Flavour structure from the seesaw

Michael A. Schmidt

University of Melbourne

28th Jun 2012 Alexei Smirnov Fest What's nu? – Invisibles 12

M. Lindner, MS, A. Y. .Smirnov, JHEP **0507** (2005) 048 C. Hagedorn, MS, A. Y. .Smirnov, Phys. Rev. D **79**, 036002 (2009) MS, A. Y. .Smirnov, Nucl.Phys. B857 (2012) 1-27

Outline

Introduction

2 Implementations of Double Seesaw Structure

3 Stability with respect to Quantum Corrections

4 Conclusions

Outline

Introduction

2 Implementations of Double Seesaw Structure

y with respect to Quantum Correction

Fermion Masses

Huge hierarchy of charged fermions:

$$m_t: m_c: m_u \sim 1: 7 \cdot 10^{-3}: 10^{-5}$$
$$m_b: m_s: m_d \sim 1: 2 \cdot 10^{-2}: 10^{-3}$$
$$m_\tau: m_\mu: m_e \sim 1: 6 \cdot 10^{-2}: 3 \cdot 10^{-4}$$

 Neutral fermions have smaller masses and a weaker hierarchy

Fermion Masses

Huge hierarchy of charged fermions:

$$m_t: m_c: m_u \sim 1: 7 \cdot 10^{-3}: 10^{-5}$$
$$m_b: m_s: m_d \sim 1: 2 \cdot 10^{-2}: 10^{-3}$$
$$m_\tau: m_\mu: m_e \sim 1: 6 \cdot 10^{-2}: 3 \cdot 10^{-4}$$

- Neutral fermions have smaller masses and a weaker hierarchy
- Small mixing angles in CKM matrix: $\frac{\vartheta_{12}}{13^{\circ}} \frac{\vartheta_{23}}{2.4^{\circ}} \frac{\theta_{13}}{0.23^{\circ}}$

Large	mixing	angles	in PMNS matrix:
θ_{12}	θ_{23}	θ_{13}	
34°	44°	9.3°	[Forero et. al (2012)]
34°	39°	9.0°	[Fogli et. al (2012)]

Fermion Masses

Huge hierarchy of charged fermions:

$$m_t: m_c: m_u \sim 1: 7 \cdot 10^{-3}: 10^{-5}$$
$$m_b: m_s: m_d \sim 1: 2 \cdot 10^{-2}: 10^{-3}$$
$$m_\tau: m_\mu: m_e \sim 1: 6 \cdot 10^{-2}: 3 \cdot 10^{-4}$$

- Neutral fermions have smaller masses and a weaker hierarchy
- Small mixing angles in CKM matrix: $\begin{array}{c|c} \vartheta_{12} & \vartheta_{23} & \theta_{13} \\ \hline 13^{\circ} & 2.4^{\circ} & 0.23^{\circ} \end{array}$
 - Large mixing angles in PMNS matrix:

 θ_{12} θ_{23} θ_{13}
 34° 44° 9.3° [Forero et. al (2012)]

 34° 39° 9.0° [Fogli et. al (2012)]
- Explanation of different structures?
- Compatibility with GUTs?

Standard Seesaw [Minkowski; Yanagida; Glashow; Gell-Mann, Ramond, Slansky; Mohapatra, Senjanovic]

Introduction of right-handed (RH) neutrinos N

$$\mathcal{M}=\left(egin{array}{cc} 0 & m_D^T \ \cdot & M_{NN} \end{array}
ight)$$

Standard Seesaw [Minkowski;Yanagida;Glashow;Gell-Mann,Ramond,Slansky;Mohapatra,Senjanovic]

Introduction of right-handed (RH) neutrinos N

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T \\ \cdot & M_{NN} \end{pmatrix} \Rightarrow m_\nu \approx -m_D^T M_{NN}^{-1} m_D$$

• $m_D \sim \mathcal{O}(\Lambda_{ew})$, $M_{NN} \sim \mathcal{O}(10^{14} \text{ GeV}) < \Lambda_{GUT}$ \Rightarrow effective light neutrino mass: $m_{\nu} \lesssim \mathcal{O}(0.1 \text{ eV})$

Standard Seesaw [Minkowski;Yanagida;Glashow;Gell-Mann,Ramond,Slansky;Mohapatra,Senjanovic]

Introduction of right-handed (RH) neutrinos N

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T \\ \cdot & M_{NN} \end{pmatrix} \Rightarrow m_\nu \approx -m_D^T M_{NN}^{-1} m_D$$

• $m_D \sim \mathcal{O}(\Lambda_{ew})$, $M_{NN} \sim \mathcal{O}(10^{14} \text{ GeV}) < \Lambda_{GUT}$ \Rightarrow effective light neutrino mass: $m_{\nu} \lesssim \mathcal{O}(0.1 \text{ eV})$

Different flavour structure possible

Standard Seesaw [Minkowski;Yanagida;Glashow;Gell-Mann,Ramond,Slansky;Mohapatra,Senjanovic]

Introduction of right-handed (RH) neutrinos N

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T \\ \cdot & M_{NN} \end{pmatrix} \Rightarrow m_\nu \approx -m_D^T M_{NN}^{-1} m_D$$

- $m_D \sim \mathcal{O}(\Lambda_{ew})$, $M_{NN} \sim \mathcal{O}(10^{14} \, \text{GeV}) < \Lambda_{GUT}$
- \Rightarrow effective light neutrino mass: $m_
 u \lesssim \mathcal{O}\left(0.1\,\mathrm{eV}
 ight)$

- Different flavour structure possible
- If SO(10): RH neutrinos as well as all SM fermions in $\underline{16}$
- $\Rightarrow~m_D\sim m_u$ \Rightarrow Large (quadratic) hierarchy in neutrino masses

Standard Seesaw [Minkowski;Yanagida;Glashow;Gell-Mann,Ramond,Slansky;Mohapatra,Senjanovic]

Introduction of right-handed (RH) neutrinos N

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T \\ \cdot & M_{NN} \end{pmatrix} \Rightarrow m_\nu \approx -m_D^T M_{NN}^{-1} m_D$$

•
$$m_D \sim \mathcal{O}\left(\Lambda_{ew}\right)$$
, $M_{NN} \sim \mathcal{O}\left(10^{14}\,\text{GeV}\right) < \Lambda_{GUT}$

 $\Rightarrow~$ effective light neutrino mass: $m_
u \lesssim \mathcal{O}\left(0.1\,\mathrm{eV}
ight)$

- Different flavour structure possible
- If SO(10): RH neutrinos as well as all SM fermions in $\underline{16}$
- $\Rightarrow m_D \sim m_u \Rightarrow$ Large (quadratic) hierarchy in neutrino masses
- ⇒ Cancellation of hierarchies needed in neutrino mass matrix

Standard Seesaw [Minkowski;Yanagida;Glashow;Gell-Mann,Ramond,Slansky;Mohapatra,Senjanovic]

Introduction of right-handed (RH) neutrinos N

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T \\ \cdot & M_{NN} \end{pmatrix} \Rightarrow m_\nu \approx -m_D^T M_{NN}^{-1} m_D$$

•
$$m_D \sim \mathcal{O}\left(\Lambda_{ew}\right)$$
, $M_{NN} \sim \mathcal{O}\left(10^{14}\,\text{GeV}\right) < \Lambda_{GUT}$

 $\Rightarrow~$ effective light neutrino mass: $m_
u \lesssim \mathcal{O}\left(0.1\,\mathrm{eV}
ight)$

- Different flavour structure possible
- If SO(10): RH neutrinos as well as all SM fermions in $\underline{16}$
- $\Rightarrow m_D \sim m_u \Rightarrow$ Large (quadratic) hierarchy in neutrino masses
- ⇒ Cancellation of hierarchies needed in neutrino mass matrix
- New scale below Λ_{GUT} needed

Solutions to Large Hierarchy from Seesaw

Forget about SO(10), use e.g. SU(5)

Solutions to Large Hierarchy from Seesaw

- Forget about SO(10), use e.g. SU(5)
- Use an alternative seesaw mechanism

Alternative Seesaw

Type III (fermionic triplet) seesaw

Solutions to Large Hierarchy from Seesaw

- Forget about SO(10), use e.g. SU(5)
- Use an alternative seesaw mechanism
- Cancel hierarchy through structure in RH Majorana mass matrix M_{NN}

• . . .

Type III (fermionic triplet) seesaw

Double Seesaw [Mohapatra, Valle; Barr]

Introduce additional singlets S

$$\mathcal{M} = \left(egin{array}{ccc} 0 & m_D^T & 0 \ . & 0 & M_{SN}^T \ . & . & M_{SS} \end{array}
ight)$$

Mainly two different limits studied:

Double Seesaw [Mohapatra, Valle; Barr]

Introduce additional singlets S

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T & 0 \\ . & 0 & M_{SN}^T \\ . & . & M_{SS} \end{pmatrix} \Rightarrow m_\nu = m_D^T M_{SN}^{-1} M_{SS} M_{SN}^{-1} {}^T m_D$$

Mainly two different limits studied:

• Inverse seesaw: $M_{SN} \gg m_D \gg M_{SS}$

 \Rightarrow e.g. $m_D \sim \mathcal{O}\left(100 \,\, ext{GeV}
ight) \,, \quad M_{SN} \sim \mathcal{O}\left(ext{TeV}
ight) \,, \quad M_{SS} \sim \mathcal{O}\left(0.01 \,\, ext{keV}
ight)$

Double Seesaw [Mohapatra, Valle; Barr]

Introduce additional singlets S

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T & 0 \\ . & 0 & M_{SN}^T \\ . & . & M_{SS} \end{pmatrix} \Rightarrow m_\nu = m_D^T M_{SN}^{-1} M_{SS} M_{SN}^{-1} {}^T m_D$$

Mainly two different limits studied:

- Inverse seesaw: $M_{SN} \gg m_D \gg M_{SS}$
- \Rightarrow e.g. $m_D \sim \mathcal{O}\left(100 \,\, ext{GeV}
 ight) \,, \quad M_{SN} \sim \mathcal{O}\left(ext{TeV}
 ight) \,, \quad M_{SS} \sim \mathcal{O}\left(0.01 \,\, ext{keV}
 ight)$
- Double seesaw: $M_{SS} \gg M_{SN} \gg m_D$
- $\Rightarrow m_{D} \sim \mathcal{O}\left(\Lambda_{ew}\right) , \quad M_{SN} \sim \mathcal{O}\left(\Lambda_{GUT}\right) , \quad M_{SS} \sim \mathcal{O}\left(M_{Pl}\right)$

Double Seesaw [Mohapatra, Valle; Barr]

Introduce additional singlets S

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T & 0 \\ . & 0 & M_{SN}^T \\ . & . & M_{SS} \end{pmatrix} \Rightarrow m_\nu = m_D^T M_{SN}^{-1} M_{SS} M_{SN}^{-1} {}^T m_D$$

Mainly two different limits studied:

• Inverse seesaw:
$$M_{SN} \gg m_D \gg M_{SS}$$

 \Rightarrow e.g. $m_D \sim \mathcal{O} \left(100 \; ext{GeV}
ight) \;, \quad M_{SN} \sim \mathcal{O} \left(ext{TeV}
ight) \;, \quad M_{SS} \sim \mathcal{O} \left(0.01 \; ext{keV}
ight)$

- Double seesaw: $M_{SS} \gg M_{SN} \gg m_D$
- $\Rightarrow m_{D} \sim \mathcal{O}\left(\Lambda_{ew}\right), \quad M_{SN} \sim \mathcal{O}\left(\Lambda_{GUT}\right), \quad \overline{M_{SS} \sim \mathcal{O}\left(M_{Pl}\right)}$
- Naturally leads to correct scale of RH neutrinos $M_{NN} \sim M_{SN}^2/M_{SS} \sim \Lambda_{GUT}^2/M_{Pl} \sim 10^{13} \text{ GeV}$

Double Seesaw [Mohapatra, Valle; Barr] Introduce additional singlets *S*

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^{\mathsf{T}} & m_{S\nu}^{\mathsf{T}} \\ . & M_{NN} & M_{SN}^{\mathsf{T}} \\ . & . & M_{SS} \end{pmatrix} \Rightarrow m_{\nu} = m_D^{\mathsf{T}} M_{SN}^{-1} M_{SS} M_{SN}^{-1} {}^{\mathsf{T}} m_D$$

Mainly two different limits studied:

• Inverse seesaw: $M_{SN} \gg m_D \gg M_{SS}$

 \Rightarrow e.g. $m_D \sim \mathcal{O}\left(100 \,\, ext{GeV}
ight) \,, \quad M_{SN} \sim \mathcal{O}\left(ext{TeV}
ight) \,, \quad M_{SS} \sim \mathcal{O}\left(0.01 \,\, ext{keV}
ight)$

- Double seesaw: $M_{SS} \gg M_{SN} \gg m_D$
- $\Rightarrow m_{D} \sim \mathcal{O}\left(\Lambda_{ew}\right) , \quad M_{SN} \sim \mathcal{O}\left(\Lambda_{GUT}\right) , \quad M_{SS} \sim \mathcal{O}\left(M_{Pl}\right)$
 - Naturally leads to correct scale of RH neutrinos $M_{NN} \sim M_{SN}^2/M_{SS} \sim \Lambda_{GUT}^2/M_{Pl} \sim 10^{13} \text{ GeV}$

Double Seesaw [Mohapatra, Valle; Barr] Introduce additional singlets *S*

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^{\mathsf{T}} & m_{S\nu}^{\mathsf{T}} \\ . & M_{NN} & M_{SN}^{\mathsf{T}} \\ . & . & M_{SS} \end{pmatrix} \Rightarrow m_{\nu} = m_D^{\mathsf{T}} M_{SN}^{-1} M_{SS} M_{SN}^{-1} {}^{\mathsf{T}} m_D$$

Mainly two different limits studied:

• Inverse seesaw:
$$M_{SN} \gg m_D \gg M_{SS}$$

 \Rightarrow e.g. $m_D \sim \mathcal{O} \left(100 \; ext{GeV}
ight) \;, \quad M_{SN} \sim \mathcal{O} \left(ext{TeV}
ight) \;, \quad M_{SS} \sim \mathcal{O} \left(0.01 \; ext{keV}
ight)$

- Double seesaw: $M_{SS} \gg M_{SN} \gg m_D$
- $\Rightarrow m_{D} \sim \mathcal{O}\left(\Lambda_{ew}\right), \quad M_{SN} \sim \mathcal{O}\left(\Lambda_{GUT}\right), \quad M_{SS} \sim \mathcal{O}\left(M_{Pl}\right)$
- Naturally leads to correct scale of RH neutrinos $M_{NN} \sim M_{SN}^2/M_{SS} \sim \Lambda_{GUT}^2/M_{Pl} \sim 10^{13} \text{ GeV}$
- If M_{SS} singular, there are massless neutrinos.

Double Seesaw [Mohapatra, Valle; Barr]

Introduce additional singlets S

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T & m_{S\nu}^T \\ . & 0 & M_{SN}^T \\ . & . & M_{SS} \end{pmatrix} \Rightarrow m_\nu = m_\nu^{DS} + m_\nu^{LS}$$

Double Seesaw [Mohapatra, Valle; Barr]

Introduce additional singlets S

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T & m_{S\nu}^T \\ . & 0 & M_{SN}^T \\ . & . & M_{SS} \end{pmatrix} \Rightarrow m_\nu = m_\nu^{DS} + m_\nu^{LS}$$

 $m_D, m_{S\nu} \sim \mathcal{O}\left(\overline{\Lambda_{ew}}\right), \quad M_{SN} \sim \mathcal{O}\left(\Lambda_{GUT}\right), \quad \overline{M_{SS} \sim \mathcal{O}\left(M_{Pl}\right)}$

- Double seesaw (DS) contribution: $m_{\nu}^{DS} \approx m_D^T M_{SN}^{-1} M_{SS} M_{SN}^{-1T} m_D$
- Linear seesaw (LS) contribution: $m_{\nu}^{LS} \approx -\left[m_D^T M_{SN}^{-1} m_{S\nu} + (\dots)^T\right]$ generally smaller

Double Seesaw [Mohapatra, Valle; Barr]

Introduce additional singlets S

$$\mathcal{M} = \left(egin{array}{ccc} 0 & m_D^T & m_{S
u}^T \ . & 0 & M_{SN}^T \ . & M_{SS} \end{array}
ight) \Rightarrow m_
u = m_
u^{DS} + m_
u^{LS}$$

 $m_D, m_{S\nu} \sim \mathcal{O}\left(\Lambda_{ew}\right), \quad M_{SN} \sim \mathcal{O}\left(\Lambda_{GUT}\right), \quad M_{SS} \sim \mathcal{O}\left(M_{Pl}\right)$

- Double seesaw (DS) contribution: $m_{\nu}^{DS} \approx F^{T} M_{SS} F$
- Linear seesaw (LS) contribution: $m_{\nu}^{LS} \approx -\left[F^{T}m_{S\nu} + (\dots)^{T}\right]$ generally smaller

Cancellation [Smirnov (1993,2004)]

• $F \equiv M_{SN}^{-1T} \overline{m_D}$ non hierarchical \Rightarrow weak hierarchy in m_{ν}

Double Seesaw [Mohapatra, Valle; Barr]

Introduce additional singlets S

$$\mathcal{M} = \left(egin{array}{ccc} 0 & m_D^T & m_{S
u}^T \ . & 0 & M_{SN}^T \ . & M_{SS} \end{array}
ight) \Rightarrow m_
u = m_
u^{DS} + m_
u^{LS}$$

 $m_{D}, m_{S\nu} \sim \mathcal{O}\left(\Lambda_{ew}\right), \quad M_{SN} \sim \mathcal{O}\left(\Lambda_{GUT}\right), \quad M_{SS} \sim \mathcal{O}\left(M_{Pl}\right)$

- Double seesaw (DS) contribution: $m_{\nu}^{DS} \approx F^{T} M_{SS} F$
- Linear seesaw (LS) contribution: $m_{\nu}^{LS} \approx -\left[F^{T}m_{S\nu} + (\dots)^{T}\right]$ generally smaller

Cancellation [Smirnov (1993,2004)]

- $F \equiv M_{SN}^{-1 T} \overline{m_D}$ non hierarchical \Rightarrow weak hierarchy in m_{ν}
- $F \propto 1$ (Dirac screening \Rightarrow Dirac flavour structure is cancelled)

Outline

2 Implementations of Double Seesaw Structure

ity with respect to Quantum Correction

How can this structure be obtained? – no SO(10)

Abelian Symmetry – L number

With the charges $L(\nu_L) = L(N) = 1$, L(S) = 0

 $M_{SS}SS$

in basis $(\nu, N, S)^T$

$$L(\mathcal{M}) = egin{pmatrix} 2 & 2 & 1 \ . & 2 & 1 \ . & . & 0 \end{pmatrix}$$

How can this structure be obtained? – no SO(10)

Abelian Symmetry – *L* number

With the charges $L(\nu_L) = L(N) = 1$, L(S) = 0, $L(\phi) = -2$ and $L(\sigma) = -1$

 $M_{SS}SS + Y_{\nu}L\phi N + Y_{SN}SN\sigma$

in basis $(\nu, N, S)^T$

$$L(\mathcal{M}) = egin{pmatrix} 2 & 2 & 1 \ . & 2 & 1 \ . & . & 0 \end{pmatrix} \ \Rightarrow \mathcal{M} = egin{pmatrix} 0 & Y_{
u} \left< \phi \right> & 0 \ . & 0 & Y_{SN} \left< \sigma \right> \ . & . & M_{SS} \end{pmatrix}$$

How can this structure be obtained? – no SO(10)

Abelian Symmetry – L number

With the charges $L(\nu_L) = L(N) = 1$, L(S) = 0, $L(\phi) = -2$ and $L(\sigma) = -1$

 $M_{SS}SS + Y_{\nu}L\phi N + Y_{SN}SN\sigma$

in basis $(\nu, N, S)^T$

$$L(\mathcal{M}) = egin{pmatrix} 2 & 2 & 1 \ . & 2 & 1 \ . & . & 0 \end{pmatrix} \ \Rightarrow \mathcal{M} = egin{pmatrix} 0 & Y_{
u} \left< \phi \right> & 0 \ . & 0 & Y_{SN} \left< \sigma \right> \ . & . & M_{SS} \end{pmatrix}$$

Minimal LR symmetry $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

$$G(\mathcal{M}) = egin{pmatrix} [3,1] & [2,2] & [2,1] \ . & [1,3] & [1,2] \ . & . & [1,1] \end{pmatrix}$$

Setup within SO(10)

Lagrangian

$$\alpha_{ij} \underline{\mathbf{16}}_i \ \underline{\mathbf{16}}_j \ H + \beta_{ij} S_i \ \underline{\mathbf{16}}_j \ \Delta + (M_{SS})_{ij} S_i S_j$$

$$\underbrace{ \begin{array}{c|c} \underline{\mathbf{16}}_i & S_i \\ \hline \mathbf{50}(10) & \underline{\mathbf{16}} & \underline{\mathbf{1}} \\ \end{array} \begin{array}{c|c} \underline{\mathbf{10}} & \overline{\mathbf{16}} \\ \underline{\mathbf{10}} & \overline{\mathbf{16}} \\ \end{array} \begin{array}{c|c} \underline{\mathbf{10}} \\ \hline \mathbf{10} \\ \hline \mathbf{10} \\ \end{array} \end{array}$$

$$\mathcal{M} = egin{pmatrix} 0 & m_D^T & m_{S
u}^T \ . & 0 & M_{SN}^T \ . & . & M_{SS} \end{pmatrix} \ m_D = lpha \left< H \right> \ , \quad M_{SN} = eta \left< \Delta \right>_N \ , \quad m_{S
u} = eta \left< \Delta \right>_
u$$

Setup within SO(10)

Lagrangian

$$\alpha_{ij} \underline{\mathbf{16}}_i \ \underline{\mathbf{16}}_j \ H + \beta_{ij} S_i \ \underline{\mathbf{16}}_j \ \Delta + (M_{SS})_{ij} S_i S_j$$

$$\underbrace{ \begin{array}{c|c} \underline{\mathbf{16}}_i & S_i \\ \hline \mathbf{50}(10) & \underline{\mathbf{16}} & \underline{\mathbf{1}} \\ \end{array} \begin{array}{c|c} \underline{\mathbf{10}} & \overline{\mathbf{16}} \\ \underline{\mathbf{10}} & \overline{\mathbf{16}} \\ \end{array}$$

 $\mathcal{M} = \begin{pmatrix} 0 & m_D^T & m_{S\nu}^T \\ . & 0 & M_{SN}^T \\ . & . & M_{SS} \end{pmatrix}$ $m_D = \alpha \langle H \rangle , \quad M_{SN} = \beta \langle \Delta \rangle_N , \quad m_{S\nu} = \beta \langle \Delta \rangle_\nu$ $\Rightarrow \text{ correlation between } \alpha \text{ and } \beta \text{ needed.}$

Setup within SO(10)

Lagrangian

$$\alpha_{ij} \underline{\mathbf{16}}_i \ \underline{\mathbf{16}}_j \ H + \beta_{ij} S_i \ \underline{\mathbf{16}}_j \ \Delta + (M_{SS})_{ij} S_i S_j$$

$$\underbrace{ \begin{array}{c|c} \underline{\mathbf{16}}_i & S_i \\ \hline \mathbf{50}(10) & \underline{\mathbf{16}} & \underline{\mathbf{1}} \\ \end{array} \begin{array}{c|c} \underline{\mathbf{10}} & \overline{\mathbf{16}} \\ \underline{\mathbf{10}} & \overline{\mathbf{16}} \\ \end{array}$$

$$m_{D} = \alpha \langle H \rangle , \quad M_{SN} = \beta \langle \Delta \rangle_{N} , \quad m_{S\nu} = \beta \langle \Delta \rangle_{\nu}$$

 $0 m_D' m_{S\nu}'$

 \Rightarrow correlation between α and β needed.

Cancellation Mechanism

- e.g. Frogatt Nielsen mechanism
- \rightarrow Hierarchy cancelled, anarchical spectrum

[Hall, Murayama, Weiner (1999); de Gouvêa, Murayama (2012)]

Realisation with Extended Gauge Symmetry I $SO(10) \subset E_6$

 $\underline{\mathbf{27}} \to \underline{\mathbf{16}} \oplus \underline{\mathbf{10}} \oplus \underline{\mathbf{1}}$

 \Rightarrow Singlets are in the same representation

Realisation with Extended Gauge Symmetry I $SO(10) \subset E_6$

 $\underline{\mathbf{27}} \to \underline{\mathbf{16}} \oplus \underline{\mathbf{10}} \oplus \underline{\mathbf{1}}$

 \Rightarrow Singlets are in the same representation

 $\underline{27}_{i} \underline{27}_{j} \left(Y_{27}^{\{ij\}} \underline{27} + Y_{351s}^{\{ij\}} \underline{351}_{s} + Y_{351s}^{[ij]} \underline{351}_{A} \right)$

Realisation with Extended Gauge Symmetry I $SO(10) \subset E_6$

 $\underline{\mathbf{27}} \to \underline{\mathbf{16}} \oplus \underline{\mathbf{10}} \oplus \underline{\mathbf{1}}$

 \Rightarrow Singlets are in the same representation

$$\underline{27}_{i}\,\underline{27}_{j}\left(Y_{27}^{\{ij\}}\,\underline{27}+Y_{351s}^{\{ij\}}\,\underline{351}_{S}+Y_{351s}^{[ij]}\,\underline{351}_{A}\right)$$

In terms of $SU(3)_L \times SU(3)_R \times SU(3)_C$

Leptons

$$L = \begin{pmatrix} L_1^{\dot{1}} & E^- & e^- \\ E^+ & L_2^{\dot{2}} & \nu \\ e^+ & \overline{\nu} & L_3^{\dot{3}} \end{pmatrix} \sim (\overline{\underline{3}}, \underline{3}, 1)$$
$$[Q_L \sim (\underline{3}, 1, \overline{3}), Q_R \sim (1, \overline{3}, 3)]$$

Realisation with Extended Gauge Symmetry I $SO(10) \subset E_6$

 $\underline{\mathbf{27}} \to \underline{\mathbf{16}} \oplus \underline{\mathbf{10}} \oplus \underline{\mathbf{1}}$

 \Rightarrow Singlets are in the same representation

$$\underline{27}_{i}\,\underline{27}_{j}\left(Y_{27}^{\{ij\}}\,\underline{27}+Y_{351s}^{\{ij\}}\,\underline{351}_{S}+Y_{351s}^{[ij]}\,\underline{351}_{A}\right)$$

In terms of $SU(3)_L \times SU(3)_R \times SU(3)_C$

Leptons

$$L = \begin{pmatrix} L_1^{\dot{1}} & E^- & e^- \\ E^+ & L_2^{\dot{2}} & \nu \\ e^+ & \overline{\nu} & L_3^{\dot{3}} \end{pmatrix} \sim (\overline{\underline{3}}, \underline{3}, 1) \\ [Q_L \sim (\underline{3}, 1, \overline{\underline{3}}), Q_R \sim (1, \overline{\underline{3}}, \underline{3})]$$

Relevant Higgs multiplets

 $\begin{aligned} H \subset \left(\underline{3}, \, \underline{3}, \, \underline{1}\right) \subset \underline{27} \\ H_S \subset \left(\overline{3}, \, \underline{3}, \, \underline{1}\right) + \left(\underline{6}, \, \overline{6}, \, \underline{1}\right) \subset \underline{351}_S \\ H_A \subset \left(\underline{3}, \, \underline{3}, \, \underline{1}\right) + \left(\underline{3}, \, \overline{6}, \, \underline{1}\right) + \left(\underline{6}, \, \underline{3}, \, \underline{1}\right) \subset \underline{351}_A \end{aligned}$
Realisation with Extended Gauge Symmetry II

Dirac Screening structure obtained from

 $\left\langle \left(\mathcal{H}_{\mathcal{A}}
ight)_{1}^{i}
ight
angle \simeq \mathcal{O}\left(\mathrm{SU}(2)_{L} ext{ breaking scale}
ight)$ $\left\langle (H_A)_1^{\{33\}} \right\rangle \simeq \mathcal{O}\left(\mathrm{SU}(2)_R \text{ breaking scale}\right)$ $\left\langle (\mathcal{H}_S)_{\{\dot{3}\dot{3}\dot{3}\}}^{\{33\}} \right\rangle \simeq \left\langle (\mathcal{H}_A)_3^{\dot{3}} \right\rangle \simeq \mathcal{O}\left(\mathrm{SU}(3)_L \times \mathrm{SU}(3)_R \text{ breaking scale} \right)$ in basis $\left(\nu \sim L_{3}^{\dot{2}}, N \sim L_{2}^{\dot{3}}, S \sim L_{3}^{\dot{3}}, S' \sim L_{1}^{\dot{1}}, S'' \sim L_{2}^{\dot{2}}\right)$ $0 \qquad -Y_{351_{A}}\left\langle \left(H_{A}\right)_{1}^{i}\right\rangle$ 0 0 $-Y_{351_A}\left\langle (H_A)_1^{\{33\}} \right\rangle$ 0 0 $Y_{351s}\left\langle \left(H_{5}\right)_{\left\{\frac{1}{3}3\right\}}^{\left\{33\right\}}\right\rangle \quad Y_{351a}\left\langle \left(H_{A}\right)_{1}^{1}\right\rangle$ 0 $Y_{351_{A}}\left\langle \left(H_{A}\right)_{3}^{3}\right\rangle$ 0

Realisation with Extended Gauge Symmetry II

Dirac Screening structure obtained from

 $\left\langle \left(\mathcal{H}_{\mathcal{A}}
ight)_{1}^{1}
ight
angle \simeq \mathcal{O} \left(\mathrm{SU}(2)_{L} ext{ breaking scale}
ight)$ $\left\langle (\mathcal{H}_{A})_{1}^{\{33\}} \right\rangle \simeq \mathcal{O}\left(\mathrm{SU}(2)_{R} \text{ breaking scale}\right)$ $\left\langle (\mathcal{H}_S)_{\{\dot{3}\dot{3}\dot{3}\}}^{\{33\}} \right\rangle \simeq \left\langle (\mathcal{H}_A)_3^{\dot{3}} \right\rangle \simeq \mathcal{O}\left(\mathrm{SU}(3)_L \times \mathrm{SU}(3)_R \text{ breaking scale} \right)$ in basis $\left(
u \sim L_3^{\dot{2}}, N \sim L_2^{\dot{3}}, S \sim L_3^{\dot{3}}, S' \sim L_1^{\dot{1}}, S'' \sim L_2^{\dot{2}}
ight)$ $0 - Y_{351_A} \left\langle (H_A)_1^{i} \right\rangle$ 0 0 $-Y_{351_{\mathcal{A}}}\left\langle \left(\mathcal{H}_{\mathcal{A}}
ight) _{1}^{\left\{ 33
ight\} }
ight
angle$ 0 0 $Y_{351s}\left\langle \left(H_{S}\right)^{\{33\}}_{\{\dot{3}\dot{3}\}}\right\rangle$ $Y_{351_A}\left\langle \left(H_A\right)_1^1\right\rangle$ 0 $Y_{351_{A}}\left\langle \left(H_{A}\right)_{3}^{3}\right\rangle$ 0

Realisation with Extended Gauge Symmetry II

Dirac Screening structure obtained from

 $\left\langle \left(\mathcal{H}_{\mathcal{A}}
ight)_{1}^{1} \right\rangle \simeq \mathcal{O} \left(\mathrm{SU}(2)_{L} \text{ breaking scale}
ight)$ $\left\langle (H_A)_1^{\{33\}} \right\rangle \simeq \mathcal{O}\left(\mathrm{SU}(2)_R \text{ breaking scale}\right)$ $\left\langle (\mathcal{H}_S)_{\{\dot{3}\dot{3}\dot{3}\}}^{\{33\}} \right\rangle \simeq \left\langle (\mathcal{H}_A)_3^{\dot{3}} \right\rangle \simeq \mathcal{O}\left(\mathrm{SU}(3)_L \times \mathrm{SU}(3)_R \text{ breaking scale} \right)$ in basis $\left(
u \sim L_3^{\dot{2}}, N \sim L_2^{\dot{3}}, S \sim L_3^{\dot{3}}, S' \sim L_1^{\dot{1}}, S'' \sim L_2^{\dot{2}}
ight)$ $\begin{array}{ccc} 0 & -Y_{351_{A}}\left\langle \left(H_{A}\right)_{1}^{\dot{1}}\right\rangle & 0\\ 0 & -Y_{351_{A}}\left\langle \left(H_{A}\right)_{1}^{\left\{ 33\right\} }\right\rangle\end{array}$ 0 0 0 0 $Y_{351s}\left\langle \left(H_{S}\right)_{\{33\}}^{\{33\}}\right\rangle$ $Y_{351_A}\left\langle \left(H_A\right)_1^1\right\rangle$ 0 $Y_{351_{A}}\left\langle \left(H_{A}\right)_{3}^{3}\right\rangle$ 0

 \Rightarrow Construction of viable Higgs Potential important

• Explain number of generations: $\underline{16}_i \sim \underline{3}$

	<u>16</u> ,	Si	H	Δ	χi
SO(10)	<u>16</u>	<u>1</u>	<u>10</u>	<u>16</u>	<u>1</u>

- Explain number of generations: $\underline{16}_i \sim \underline{3}$
- Complex representation $\underline{3}$, otherwise $\underline{3} \times \underline{3}$ contains singlet
- \Rightarrow A_4 not possible, but: T_7 [Luhn,Nasri,Ramond], $\Sigma(81)$ [Ma], ...

	<u>16</u> ;	Si	H	Δ	χ_i
SO(10)	<u>16</u>	<u>1</u>	<u>10</u>	<u>16</u>	<u>1</u>
T ₇	<u>3</u>	$\underline{1}_{i}$	$\underline{1}_1$	$\underline{1}_1$	<u>3</u> *

- Explain number of generations: $\underline{\mathbf{16}}_i \sim \underline{\mathbf{3}}$
- Complex representation $\underline{3}$, otherwise $\underline{3} \times \underline{3}$ contains singlet
- \Rightarrow A_4 not possible, but: T_7 [Luhn,Nasri,Ramond], $\Sigma(81)$ [Ma], ...
 - Explain difference in CKM and MNS matrix (in lowest order)

	<u>16</u> ;	Si	H	Δ	χi
SO(10)	<u>16</u>	<u>1</u>	<u>10</u>	<u>16</u>	<u>1</u>
T ₇	<u>3</u>	$\underline{1}_{i}$	$\underline{1}_1$	$\underline{1}_1$	<u>3</u> *

- Explain number of generations: $\underline{16}_i \sim \underline{3}$
- Complex representation $\underline{3}$, otherwise $\underline{3} \times \underline{3}$ contains singlet
- \Rightarrow A_4 not possible, but: T_7 [Luhn,Nasri,Ramond], $\Sigma(81)$ [Ma], ...
- Explain difference in CKM and MNS matrix (in lowest order)
- Flavons (gauge group singlets charged with respect to $\, {\cal G}_F) \, \chi$

$$W \supset rac{lpha_{ij}}{\Lambda} {f 16}_i \; {f 16}_j \; H\chi + rac{eta_{ij}}{\Lambda} S_i \; {f 16}_j \; \Delta\chi + (M_{SS})_{ij} \; S_i S_j \; ,$$

	<u>16</u> ;	Si	H	Δ	χi
SO(10)	<u>16</u>	<u>1</u>	<u>10</u>	<u>16</u>	<u>1</u>
T ₇	<u>3</u>	$\underline{1}_{i}$	$\underline{1}_1$	$\underline{1}_1$	<u>3</u> *

*T***₇: Realisation**

Field	<u>16</u> ;	Si	H	Δ	χi
<i>SO</i> (10)	<u>16</u>	1	<u>10</u>	16	1
T ₇	<u>3</u>	<u>1</u> ;	$\underline{1}_1$	$\underline{1}_1$	<u>3</u> *

Superpotential

 $W \supset \alpha H (\underline{16}_{3} \, \underline{16}_{3} \, \underline{\chi}_{1} + \underline{16}_{1} \, \underline{16}_{1} \, \underline{\chi}_{2} + \underline{16}_{2} \, \underline{16}_{2} \, \underline{\chi}_{3})/\Lambda$ $+ \beta_{1} \Delta S_{1} (\underline{16}_{1} \, \underline{\chi}_{1} + \underline{16}_{2} \, \underline{\chi}_{2} + \underline{16}_{3} \, \underline{\chi}_{3})/\Lambda$ $+ \beta_{2} \Delta S_{2} (\underline{16}_{1} \, \underline{\chi}_{1} + \omega \, \underline{16}_{2} \, \underline{\chi}_{2} + \omega^{2} \, \underline{16}_{3} \, \underline{\chi}_{3})/\Lambda$ $+ \beta_{3} \Delta S_{3} (\underline{16}_{1} \, \underline{\chi}_{1} + \omega^{2} \, \underline{16}_{2} \, \underline{\chi}_{2} + \omega \, \underline{16}_{3} \, \underline{\chi}_{3})/\Lambda$ $+ A S_{1} \, S_{1} + B (S_{2} \, S_{3} + S_{3} \, S_{2}) + \text{h.c.}$

with $\omega = e^{2\pi i/3}$

$$m_D = rac{lpha \langle \mathcal{H}
angle}{\Lambda} \left(egin{array}{ccc} \langle \chi_2
angle & 0 & 0 \ 0 & \langle \chi_3
angle & 0 \ 0 & 0 & \langle \chi_1
angle \end{array}
ight)$$

$$m_{D} = \frac{\alpha \langle H \rangle}{\Lambda} \begin{pmatrix} \langle \chi_{2} \rangle & 0 & 0 \\ 0 & \langle \chi_{3} \rangle & 0 \\ 0 & 0 & \langle \chi_{1} \rangle \end{pmatrix}$$
$$M_{SN} = \frac{\langle \Delta \rangle_{N}}{\Lambda} \begin{pmatrix} \beta_{1} & 0 & 0 \\ 0 & \beta_{2} & 0 \\ 0 & 0 & \beta_{3} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} \langle \chi_{1} \rangle & 0 & 0 \\ 0 & \langle \chi_{2} \rangle & 0 \\ 0 & 0 & \langle \chi_{3} \rangle \end{pmatrix}$$

$$m_{D} = \frac{\alpha \langle H \rangle}{\Lambda} \begin{pmatrix} \langle \chi_{2} \rangle & 0 & 0 \\ 0 & \langle \chi_{3} \rangle & 0 \\ 0 & 0 & \langle \chi_{1} \rangle \end{pmatrix}$$

$$M_{SN} = \frac{\langle \Delta \rangle_{N}}{\Lambda} \begin{pmatrix} \beta_{1} & 0 & 0 \\ 0 & \beta_{2} & 0 \\ 0 & 0 & \beta_{3} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} \langle \chi_{1} \rangle & 0 & 0 \\ 0 & \langle \chi_{2} \rangle & 0 \\ 0 & 0 & \langle \chi_{3} \rangle \end{pmatrix}$$

$$M_{SS} = \begin{pmatrix} A & 0 & 0 \\ \cdot & 0 & B \\ \cdot & \cdot & 0 \end{pmatrix}$$

$$m_{D} = \frac{\alpha \langle H \rangle}{\Lambda} \begin{pmatrix} \langle \chi_{2} \rangle & 0 & 0 \\ 0 & \langle \chi_{3} \rangle & 0 \\ 0 & 0 & \langle \chi_{1} \rangle \end{pmatrix}$$

$$M_{SN} = \frac{\langle \Delta \rangle_{N}}{\Lambda} \begin{pmatrix} \beta_{1} & 0 & 0 \\ 0 & \beta_{2} & 0 \\ 0 & 0 & \beta_{3} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} \langle \chi_{1} \rangle & 0 & 0 \\ 0 & \langle \chi_{2} \rangle & 0 \\ 0 & 0 & \langle \chi_{3} \rangle \end{pmatrix}$$

$$M_{SS} = \begin{pmatrix} A & 0 & 0 \\ \cdot & 0 & B \\ \cdot & \cdot & 0 \end{pmatrix}$$

 $m_{\nu} \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_{N}}\right)^{2} D_{\chi} \left(\begin{array}{ccc} \tilde{A} + 2\tilde{B} & \tilde{A} - \tilde{B} & \tilde{A} - \tilde{B} \\ \vdots & \tilde{A} + 2\tilde{B} & \tilde{A} - \tilde{B} \\ \vdots & \vdots & \tilde{A} + 2\tilde{B} \end{array}\right) D_{\chi}$

 $\tilde{A} \equiv \frac{A}{9\beta_1^2}, \quad \tilde{B} \equiv \frac{B}{9\beta_2\beta_3}, \quad D_{\chi} \equiv \text{diag}\left(\frac{\langle \chi_2 \rangle}{\langle \chi_1 \rangle}, \frac{\langle \chi_3 \rangle}{\langle \chi_2 \rangle}, \frac{\langle \chi_1 \rangle}{\langle \chi_3 \rangle}\right)$

$$m_{D} = \frac{\alpha \langle H \rangle \langle \chi_{1} \rangle}{\Lambda} \begin{pmatrix} \epsilon^{2} & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$M_{SN} = \frac{\langle \Delta \rangle_{N} \langle \chi_{1} \rangle}{\Lambda} \begin{pmatrix} \beta_{1} & 0 & 0 \\ 0 & \beta_{2} & 0 \\ 0 & 0 & \beta_{3} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \epsilon^{2} & 0 \\ 0 & 0 & \epsilon \end{pmatrix}$$
$$M_{SS} = \begin{pmatrix} A & 0 & 0 \\ \cdot & 0 & B \\ \cdot & \cdot & 0 \end{pmatrix}$$

$$m_{\nu} \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_{N} \epsilon}\right)^{2} \begin{pmatrix} (\tilde{A} + 2\tilde{B})\epsilon^{6} & (\tilde{A} - \tilde{B})\epsilon^{3} & (\tilde{A} - \tilde{B})\epsilon^{3} \\ \cdot & \tilde{A} + 2\tilde{B} & \tilde{A} - \tilde{B} \\ \cdot & \cdot & \tilde{A} + 2\tilde{B} \end{pmatrix}$$

 $\tilde{A} \equiv \frac{A}{9\beta_1^2}, \quad \tilde{B} \equiv \frac{B}{9\beta_2\beta_3}, \quad D_{\chi} \equiv \operatorname{diag}\left(\frac{\langle \chi_2 \rangle}{\langle \chi_1 \rangle}, \frac{\langle \chi_3 \rangle}{\langle \chi_2 \rangle}, \frac{\langle \chi_1 \rangle}{\langle \chi_3 \rangle}\right) = \operatorname{diag}\left(\epsilon, \ \epsilon^{-2}, \ \epsilon^{-2}\right)$

T₇: Solar Mixing Angle

 $m_{\nu}^{LS} pprox - \left[m_D^T M_{SN}^{-1} m_{S
u} + (\dots)^T
ight]$

 $m_{S
u}$ originates from $S_i \, {f 16}_j \, \Delta \, \chi \Rightarrow m_
u^{LS}$ diagonal

T₇: Solar Mixing Angle

 $m_{\nu}^{LS} pprox - \left[m_D^T M_{SN}^{-1} m_{S
u} + (\dots)^T
ight]$

 $m_{S\nu}$ originates from $S_i \underline{\mathbf{16}}_j \Delta \chi \Rightarrow m_{\nu}^{LS}$ diagonal \Rightarrow introduce Δ' :

$$m_{S
u} = rac{\langle \Delta'
angle_{
u}}{\Lambda} \, \left(egin{array}{ccc} eta'_1 & 0 & 0 \ 0 & eta'_2 & 0 \ 0 & 0 & eta'_3 \end{array}
ight) \, \left(egin{array}{ccc} 1 & 1 & 1 \ 1 & \omega & \omega^2 \ 1 & \omega^2 & \omega \end{array}
ight) \, \left(egin{array}{ccc} \langle \chi_1
angle & 0 & 0 \ 0 & \langle \chi_2
angle & 0 \ 0 & 0 & \langle \chi_3
angle \end{array}
ight)$$

T₇: Solar Mixing Angle

 $m_{\nu}^{LS} pprox - \left[m_D^T M_{SN}^{-1} m_{S
u} + (\dots)^T
ight]$

 $m_{S\nu}$ originates from $S_i \underline{\mathbf{16}}_j \Delta \chi \Rightarrow m_{\nu}^{LS}$ diagonal \Rightarrow introduce Δ' :

$$m_{S
u}=rac{\langle\Delta'
angle_
u}{\Lambda}\left(egin{array}{ccc}eta_1'&0&0\0η_2'&0\0&0η_3'\end{array}
ight)\left(egin{array}{cccc}1&1&1&1\1&\omega&\omega^2\1&\omega^2&\omega\end{array}
ight)\left(egin{array}{cccc}ela\chi_1
angle&0&0\0&\langle\chi_2
angle&0\0&0&\langle\chi_3
angle\end{array}
ight)$$

Leading order

$$m_{\nu} \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_{N} \epsilon}\right)^{2} \begin{pmatrix} -2X \sum_{i=1}^{3} \tilde{\beta}_{i} \epsilon^{3} & -X \sum_{i=1}^{3} \tilde{\beta}_{i} \omega^{1-i} & -X \sum_{i=1}^{3} \tilde{\beta}_{i} \omega^{i-1} \\ \vdots & \tilde{A} + 2\tilde{B} & \tilde{A} - \tilde{B} \\ \tilde{A} + 2\tilde{B} & \tilde{A} + 2\tilde{B} \end{pmatrix}$$

 $X = \frac{\langle \Delta \rangle_N \langle \Delta' \rangle_\nu \langle \chi_1 \rangle \epsilon}{3 \, \alpha \, \langle H \rangle \, \Lambda} \Rightarrow \langle \Delta \rangle_N \, \epsilon \sim \tilde{A}, \tilde{B} \, , \quad \tilde{\beta}_i = \beta'_i / \beta_i$

*T***₇: Phenomenology**

Dominant 2-3 block in neutrino mass matrix preserved, θ_{12} , θ_{13} can be fitted:

$$\tan \theta_{12} \approx \frac{X \left| \tilde{\beta}_2 - \tilde{\beta}_3 \right|}{\sqrt{6} \left| \tilde{B} \right|} , \quad \sin \theta_{13} \approx \frac{X \left| 2 \tilde{\beta}_1 - \tilde{\beta}_2 - \tilde{\beta}_3 \right|}{\sqrt{2} \left| 2 \tilde{A} + \tilde{B} \right|} , \quad \theta_{23} \approx \frac{\pi}{4}$$

*T***₇: Phenomenology**

Dominant 2-3 block in neutrino mass matrix preserved, θ_{12} , θ_{13} can be fitted:

$$\tan \theta_{12} \approx \frac{X |\tilde{\beta}_2 - \tilde{\beta}_3|}{\sqrt{6} |\tilde{B}|} , \quad \sin \theta_{13} \approx \frac{X |2\tilde{\beta}_1 - \tilde{\beta}_2 - \tilde{\beta}_3|}{\sqrt{2} |2\tilde{A} + \tilde{B}|} , \quad \theta_{23} \approx \frac{\pi}{4}$$

 m_1 and m_2 especially changed:

$$m_{1} \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_{N} \epsilon}\right)^{2} \left|\mathbf{3} | \tilde{B} | \tan^{2} \theta_{12} - |2\tilde{A} + \tilde{B} | \sin^{2} \theta_{13} \right|$$
$$m_{2} \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_{N} \epsilon}\right)^{2} \mathbf{3} | \tilde{B} | \left|1 - \tan^{2} \theta_{12}\right|$$
$$m_{3} \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_{N} \epsilon}\right)^{2} |2\tilde{A} + \tilde{B} | \left|1 + \sin^{2} \theta_{13}\right|$$

*T***₇: Phenomenology**

Dominant 2-3 block in neutrino mass matrix preserved, θ_{12} , θ_{13} can be fitted:

$$\tan \theta_{12} \approx \frac{X \left| \tilde{\beta}_2 - \tilde{\beta}_3 \right|}{\sqrt{6} \left| \tilde{B} \right|} , \quad \sin \theta_{13} \approx \frac{X \left| 2 \tilde{\beta}_1 - \tilde{\beta}_2 - \tilde{\beta}_3 \right|}{\sqrt{2} \left| 2 \tilde{A} + \tilde{B} \right|} , \quad \theta_{23} \approx \frac{\pi}{4}$$

 m_1 and m_2 especially changed:

$$m_{1} \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_{N} \epsilon}\right)^{2} \left|\mathbf{3} | \tilde{B} | \tan^{2} \theta_{12} - |2\tilde{A} + \tilde{B}| \sin^{2} \theta_{12} \right|$$
$$m_{2} \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_{N} \epsilon}\right)^{2} \mathbf{3} | \tilde{B} | \left|1 - \tan^{2} \theta_{12}\right|$$
$$m_{3} \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_{N} \epsilon}\right)^{2} |2\tilde{A} + \tilde{B}| \left|1 + \sin^{2} \theta_{13}\right|$$

$$\Delta m_{21}^2 \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_N \epsilon}\right)^4 9 |\tilde{B}|^2 (1 - 2 \tan^2 \theta_{12})$$
$$\Delta m_{32}^2 \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_N \epsilon}\right)^4 \left(|2\tilde{A} + \tilde{B}|^2 - 9|\tilde{B}|^2 \left(1 - \tan^2 \theta_{12}\right)^2\right)$$

Outline

2 Implementations of Double Seesaw Structure

3 Stability with respect to Quantum Corrections

• $m_{\nu} = m_D^T M_{SN}^{-1} M_{SS} M_{SN}^{-1} m_D$ stable with respect to RG?

• $m_{\nu} = m_D^T M_{SN}^{-1} M_{SS} M_{SN}^{-1} m_D$ stable with respect to RG?

- Two contributions to $m_
 u$ from
 - Active N: $Y_{\nu}^{T} M^{-1} Y_{\nu}$
 - Effective D5 operator: κ

• $m_{\nu} = m_D^T M_{SN}^{-1} M_{SS} M_{SN}^{-1 T} m_D$ stable with respect to RG?

- Two contributions to $m_{
 u}$ from
 - Active N: $Y_{\nu}^{T} M^{-1} Y_{\nu}$
 - Effective D5 operator: κ

• MSSM $(T_7) \rightarrow$ same RG equations (non-renormalization theorem)

• $m_{\nu} = m_D^T M_{SN}^{-1} M_{SS} M_{SN}^{-1} m_D$ stable with respect to RG?

- Two contributions to $m_{
 u}$ from
 - Active N: $Y_{\nu}^{T} M^{-1} Y_{\nu}$
 - Effective D5 operator: κ
- MSSM $(T_7) \rightarrow$ same RG equations (non-renormalization theorem)

SM: additional vertex corrections

[Antusch, Kersten, Lindner, Ratz (2002)]

Running between Mass Thresholds

RG transformation

 $\begin{array}{c} \stackrel{(n)}{Y_{\nu}} \xrightarrow{\mathrm{RG}} \stackrel{(n)}{Z_{N}}^{T} \stackrel{(n)}{Y_{\nu}} \stackrel{(n)}{Z_{\text{ext}}} \\ \stackrel{(n)}{M_{NN}} \xrightarrow{\mathrm{RG}} \stackrel{(n)}{Z_{N}}^{T} \stackrel{(n)}{M_{NN}} \stackrel{(n)}{Z_{N}} \\ \stackrel{(n)}{\kappa} \xrightarrow{\mathrm{RG}} \stackrel{(n)}{Z_{\text{ext}}} \stackrel{(n)}{\kappa} \stackrel{(n)}{Z_{\text{ext}}} \stackrel{(n)}{\kappa} \stackrel{(n)}{Z_{\text{ext}}} \stackrel{(n)}{Z_{\text{ext}}} \stackrel{(n)}{Z_{\text{ext}}} \end{array}$

Running between Mass Thresholds

RG transformation

 $\begin{array}{c} \stackrel{(n)}{Y_{\nu}} \xrightarrow{\mathrm{RG}} \stackrel{(n)}{Z_{N}}^{T} \stackrel{(n)}{Y_{\nu}} \stackrel{(n)}{Z_{\mathrm{ext}}} \\ \stackrel{(n)}{M_{NN}} \xrightarrow{\mathrm{RG}} \stackrel{(n)}{Z_{N}}^{T} \stackrel{(n)}{M_{NN}} \stackrel{(n)}{Z_{N}} \\ \stackrel{(n)}{\kappa} \xrightarrow{\mathrm{RG}} \stackrel{(n)}{Z_{\mathrm{ext}}} \stackrel{(n)}{K} \stackrel{(n)}{Z_{\mathrm{ext}}} \stackrel{(n)}{\kappa} \stackrel{(n)}{Z_{\mathrm{ext}}} \stackrel{(n)}{Z_{\mathrm{ext}}} \stackrel{(n)}{Z_{\mathrm{ext}}} \end{array}$

Running between Mass Thresholds

RG transformation

 $\stackrel{(n)}{\mathbf{Y}} \xrightarrow{\mathrm{RG}} \stackrel{(n)}{\mathbf{Z}} \stackrel{T}{\mathbf{Y}} \stackrel{(n)}{\mathbf{Y}} \stackrel{(n)}{\mathbf{Z}} \stackrel{(n)}{\mathbf{Y}}$ $\underbrace{M_{NNN}}^{(n)} \xrightarrow{\mathrm{RG}} \underbrace{Z_N}^{(n)} \underbrace{M_{NNN}}^{(n)} \underbrace{Z_N}^{(n)} \underbrace{M_{NNN}}^{(n)} \underbrace{Z_N}^{(n)} \underbrace{Z_N}^$ $(n) \xrightarrow{RG} Z_{ort} \xrightarrow{(n)} T_{K} Z_{ort} \xrightarrow{(n)} Z_{$

 $M_{NN} = -M_{SN}^T M_{SS}^{-1} M_{SN}$ $V_N^T M_{NN} V_N = D_N \equiv (M_i)$

Leading Order Correction to Neutrino Mass Rescaling of RH neutrino masses M_i :

 $\overline{m_{\nu} \approx -\langle H \rangle^2 Z_{\text{ext}}^T \left[Y_{\nu}^T V_N Z_{\kappa} D_N^{-1} V_N^T Y_{\nu} \right] Z_{\text{ext}}}$

Two Loop Contribution to RH Neutrino Masses

Renormalization of RH neutrinos

$$\Delta M_{ij} = \frac{2}{(16\pi^2)^2} \sum_{k} (Y_{\nu}^{\dagger} Y_{\nu})_{ik} \left(Y_{\nu}^{\dagger} Y_{\nu}\right)_{jk} M_k \left(\frac{1}{\epsilon} + \frac{1}{2} + \ln \frac{\mu^2}{M_k^2}\right)$$

The finite Higgs mass has been neglected. There are $\mathcal{O}\left(\mu_{H}^{2}/M_{k}^{2}\right)$ corrections. Assuming $y_{3} \gg y_{2} \gg y_{1}$ and not all $U_{R,i3}$ vanish:

$$\Delta M_i \sim rac{y_3^4}{(8\pi^2)^2} \sum_k \left[U_{R,k3}^* U_{R,i3} \right]^2 M_k \ln \left(\Lambda^2 / M_k^2 \right)$$

[Aparici, Herrero-Garcia, Rius, Santamaria (2011); MS, Smirnov (2011)]

Fourth Generation

[Petcov, Toshev (1984); Babu, Ma (1988)

 $m_D = m_e = 511 \, {
m keV}$, $\xi = (U_L)_{lpha 4} (U_R)_{i4}$

Outline

2) Implementations of Double Seesaw Structure

ith respect to Quantum Correction

4 Conclusions

Summary & Conclusions

- Double Seesaw structure can accomodate different hierarchies in charged and neutral fermion masses
- A complete cancellation of the Dirac structure can be obtained
- Standard (Fermionic singlet) seesaw within $SO(10) \times G_f$ possible

Summary & Conclusions

- Double Seesaw structure can accomodate different hierarchies in charged and neutral fermion masses
- A complete cancellation of the Dirac structure can be obtained
- Standard (Fermionic singlet) seesaw within $SO(10) \times G_f$ possible
- Study of RG stability of double seesaw structure
- Within MSSM, double seesaw structure is stable
- Threshold corrections in non-SUSY dominantly lead to a rescaling of RH neutrino masses
- ⇒ Structure of formula in cancellation mechanism modified

Thank you, Alexei!

For the collaboration and for everything, what I learned from you!

Thank you, Alexei!

For the collaboration and for everything, what I learned from you!

All the best for the next 60 years!

T₇: Group Theory

- $T_7 \cong Z_7 \rtimes Z_3 \subset SU(3)$, also called Frobenius group
- Smallest group with complex <u>3</u>: order 21
- Irreducible representations: 1_1 , 1_2 , $1_3 \cong 1_2^*$ and 3, 3^*
- $\underline{1}_i$ like in Z_3 : $\underline{1}_1$ and $\underline{1}_2 \otimes \underline{1}_3$ are invariant
- Generators of <u>3</u>:

$$A=\left(egin{array}{ccc} e^{2\pi\,\mathrm{i}\,/7}&0&0\ 0&e^{4\pi\,\mathrm{i}\,/7}&0\ 0&0&e^{8\pi\,\mathrm{i}\,/7} \end{array}
ight)\ ,\qquad B=\left(egin{array}{ccc} 0&1&0\ 0&0&1\ 1&0&0 \end{array}
ight)$$

• $\{\underline{3} \otimes \underline{3}\} = \underline{3} \oplus \underline{3}^*$: $(a_1, a_2, a_3)^T \sim \underline{3}$: $(a_3 a_3, a_1 a_1, a_2 a_2)^T \sim \underline{3}$, $(a_{\{2 \ a_3\}}, a_{\{3 \ a_1\}}, a_{\{1 \ a_2\}})^T \sim \underline{3}^*$ • $\underline{3} \otimes \underline{1}_i = \underline{3}$: $(a_1, a_2, a_3)^T \sim \underline{3}$, $c \sim \underline{1}_i$: $(a_1 \ c, \omega^{i-1} a_2 \ c, \omega^{1-i} a_3 \ c)$ with $\omega = e^{i 2\pi/3}$

Higher-Dimensional Operators and Mass Scales

Higher-dimensional operators up to $\frac{m_u}{\alpha} \sim \epsilon^4 \eta$, $\eta = \frac{\langle \chi_1 \rangle}{\Lambda} \sim 0.48$ C

$$\chi_1^n \stackrel{A}{\longrightarrow} e^{-rac{2\pi i}{7}n} \chi_1^n \sim \mathcal{O}\left(1
ight)
onumber \chi_1^{n-1} \chi_3 \stackrel{A}{\longrightarrow} e^{-rac{2\pi i}{7}(n+3)} \chi_1^{n-1} \chi_3 \sim \mathcal{O}\left(\epsilon^2
ight)$$

 \Rightarrow Introduction of Z_7 • Problem: $M_{SS} \sim \mathcal{O}\left(\epsilon^4 M_{Pl}\right)$, but contributions like

 $M_{SS} \sim SS \langle \chi \rangle^n / \Lambda^{n-1}$

Solution: forbid tree-level and generate M_{55} at higher order Observe: only one covariant

$S\chi^3/\Lambda^2 \sim (aS_1S_1 + b(S_2S_3 + S_3S_2))\chi_1\chi_2\chi_3/\Lambda^2$								
	Field	<u>16</u> ,	Si	Н	Δ	χ <i>i</i>		
	<i>T</i> ₇	<u>3</u>	<u>1</u> ,	$\underline{1}_1$	$\underline{1}_1$	<u>3</u> *		
	Z ₇	3	2	0	1	1		

$$5S\chi^3/\Lambda^2 \sim (a\,S_1S_1 + b\,(S_2S_3 + S_3S_2))\,\chi_1\chi_2\chi_3/\Lambda^2$$
*T***₇: Higher-Dimensional Operators**

Consider operators up to order
$$rac{m_u}{lpha}\sim\epsilon^2\eta=\eta^{17}$$
, $\eta=rac{\langle\chi_1
angle}{\Lambda}\sim 0.48$

Additional Z_7 to forbid operators

Field	<u>16</u> ,	Si	H	Δ	χi
<i>T</i> ₇	<u>3</u>	<u>1</u> ;	$\underline{1}_1$	$\underline{1}_1$	<u>3</u> *
Z ₇	3	0	0	3	1

 \rightarrow All higher-dimensional operators suppressed by η^7 compared to LO. \rightarrow Vanishing entries are filled.

Structure of covariants periodic in 7 due to subgroup Z_7 of T_7

Structure	Transformation Properties	Order in e
	under Generator A	
$\overline{\chi_1^n}$	$e^{-\frac{2\pi i}{7}n}\chi_1^n$	$\mathcal{O}\left(1 ight)$
$\chi_1^{n-1} \chi_2$	$e^{-\frac{2\pi i}{7}(n+1)}\chi_1^{n-1}\chi_2$	$\mathcal{O}\left(\epsilon^{2} ight)$
$\chi_1^{n-1}\chi_3$	$e^{-\frac{2\pi i}{7}(n+3)}\chi_1^{n-1}\chi_3$	$\mathcal{O}\left(\epsilon ight)$
$\chi_1^{n-2} \chi_3^2$	$e^{-\frac{2\pi i}{7}(n+6)}\chi_1^{n-2}\chi_3^2$	$\mathcal{O}\left(\epsilon^{2}\right)$

T_7 : Cabibbo Angle and Charged Lepton Masses

Cabibbo Angle

By introduction of $\underline{\mathbf{16}}_{H}, \ \underline{\mathbf{16}}_{H}' \sim (\underline{\mathbf{1}}_{T_{7}}, \ \mathbf{6}_{Z_{7}})$

$$\frac{1}{M} \left(\underline{\mathbf{16}}_{i} \, \underline{\mathbf{16}}_{j} \, \underline{\mathbf{16}}_{H} \, \underline{\mathbf{16}}_{H}^{\prime} \right) \left(\frac{\chi}{\Lambda} \right)^{3}$$

contributes to down type and charged lepton mass matrix

$$m_{down} pprox \langle \mathbf{16}_H
angle_
u \left(rac{\langle \mathbf{16}'_H
angle_N}{M}
ight) \left(egin{array}{ccc} \mathcal{O}(\epsilon^4 \eta^3) & \mathcal{O}(\eta^3) & \mathcal{O}(\epsilon^6 \eta^3) \ & & \mathcal{O}(\epsilon^2 \eta^3) \ & & \mathcal{O}(\epsilon^2 \eta^3) \ & & \mathcal{O}(\epsilon^2 \eta^3) \ & & & \mathcal{O}(\epsilon^2 \eta^3) \end{array}
ight)$$

Charged Lepton Mass Matrix

The introduction of $\underline{45}_H \sim (\underline{1}_{T_7}, 4_{Z_7})$

$$\frac{1}{M'} \left(\underline{\mathbf{16}}_{i} \, \underline{\mathbf{16}}_{j} \, H \, \underline{\mathbf{45}}_{H} \right) \left(\frac{\chi}{\Lambda} \right)^{4}$$

can generate needed Georgi-Jarlskog factor.

T₇: Flavon Potential

T_7

•
$$W = \kappa \chi_1 \chi_2 \chi_3$$

• F-terms: $F_{\chi_1} = \overline{\frac{\partial W}{\partial \chi_1}} = \kappa \, \chi_2 \, \chi_3$ and cyclic $\Rightarrow \langle \chi_{2,3} \rangle = 0$, $\langle \chi_1 \rangle \neq 0$

$T_7 \times Z_7$

- Renormalizable part forbidden
- Introduce U(1)_R: superpotential: +2, matter: +1, Higgs/flavons: 0 and driving field φ ~ (<u>3</u>*, 5)₊₂ ⇒ superpotential linear in φ

•
$$\mathit{W} = \kappa\,\phi\,\chi^2 = \kappa\,\phi_1\,\chi_2\,\chi_3 + {
m cyclic}$$

- $F_{\phi_1}=\kappa\,\chi_2\,\chi_3$ and cyclic $\Rightarrow\langle\chi_{2,3}
 angle=0$, $\langle\chi_1
 angle
 eq 0$
- Leading order can be obtained,
- Further investigation needed to generate viable flavon potential

$\Sigma(81)$: Group Theory

- $\Sigma(81) \subset U(3)$: order 81
- Irreducible representations: $\underline{1}_i$, $i = 1, \dots, 9$ and $\underline{3}_i$, $i = 1, \dots, 8$

Rep.	$\underline{1}_4$	$\underline{1}_5$	$\underline{1}_{6}$	<u>3</u> 3	<u>3</u> 5	<u>3</u> 7
Rep.*	<u>1</u> 7	<u>1</u> 8	<u>1</u> 9	<u>3</u> 4	<u>3</u> 6	<u>3</u> 8

Kronecker products:

•
$$\underline{\mathbf{1}}_{i} \otimes \underline{\mathbf{1}}_{j} = \underline{\mathbf{1}}_{i+j \mod 3}$$
, $i, j = 1, 2, 3$
• $\underline{\mathbf{3}}_{i} \otimes \underline{\mathbf{1}}_{j} = \underline{\mathbf{3}}_{i}$, $i = 1, 2; j = 1, 2, 3;$
 $(a_{1}, a_{2}, a_{3})^{T} \sim \underline{\mathbf{3}}_{i}$, $c \sim \underline{\mathbf{1}}_{j}$: $(a_{1} c, \omega^{i-1} a_{2} c, \omega^{1-i} a_{3} c)$
• $\{\underline{\mathbf{3}}_{1} \otimes \underline{\mathbf{3}}_{1}\} = \underline{\mathbf{3}}_{2} \oplus \underline{\mathbf{3}}_{4};$
 $(a_{1}, a_{2}, a_{3})^{T} \sim \underline{\mathbf{3}}_{1}$: $(a_{1} a_{1}, a_{2} a_{2}, a_{3} a_{3})^{T} \sim \underline{\mathbf{3}}_{2}$ with $\omega = e^{i 2\pi/3}$
• $\underline{\mathbf{3}}_{1} \otimes \underline{\mathbf{3}}_{2} = \underline{\mathbf{1}}_{1} \oplus \underline{\mathbf{1}}_{2} \oplus \underline{\mathbf{1}}_{3} \oplus \underline{\mathbf{3}}_{7} \oplus \underline{\mathbf{3}}_{8};$
 $(a_{1}, a_{2}, a_{3})^{T} \sim \underline{\mathbf{3}}_{1}$, $(b_{1}, b_{2}, b_{3})^{T} \sim \underline{\mathbf{3}}_{2}$: $(a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3})^{T} \sim \underline{\mathbf{1}}_{1}$

$\Sigma(81)$: Group Theory

• $\Sigma(81) \subset U(3)$: order 81

• Irreducible representations: $\underline{\mathbf{1}}_{\mathbf{i}},~i=1,\ldots,9$ and $\underline{\mathbf{3}}_{\mathbf{i}},~i=1,\ldots,8$

Rep.	$\underline{1}_1$	<u>1</u> 2	<u>1</u> 4	<u>1</u> 5	<u>1</u> 6	<u>3</u> 1	<u>3</u> 3	<u>3</u> 5	<u>3</u> 7
Rep.*	$\underline{1}_1$	<u>1</u> 3	<u>1</u> 7	<u>1</u> 8	<u>1</u> 9	<u>3</u> 2	<u>3</u> 4	<u>3</u> 6	<u>3</u> 8

Kronecker products:

•
$$\underline{\mathbf{1}}_{i} \otimes \underline{\mathbf{1}}_{j} = \underline{\mathbf{1}}_{i+j \mod 3}$$
, $i, j = 1, 2, 3$
• $\underline{\mathbf{3}}_{i} \otimes \underline{\mathbf{1}}_{j} = \underline{\mathbf{3}}_{i}$, $i = 1, 2; j = 1, 2, 3;$
 $(a_{1}, a_{2}, a_{3})^{T} \sim \underline{\mathbf{3}}_{i}$, $c \sim \underline{\mathbf{1}}_{j}$; $(a_{1} c, \omega^{i-1} a_{2} c, \omega^{1-i} a_{3} c)$
• $\{\underline{\mathbf{3}}_{1} \otimes \underline{\mathbf{3}}_{1}\} = \underline{\mathbf{3}}_{2} \oplus \underline{\mathbf{3}}_{4};$
 $(a_{1}, a_{2}, a_{3})^{T} \sim \underline{\mathbf{3}}_{1}$; $(a_{1} a_{1}, a_{2} a_{2}, a_{3} a_{3})^{T} \sim \underline{\mathbf{3}}_{2}$ with $\omega = e^{i 2\pi/3}$
• $\underline{\mathbf{3}}_{1} \otimes \underline{\mathbf{3}}_{2} = \underline{\mathbf{1}}_{1} \oplus \underline{\mathbf{1}}_{2} \oplus \underline{\mathbf{1}}_{3} \oplus \underline{\mathbf{3}}_{7} \oplus \underline{\mathbf{3}}_{8};$
 $(a_{1}, a_{2}, a_{3})^{T} \sim \underline{\mathbf{3}}_{1}$, $(b_{1}, b_{2}, b_{3})^{T} \sim \underline{\mathbf{3}}_{2}$; $(a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3})^{T} \sim \underline{\mathbf{1}}_{1}$

$\Sigma(81)$: Group Theory

• $\Sigma(81) \subset U(3)$: order 81

• Irreducible representations: $\underline{\mathbf{1}}_{\mathbf{i}},~i=1,\ldots,9$ and $\underline{\mathbf{3}}_{\mathbf{i}},~i=1,\ldots,8$

Rep.	$\underline{1}_1$	<u>1</u> 2	<u>1</u> 4	<u>1</u> 5	<u>1</u> 6	<u>3</u> 1	<u>3</u> 3	<u>3</u> 5	<u>3</u> 7
Rep.*	$\underline{1}_1$	13	<u>1</u> 7	<u>1</u> 8	<u>1</u> 9	<u>3</u> 2	<u>3</u> 4	<u>3</u> 6	<u>3</u> 8

Kronecker products:

•
$$\underline{\mathbf{1}}_{i} \otimes \underline{\mathbf{1}}_{j} = \underline{\mathbf{1}}_{i+j \mod 3}$$
, $i, j = 1, 2, 3$
• $\underline{\mathbf{3}}_{i} \otimes \underline{\mathbf{1}}_{j} = \underline{\mathbf{3}}_{i}$, $i = 1, 2; j = 1, 2, 3;$
 $(a_{1}, a_{2}, a_{3})^{T} \sim \underline{\mathbf{3}}_{i}$, $c \sim \underline{\mathbf{1}}_{j}$; $(a_{1} c, \omega^{i-1} a_{2} c, \omega^{1-i} a_{3} c)$
• $\{\underline{\mathbf{3}}_{1} \otimes \underline{\mathbf{3}}_{1}\} = \underline{\mathbf{3}}_{2} \oplus \underline{\mathbf{3}}_{4};$
 $(a_{1}, a_{2}, a_{3})^{T} \sim \underline{\mathbf{3}}_{1}$; $(a_{1} a_{1}, a_{2} a_{2}, a_{3} a_{3})^{T} \sim \underline{\mathbf{3}}_{2}$ with $\omega = e^{i 2\pi/3}$
• $\underline{\mathbf{3}}_{1} \otimes \underline{\mathbf{3}}_{2} = \underline{\mathbf{1}}_{1} \oplus \underline{\mathbf{1}}_{2} \oplus \underline{\mathbf{1}}_{3} \oplus \underline{\mathbf{3}}_{7} \oplus \underline{\mathbf{3}}_{8};$
 $(a_{1}, a_{2}, a_{3})^{T} \sim \underline{\mathbf{3}}_{1}$, $(b_{1}, b_{2}, b_{3})^{T} \sim \underline{\mathbf{3}}_{2}$; $(a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3})^{T} \sim \underline{\mathbf{1}}_{1}$

$\Sigma(81)$: Realisation

Particle Content

Lagrangian

 $\begin{aligned} \mathscr{L} \supset \alpha \, H \, (\underline{\mathbf{16}}_{3} \, \underline{\mathbf{16}}_{3} \, \chi_{1}^{*} + \underline{\mathbf{16}}_{1} \, \underline{\mathbf{16}}_{1} \, \chi_{2}^{*} + \underline{\mathbf{16}}_{2} \, \underline{\mathbf{16}}_{2} \, \chi_{3}^{*}) / \Lambda \\ &+ \beta_{1} \, \Delta \, S_{1} \, (\underline{\mathbf{16}}_{1} \, \chi_{1} + \underline{\mathbf{16}}_{2} \, \chi_{2} + \underline{\mathbf{16}}_{3} \, \chi_{3}) / \Lambda \\ &+ \beta_{2} \, \Delta \, S_{2} \, (\underline{\mathbf{16}}_{1} \, \chi_{1} + \omega \, \underline{\mathbf{16}}_{2} \, \chi_{2} + \omega^{2} \, \underline{\mathbf{16}}_{3} \, \chi_{3}) / \Lambda \\ &+ \beta_{3} \, \Delta \, S_{3} \, (\underline{\mathbf{16}}_{1} \, \chi_{1} + \omega^{2} \, \underline{\mathbf{16}}_{2} \, \chi_{2} + \omega \, \underline{\mathbf{16}}_{3} \, \chi_{3}) / \Lambda \\ &+ \mathcal{A} \, S_{1} \, S_{1} + \mathcal{B} \, (S_{2} \, S_{3} + S_{3} \, S_{2}) + \text{h.c.} \end{aligned}$

$\Sigma(81)$: Lowest Order

$$m_{D} = \frac{\alpha \langle \mathcal{H} \rangle}{\Lambda} \begin{pmatrix} \langle \chi_{1} \rangle^{*} & 0 & 0 \\ 0 & \langle \chi_{2} \rangle^{*} & 0 \\ 0 & 0 & \langle \chi_{3} \rangle^{*} \end{pmatrix}$$
$$M_{SN} = \frac{\langle \Delta \rangle_{N}}{\Lambda} \begin{pmatrix} \beta_{1} & 0 & 0 \\ 0 & \beta_{2} & 0 \\ 0 & 0 & \beta_{3} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} \langle \chi_{1} \rangle & 0 & 0 \\ 0 & \langle \chi_{2} \rangle & 0 \\ 0 & 0 & \langle \chi_{3} \rangle \end{pmatrix}$$
$$M_{SS} = \begin{pmatrix} A & 0 & 0 \\ \cdot & 0 & B \\ \cdot & \cdot & 0 \end{pmatrix}$$

$$m_{\nu} \approx \left(\frac{\alpha \langle H \rangle}{\langle \Delta \rangle_{N}}\right)^{2} \left(\begin{array}{ccc} \tilde{A} + 2\tilde{B} & \tilde{A} - \tilde{B} & \tilde{A} - \tilde{B} \\ \cdot & \tilde{A} + 2\tilde{B} & \tilde{A} - \tilde{B} \\ \cdot & \cdot & \tilde{A} + 2\tilde{B} \end{array}\right)$$

34

$\Sigma(81)$: Phenomenology

Charged Fermions

- Quark mass hierarchy $\langle \chi_1 \rangle^* : \langle \chi_2 \rangle^* : \langle \chi_3 \rangle^* = \epsilon^2 : \epsilon : 1, \epsilon \sim 3 \cdot 10^{-3}$
- Zero mixing in quark sector
- $m_t \Rightarrow \langle \chi_3
 angle^* \sim \Lambda \Rightarrow$ higher-dimensional operators are relevant

Neutrinos

Dirac mass hierarchy exactly drops out

$$m_{\nu} \approx \left(rac{\boldsymbol{\alpha} \langle \boldsymbol{H} \rangle}{\langle \boldsymbol{\Delta} \rangle_{N}}
ight)^{2} \left(egin{array}{cc} \left(ilde{\boldsymbol{A}} + 2 ilde{\boldsymbol{B}}
ight) & \left(ilde{\boldsymbol{A}} - ilde{\boldsymbol{B}}
ight) & \left(ilde{\boldsymbol{A}} - ilde{\boldsymbol{B}}
ight) \\ & & ilde{\boldsymbol{A}} + 2 ilde{\boldsymbol{B}} & igin{array}{c} igin{array}{c} \left(ilde{\boldsymbol{A}} - ilde{\boldsymbol{B}}
ight) & \left(ilde{\boldsymbol{A}} - ilde{\boldsymbol{B}}
ight) \\ & & & ilde{\boldsymbol{A}} + 2 ilde{\boldsymbol{B}} \end{array}
ight) \end{array}$$

• Neutrino mass matrix diagonalized by tri-bimaximal mixing matrix • $m_2 = 3 \left| \frac{\alpha \langle H \rangle}{\langle \Delta \rangle_N} \right|^2 \left| \tilde{A} \right|, \quad m_{1,3} = 3 \left| \frac{\alpha \langle H \rangle}{\langle \Delta \rangle_N} \right|^2 \left| \tilde{B} \right|$

$\Sigma(81)$: Higher-Dimensional Operators (General)

Order in ϵ	Structure	Representation
$\mathcal{O}\left(1 ight)$	$\chi_3^m (\chi_3^\star)^{n-m}$	$\underline{1}_{1,2,3}$ for $(2 m - n) \mod 3 = 0$
	$(m=0,\ldots,n)$	3^{rd} comp. of $\underline{3}_1$ for $(2 m - n) \mod 3 = 1$
		3^{rd} comp. of $\underline{3}_2$ for $(2m-n) \mod 3=2$
$\mathcal{O}\left(\epsilon ight)$		

- Structure of operators calculable to arbitrary order
- All higher-dimensional operators suppressed compared to LO.
- Vanishing entries are filled.
- Additional Z_n symmetry can be introduced to suppress higher-dimensional operators, e.g. Z₃
- \Rightarrow Numerical Example to show the possibility to fit the data

$\Sigma(81)$: Higher-Dimensional Operators (Numerical)

$$m_D = \begin{pmatrix} 1.1589 \cdot 10^{-6} & 0 & 8.6454 \cdot 10^{-7} \\ . & 1.0051 \cdot 10^{-3} & 3.4268 \cdot 10^{-4} \\ . & 0.63863 \end{pmatrix} \langle H \rangle ,$$

$$M_{SN} = \begin{pmatrix} 7.4031 \cdot 10^{-6} & 4.6288 \cdot 10^{-6} & 3.2038 \cdot 10^{-6} \\ 3.0486 \cdot 10^{-3} & 1.9009 \cdot 10^{-3} \omega & 1.4336 \cdot 10^{-3} \omega^2 \\ 1.2503 & 0.91423 \omega^2 & 0.71852 \omega \end{pmatrix} \langle \Delta \rangle_N ,$$

$$M_{SS} = \begin{pmatrix} 1 & 1.7689 \cdot 10^{-2} \omega^2 & 3.8688 \cdot 10^{-2} \omega \\ . & 1.1516 \cdot 10^{-2} \omega & -0.7475 \\ . & . & 2.3890 \cdot 10^{-2} \omega^2 \end{pmatrix} M_{Pl}$$

$$m_{\nu} \approx \begin{pmatrix} 1.1809 \cdot e^{i\ 0.019} & 1.7675 \cdot e^{i\ 3.12} & 1.5297 \cdot e^{-i\ 3.08} \\ . & 2.5403 \cdot e^{-i\ 0.031} & 3.4549 \cdot e^{i\ 3.11} \\ . & . & 1.8254 \end{pmatrix} \cdot 10^{-2} \, \text{eV}$$

$$\begin{split} \Delta m^2_{21} &= 7.9\,10^{-5}\,\mathrm{eV}^2\;,\quad \Delta m^2_{32} = 2.5\,10^{-3}\,\mathrm{eV}^2\;,\quad \theta_{12} = 33.0^\circ\;,\\ \theta_{13} &= 4.5^\circ\;,\quad \theta_{23} = 49.5^\circ\;,\quad \delta = 137^\circ\;,\quad \varphi_1 = 313^\circ\;,\quad \varphi_2 = 162^\circ \end{split}$$

$\Sigma(81)$: Flavon Potential

In polar coordinates $\chi_i = X_i e^{i\xi_i}$

$$V_{\chi}(X_j, \xi_j) = M^2 \sum_i X_i^2 + \lambda_1 \sum_i X_i^4 + \lambda_2 \sum_{i \neq k} X_i^2 X_k^2 + 2\kappa \sum_i X_i^3 \cos\left(\alpha + 3\xi_i\right)$$

Minimisation:

$$\frac{\partial V_{\chi}}{\partial X_1} = 2X_1 \left(M^2 + 2\lambda_1 X_1^2 + \lambda_2 X_2^2 + \lambda_2 X_3^2 + 3\kappa X_1 \cos\left(\alpha + 3\xi_1\right) \right) \stackrel{!}{=} 0$$

$$\frac{\partial V_{\chi}}{\partial \xi_1} = -6\kappa X_1^3 \sin\left(\alpha + 3\xi_1\right) \stackrel{!}{=} 0 \qquad \text{and cyclic}$$

Minimum

$$\langle X_1
angle = \langle X_2
angle = 0 , \quad \langle X_3
angle = rac{3\kappa + \sqrt{9\kappa^2 - 8M^2\lambda_1}}{4\lambda_1} , \quad \langle \xi_3
angle = -rac{lpha \pm \pi}{3}$$

possible in a certain region of parameter space $(M^2, \lambda_1, \lambda_2, \kappa, \alpha)$.

Neutrino mass operator

$$\overset{(3)}{O}_{M}\left(\Lambda
ight)=\left(egin{array}{cc} & & {}^{(3)}\\ 0 & Y_{
u}^{T}H \\ & & {}^{(3)}\\ \cdot & M_{NN} \end{array}
ight)$$

Neutrino mass operator

$$\stackrel{(3)}{O_M}(\Lambda) = \left(egin{array}{cc} 0 & \stackrel{(3)}{Y_
u}^T H \ & \stackrel{(3)}{(3)} \ \cdot & M_{NN} \end{array}
ight)$$

RG transformation

$$\begin{array}{ccc} Y_{\nu} \xrightarrow{\mathrm{RG}} Z_{N}^{T} \; Y_{\nu} \; Z_{\mathrm{ext}} \\ M_{NN} \xrightarrow{\mathrm{RG}} Z_{N}^{T} \; M_{NN} \; Z_{N} \\ \kappa \xrightarrow{\mathrm{RG}} Z_{\mathrm{ext}}^{T} \; \kappa \; Z_{\mathrm{ext}} \; Z_{\kappa} \end{array}$$

Neutrino mass operator

$$\overset{(3)}{O_M}(\Lambda) = \left(egin{array}{cc} & & {}^{(3)} & & \ 0 & Y_
u^T H & & \ & {}^{(3)} & & \ & \cdot & M_{NN} \end{array}
ight)$$

RG Evolution

Neutrino mass operator

$$\stackrel{(3)}{O_M}(\Lambda) = \left(egin{array}{cc} & & {}^{(3)}_{
u} & H \ & 0 & Y^{ op}_{
u} H \ & & {}^{(3)}_{
u} & H \ & {}^{(3)}_{
u} & M_{NN} \end{array}
ight)$$

RG Evolution

Diagonalization

$$\begin{array}{c} \overset{(3)}{}_{N} \overset{(3)}{}_{Z_{N}} \overset{(3)}{}_{NNN} \overset{(3)}{}_{Z_{N}} \overset{(3)}{}_{U_{N}} \overset{(3)}{}_{U_{N}} = \begin{pmatrix} 2^{2} \\ M_{NN} & 0 \\ 0 & M_{3} \end{pmatrix} \\ \\ \overset{(3)}{}_{Z_{\text{ext}}} \overset{(3)}{}_{Y_{\nu}} \overset{(3)}{}_{Z_{N}} \overset{(3)}{}_{U_{N}} \equiv \begin{pmatrix} 2^{2} \\ Y_{\nu}^{T}, & y_{3}^{T} \end{pmatrix} \end{array}$$

Neutrino mass operator

$$\stackrel{(3)}{O_M}(\Lambda) = \left(egin{array}{cc} & & {}^{(3)}_{
u} & H \\ 0 & Y^{ op}_{
u} & H \\ & & {}^{(3)}_{(3)} \\ & \cdot & M_{NN} \end{array}
ight)$$

RG Evolution

Diagonalization

$$\begin{pmatrix} 3 & (3) & (3) & (3) & (3) \\ U_N^T Z_N^T & M_{NN} Z_N & U_N = \begin{pmatrix} 2^2 & 0 \\ M_{NN} & 0 \\ 0 & M_3 \end{pmatrix}$$

$$\begin{pmatrix} 3 & (3) & (3) & (3) \\ Z_{\text{ext}}^T Y_{\nu}^T Z_N & U_N \equiv \begin{pmatrix} 2^2 & 0 \\ Y_{\nu}^T & Y_{3}^T \end{pmatrix}$$

 ν)

Integrate Out

$$\overset{(2)}{O}_{M}\left(M_{3}
ight) = \left(egin{array}{cc} -y_{3}^{T} \ M_{3}^{-1} \ y_{3} \ H^{2} & Y_{
u}^{T} \ H \ & (2) \ &$$

RG corrections to Neutrino Mass – Technical details

$$m_{\nu} = -\frac{1}{2} Z_{\text{ext}}^{T} \begin{bmatrix} {}^{(3)}_{m_{D}} \begin{pmatrix} {}^{(3)}_{N_{N}} & {}^{(3)}_{N_{N}} \end{pmatrix} \begin{pmatrix} {}^{(3)}_{N_{D}} & {}^{(3)}_{N_{D}} \end{pmatrix} \\ X_{N} \stackrel{(3)}{=} Z_{N} U_{N} Z_{N}^{'} U_{N}^{'} Z_{\kappa} & U_{N}^{'\dagger} Z_{N}^{'-1} U_{N}^{\dagger} Z_{N}^{-1} \\ X_{N} \stackrel{(2)}{=} Z_{N} U_{N} Z_{N}^{'} U_{N}^{'} Z_{\kappa} & U_{N}^{'\dagger} Z_{N}^{'-1} U_{N}^{\dagger} Z_{N}^{-1} \\ Z_{N}^{'} \stackrel{(2)}{=} \begin{pmatrix} {}^{(2)}_{N_{N}} & {}^{(2)}_{N_{N}} \stackrel{(2)}{=} \begin{pmatrix} {}^{(2)}_{N_{N}} \stackrel{$$

Approximation

$$egin{aligned} &V_N^{ au} \; M_{NN}^{(3)} \; V_N = D_N \equiv ext{diag}(M_1, M_2, M_3) \Rightarrow X_N pprox V_N Z_\kappa V_N^{\dagger} \ &m_
u pprox - ig H ig ^2 Z_{ ext{ext}}^{ au} \left[egin{aligned} &Y_
u^{ au} \; V_N Z_\kappa D_N^{-1} V_N^{ au} \; Y_
u^{ au} \end{aligned}
ight] Z_{ ext{ext}} \end{aligned}$$

 \Rightarrow Dominantly rescaling of right-handed neutrino masses