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Outline:

• the θ13 revolution

• non-maximality of θ23

• CP phase and hierarchy
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The θ13 revolution
• About 1 year ago: 

6 events in T2K: 2.5σ

‣ global fits gave 
>3σ for the first 
time

• DoubleChooz, 
DayaBay, RENO

‣ post-Neutrino12: 
Δχ2≈100 in the 
global fit 

3

Fogli et al, 1106.6028
 TS, Tortola, Valle 1108.1376
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The θ13 revolution - the reactors
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FIG. 3. The χ2 distribution as a function of sin2 2θ13. Bot-
tom: Ratio of the measured reactor neutrino events relative
to the expected with no oscillation. The curve represents the
oscillation survival probability at the best fit, as a function of
the flux-weighted baselines.

Gd-loaded liquid scintillator, and a 229 day exposure to
six reactors with total thermal energy 16.5 GWth. In the
far detector, a clear deficit of 8.0% is found by compar-
ing a total of 17102 observed events with an expectation
based on the near detector measurement assuming no os-
cillation. From this deficit, a rate-only analysis obtains
sin2 2θ13 = 0.113 ± 0.013(stat.) ± 0.019(syst.). The neu-
trino mixing angle θ13 is measured with a significance of
4.9 standard deviation.

The RENO experiment is supported by the Ministry
of Education, Science and Technology of Korea and the
Korea Neutrino Research Center selected as a Science
Research Center by the National Research Foundation
of Korea (NRF). Some of us have been supported by
a fund from the BK21 of NRF. We gratefully acknowl-
edge the cooperation of the Yonggwang Nuclear Power
Site and the Korea Hydro & Nuclear Power Co., Ltd.
(KHNP). We thank KISTI’s providing computing and
network resources through GSDC, and all the technical
and administrative people who greatly helped in making
this experiment possible.
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FIG. 4. Observed spectrum of the prompt signals in the far
detector compared with the non-oscillation predictions from
the measurements in the near detector. The backgrounds
shown in the inset are subtracted for the far spectrum. The
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prediction.
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The reactor anomaly
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Hints for sterile neutrinos The reactor anomaly

New reactor flux calculations talk by D. Lhuillier

� to predict the ν̄e flux from nuclear reactors one has to convert the
measured e− spectra from 235U, 239Pu, 241Pu into neutrino spectra
Schreckenbach et al., 82, 85, 89

� recent improved calculation Mueller et al., 1101.2663 ∼ 3% higher fluxes
(ab initio calculations + virtual branches for missing part)

� confirmed by independent calculation P. Huber, 1106.0687

(virtual branches)
� increase of predicted number of neutrino-induced events compared to

old flux calculations:

235U 239Pu 241Pu 238U
3.7% 4.2% 4.7% 9.8%

T. Schwetz (MPIK) Neutrino2012, Kyoto 6 June 2012 5 / 34
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The reactor anomaly

6

Mention et al, 11,12

• SBL reactor data (L < 100m) in tension with predicted flux
f = 0.935±0.024 (different from 1 @ 2.7σ)

• systematics?
‣ normalization of ILL electron spectra
‣ neutron lifetime (use 2012 PDG value)

• sterile neutrinos at the eV scale? talk by Maltoni
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The reactor anomaly and the θ13 determination

7

Mention et al, 11,12
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The reactor anomaly and the θ13 determination
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Mention et al, 11,12
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I. The SOLAR sector 5

Preference for non-zero θ13 from solar + KamLAND data

• For θ13 = 0, we have sin2 θ12 =




0.30 from Solar data

0.33 from KamLAND data


⇒ a tension appear;

• as we have just seen, when θ13 increases:

− solar region slightly moves to larger θ12 (high-E data dominate over low-E ones);

− KamLAND region definitely shifts to smaller θ12;

• therefore, a non-zero value of θ13 re-

duces the tension between solar and

KamLAND data [1, 2];

• new SNO (I+II+III) analysis favor smaller

φCC/φNC ⇒ smaller θ12 from solar ⇒
tension with KamLAND is increased ⇒
larger θ13 is preferred.
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[1] G.L. Fogli et al., Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649].

[2] T. Schwetz, M.A. Tortola, J.W.F. Valle, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016].

Michele Maltoni <michele.maltoni@csic.es> CIPANP 2012, 30/05/2012

plot by M. Maltoni; 
Fogli et al, 08;
TS, Tortola, Valle, 08
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The reactor anomaly and the θ13 determination
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two extreme assumptions:

• use fluxes from Huber,1106.0687 without SBL reactor data

• leave reactor flux free and include SBL data in fit

0.01 0.02 0.03 0.04
sin2θ13

0

10

20

30

∆χ
2

Huber fluxes, no SBL react
Huber fluxes + SBL react
free flux, no SBL react
free flux + SBL react

sin2 θ13 = 0.0257± 0.0025 , θ13 = (9.2± 0.46)◦ , sin2 2θ13 = 0.100± 0.0095

sin2 θ13 = 0.0230± 0.0023 , θ13 = (8.7± 0.44)◦ , sin2 2θ13 = 0.090± 0.0090
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The reactor anomaly and the θ13 determination
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two extreme assumptions:

• use fluxes from Huber,1106.0687 without SBL reactor data

• leave reactor flux free and include SBL data in fit

0.01 0.02 0.03 0.04
sin2θ13

0

10

20

30

∆χ
2

Huber fluxes, no SBL react
Huber fluxes + SBL react
free flux, no SBL react
free flux + SBL react

sin2 θ13 = 0.0257± 0.0025 , θ13 = (9.2± 0.46)◦ , sin2 2θ13 = 0.100± 0.0095

sin2 θ13 = 0.0230± 0.0023 , θ13 = (8.7± 0.44)◦ , sin2 2θ13 = 0.090± 0.0090

• result depends on 
data which in principle 
is not sensitive to θ13

• shift at the level of 1σ
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Measuring Δm231 with reactors 
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On non-maximal 23 mixing
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MINOS @ Neutrino 2012 by Ryan Nichol

)!(22sin
0.8 0.85 0.9 0.95 1

)2
 e

V
-3

| /
 (1

0
2

m
"|

2

2.2

2.4

2.6

2.8

3
-310#

 POT)20 10#-beam (7.2 µ$

 POT)20 10#-beam (10.7 µ$

All beam + atmospherics

90% C.L.

MINOS PRELIMINARY

37.9 kiloton-years
-beam)µ$ and µ$ POT (20 10#14.1 

Contours

23

Adding in the extra 
data and the 
atmospherics

New MINOS neutrino 
oscillation parameters:

PνP
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3

New

On non-maximal 23 mixing

★

Nichol (MINOS), talk
at Neutrino2012

★
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On non-maximal 23 mixing
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On non-maximal 23 mixing
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global data without 
atmospheric 
(MINOS and T2K 
disappearance most 
important)

degeneracy between the two θ23 octants

Pµµ ≈ 1− 4|Uµ3|2(1− |Uµ3|2) sin2
∆m2

atmL

4E
⇒ sin2 θ23 =

|Uµ3|2

cos2 θ13
neglecting Δm2

21:

slight shift to larger values of sin2θ23 

sin2θ23≈0.40 
sin2θ23≈0.62
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• for large θ13 the leading term depends on octant

• beam+reactor combination may be sensitive to octant
Minakata et al. hep-ph/0211111;  McConnel, Shaevitz, hep-ex/0409028

Octant degeneracy and LBL appearance 
Fogli, Lisi, hep-ph/9604415
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Octant degeneracy and LBL appearance 
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Octant degeneracy and LBL appearance 
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present data from LBL appearance versus reactor 
cannot discriminate between the octants
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Global fit ~2020 - θ23 octant

1, 2, 3σ

3σ
 e

xc
l.

Huber, Lindner, TS, Winter, 0907.1896

final exposure of T2K, NOvA, DayaBay combined

3σ
 e

xc
l.

sin22θ13 = 0.1
δ = 0

http://arxiv.org/abs/0907.1896
http://arxiv.org/abs/0907.1896
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3-flavor effects in atmospheric neutrinos
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excess in electron-like events:
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excess in electron-like events:

III. The ATMOSPHERIC sector 13

Octant and hierarchy discrimination in atmospheric data

• Excess of e-like events, δe ≡ Ne
�
N0

e − 1:
δe � (r̄ cos2 θ23 − 1) P2ν(∆m2

21, θ12) [∆m2
21 term]

+ (r̄ sin2 θ23 − 1) P2ν(∆m2
31, θ13) [θ13 term]

− r̄ sin θ13 sin 2θ23 Re(A∗ee Aµe) ; [δCP term]

with r̄ ≡ Φ0
µ

�
Φ0

e;

• similar but less pronounced effects also appear in
µ-like events (not discussed here);

• resonance in P2ν(∆m2
31, θ13) ⇒ enhancement of ν

(ν̄) oscillations for normal (inverted) hierarchy ⇒
hierarchy discrimination;

• δe distinguishes between light and dark side ⇒
octant discrimination;

• present data: excess in e-like sub-GeV events⇒
preference for light side.
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Peres, Smirnov, 99; 
Gonzalez-Garcia, Maltoni, Smirnov, 04
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FIG. 2: ∆χ2 profiles as a function of all the neutrino oscillation parameters sin2 θ12, sin
2 θ23, sin

2 θ13, ∆m2
21, ∆m2

31 and δ. For

the central and right panels the solid lines correspond to the case of normal mass hierarchy while the dashed lines correspond

to the results for the inverted mass hierarchy.

When compared with the previous analysis in Refs. [1, 2], we remark that here we are not including previous short

baseline reactor experiments, which would lead to a somewhat less significant result for the exclusion of θ13 = 0.

Besides θ13 and δ, from the global analysis of neutrino data we also recalculate the best fit values and ranges allowed

for all the other neutrino oscillation parameters. Our results are summarized in Fig. 2 and Table I. Comparing with our

previous results we see that the inclusion of the new reactor data does not have a strong impact on the determination

of all the remaining neutrino oscillation parameters, which are already pretty well determined by solar, atmospheric,

long–baseline and KamLAND reactor data. The most noticeable change we find appears on the determination of the

atmospheric mixing angle θ23. In contrast with our previous analysis, now the best fit value for θ23 in the normal

hierarchy case lies in the first octant. The combination of atmospheric and long–baseline (MINOS and T2K) data

prefer a relatively small value of θ13: sin2 θ13 = 0.017 together with a nearly maximal second-octant value for the

atmospheric mixing angle: sin2 θ23 = 0.507. However, the inclusion of the remaining neutrino oscillation data (solar,

KamLAND + new reactor data) in the analysis pushes up the sin2 θ13 best fit value from 0.017 to 0.026. As a result

the anticorrelation between θ23 and θ13 which arises from the analysis of long–baseline neutrino appearance data pulls

down the atmospheric mixing angle into the first octant. This does not happen for the inverted mass hierarchy, where

the preferred θ13 value for atmospheric and long-baseline data is already quite large before combining with all the

other neutrino data samples, and therefore the best fit value for the atmospheric mixing angle remains in the second

octant. Note however that the indication for the first or second octant is still rather marginal for both hierarchies, and

at 1σ we obtain the following sin2 θ23 allowed range: [0.44− 0.57] ([0.46− 0.58]) for normal (inverted) mass ordering,
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FIG. 2: ∆χ2 profiles as a function of all the neutrino oscillation parameters sin2 θ12, sin
2 θ23, sin

2 θ13, ∆m2
21, ∆m2

31 and δ. For

the central and right panels the solid lines correspond to the case of normal mass hierarchy while the dashed lines correspond

to the results for the inverted mass hierarchy.

When compared with the previous analysis in Refs. [1, 2], we remark that here we are not including previous short

baseline reactor experiments, which would lead to a somewhat less significant result for the exclusion of θ13 = 0.

Besides θ13 and δ, from the global analysis of neutrino data we also recalculate the best fit values and ranges allowed

for all the other neutrino oscillation parameters. Our results are summarized in Fig. 2 and Table I. Comparing with our

previous results we see that the inclusion of the new reactor data does not have a strong impact on the determination

of all the remaining neutrino oscillation parameters, which are already pretty well determined by solar, atmospheric,

long–baseline and KamLAND reactor data. The most noticeable change we find appears on the determination of the

atmospheric mixing angle θ23. In contrast with our previous analysis, now the best fit value for θ23 in the normal

hierarchy case lies in the first octant. The combination of atmospheric and long–baseline (MINOS and T2K) data

prefer a relatively small value of θ13: sin2 θ13 = 0.017 together with a nearly maximal second-octant value for the

atmospheric mixing angle: sin2 θ23 = 0.507. However, the inclusion of the remaining neutrino oscillation data (solar,

KamLAND + new reactor data) in the analysis pushes up the sin2 θ13 best fit value from 0.017 to 0.026. As a result

the anticorrelation between θ23 and θ13 which arises from the analysis of long–baseline neutrino appearance data pulls

down the atmospheric mixing angle into the first octant. This does not happen for the inverted mass hierarchy, where

the preferred θ13 value for atmospheric and long-baseline data is already quite large before combining with all the

other neutrino data samples, and therefore the best fit value for the atmospheric mixing angle remains in the second

octant. Note however that the indication for the first or second octant is still rather marginal for both hierarchies, and

at 1σ we obtain the following sin2 θ23 allowed range: [0.44− 0.57] ([0.46− 0.58]) for normal (inverted) mass ordering,

Forero, Tortola,
Valle, 1205.4018
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FIG. 2: ∆χ2 profiles as a function of all the neutrino oscillation parameters sin2 θ12, sin
2 θ23, sin

2 θ13, ∆m2
21, ∆m2

31 and δ. For

the central and right panels the solid lines correspond to the case of normal mass hierarchy while the dashed lines correspond

to the results for the inverted mass hierarchy.

When compared with the previous analysis in Refs. [1, 2], we remark that here we are not including previous short

baseline reactor experiments, which would lead to a somewhat less significant result for the exclusion of θ13 = 0.

Besides θ13 and δ, from the global analysis of neutrino data we also recalculate the best fit values and ranges allowed

for all the other neutrino oscillation parameters. Our results are summarized in Fig. 2 and Table I. Comparing with our

previous results we see that the inclusion of the new reactor data does not have a strong impact on the determination

of all the remaining neutrino oscillation parameters, which are already pretty well determined by solar, atmospheric,

long–baseline and KamLAND reactor data. The most noticeable change we find appears on the determination of the

atmospheric mixing angle θ23. In contrast with our previous analysis, now the best fit value for θ23 in the normal

hierarchy case lies in the first octant. The combination of atmospheric and long–baseline (MINOS and T2K) data

prefer a relatively small value of θ13: sin2 θ13 = 0.017 together with a nearly maximal second-octant value for the

atmospheric mixing angle: sin2 θ23 = 0.507. However, the inclusion of the remaining neutrino oscillation data (solar,

KamLAND + new reactor data) in the analysis pushes up the sin2 θ13 best fit value from 0.017 to 0.026. As a result

the anticorrelation between θ23 and θ13 which arises from the analysis of long–baseline neutrino appearance data pulls

down the atmospheric mixing angle into the first octant. This does not happen for the inverted mass hierarchy, where

the preferred θ13 value for atmospheric and long-baseline data is already quite large before combining with all the

other neutrino data samples, and therefore the best fit value for the atmospheric mixing angle remains in the second

octant. Note however that the indication for the first or second octant is still rather marginal for both hierarchies, and

at 1σ we obtain the following sin2 θ23 allowed range: [0.44− 0.57] ([0.46− 0.58]) for normal (inverted) mass ordering,
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FIG. 2: ∆χ2 profiles as a function of all the neutrino oscillation parameters sin2 θ12, sin
2 θ23, sin

2 θ13, ∆m2
21, ∆m2

31 and δ. For

the central and right panels the solid lines correspond to the case of normal mass hierarchy while the dashed lines correspond

to the results for the inverted mass hierarchy.

When compared with the previous analysis in Refs. [1, 2], we remark that here we are not including previous short

baseline reactor experiments, which would lead to a somewhat less significant result for the exclusion of θ13 = 0.

Besides θ13 and δ, from the global analysis of neutrino data we also recalculate the best fit values and ranges allowed

for all the other neutrino oscillation parameters. Our results are summarized in Fig. 2 and Table I. Comparing with our

previous results we see that the inclusion of the new reactor data does not have a strong impact on the determination

of all the remaining neutrino oscillation parameters, which are already pretty well determined by solar, atmospheric,

long–baseline and KamLAND reactor data. The most noticeable change we find appears on the determination of the

atmospheric mixing angle θ23. In contrast with our previous analysis, now the best fit value for θ23 in the normal

hierarchy case lies in the first octant. The combination of atmospheric and long–baseline (MINOS and T2K) data

prefer a relatively small value of θ13: sin2 θ13 = 0.017 together with a nearly maximal second-octant value for the

atmospheric mixing angle: sin2 θ23 = 0.507. However, the inclusion of the remaining neutrino oscillation data (solar,

KamLAND + new reactor data) in the analysis pushes up the sin2 θ13 best fit value from 0.017 to 0.026. As a result

the anticorrelation between θ23 and θ13 which arises from the analysis of long–baseline neutrino appearance data pulls

down the atmospheric mixing angle into the first octant. This does not happen for the inverted mass hierarchy, where

the preferred θ13 value for atmospheric and long-baseline data is already quite large before combining with all the

other neutrino data samples, and therefore the best fit value for the atmospheric mixing angle remains in the second

octant. Note however that the indication for the first or second octant is still rather marginal for both hierarchies, and

at 1σ we obtain the following sin2 θ23 allowed range: [0.44− 0.57] ([0.46− 0.58]) for normal (inverted) mass ordering,

Forero, Tortola,
Valle, 1205.4018

MINOS data from 
Neutrino2012 not 
included yet

solar Δm2 neglected
in atm analysis
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personal interpretation:

• there seem to be subtle effects in SK atm data pulling into different directions

• sub-GeV data vs multi-GeV (?) data (θ13 / hierarchy dependent)

• which effect wins depends on fine details of the analysis / system. treatment

before drawing definite conclusions it is mandatory to identify the physics and 
understand the origin of the different resuls from SK and phenomenologists
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• “preferred” regions for δ~ -60° at 1σ 
(everything allowed at 2σ)
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some regions of δ will appear but CP violation and hierarchy will be 
very hard with this generation of experiments

Huber, Lindner, TS, Winter, 0907.1896

http://arxiv.org/abs/0907.1896
http://arxiv.org/abs/0907.1896
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bfp ±1σ 3σ range

sin
2 θ12 0.30

+0.13
−0.12 0.27− 0.34

sin
2 θ23 0.42

+0.037
−0.031 0.39− 0.66

sin
2 θ13 0.023 ± 0.0023 0.016− 0.030

δ/◦ (NH) −48
+53
−59 −

δ/◦ (IH) −59
+49
−60 −
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eV

2
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∆m2
31/10

−3
eV

2
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32|/10
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eV

2
(IH) 2.43 ± 0.068 2.23− 2.65

Parameters for flux-free + SBL reactors. If value differs for NH/IH both values are

given.
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bfp ±1σ 3σ range

sin
2 θ12 0.30

+0.13
−0.12 0.27− 0.34

sin
2 θ23 0.42

+0.037
−0.031 0.39− 0.66

sin
2 θ13 0.023 ± 0.0023 0.016− 0.030

δ/◦ (NH) −48
+53
−59 −

δ/◦ (IH) −59
+49
−60 −

∆m2
21/10

−5
eV

2
7.50 ± 0.185 7.00− 8.09

∆m2
31/10

−3
eV

2
(NH) 2.45

+0.067
−0.071 2.25− 2.67

|∆m2
32|/10

−3
eV

2
(IH) 2.43 ± 0.068 2.23− 2.65

Parameters for flux-free + SBL reactors. If value differs for NH/IH both values are

given.
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• this work launches an Invisibles initiative:

             ν-fit collaboration

C. Gonzalez-Garcia (UB), M. Maltoni (UAM), TS (MPIK)

• involve and train young scientists in global analysis of 
neutrino data
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