wave packets Which encode information about production and detection as well on oscillations in the production region

Flavor neutrino states:

Mass eigenstates

Entanglement & EPR

-
-
-
-
-
-
-