Fermionic dark matter via Higgs portal

Laura Lopez Honorez

based on arXiv:1203.2064 in collaboration with Thomas Schwetz and Jure Zupan

GGI workshop - Firenze

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

June 2012 1 / 17

= 900

1.00	in a	100	101	101	
		CIII.		ю	

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

June 2012 3 / 17

프 > < 프 >

• Typically $(H^{\dagger}H)$ - dark sector operators drive the SM-DM interactions [Patt-Wilczeck '06]

A = A = A = A = A < A
</p>

- Typically $(H^{\dagger}H)$ dark sector operators drive the SM-DM interactions [Patt-Wilczeck '06]
- Several extensions of the Standard model have been recently revisited with DM=singlet scalar *S*, vector *V*, fermion χ [Djouadi et al '11, '12]

< 3 > < 3 >

- Typically $(H^{\dagger}H)$ dark sector operators drive the SM-DM interactions [Patt-Wilczeck '06]
- Several extensions of the Standard model have been recently revisited with DM=singlet scalar *S*, vector *V*, fermion χ [Djouadi et al '11, '12]
 - DM stability : Z₂ symmetry

1= 200

★ ∃ > < ∃ >

- Typically $(H^{\dagger}H)$ dark sector operators drive the SM-DM interactions [Patt-Wilczeck '06]
- Several extensions of the Standard model have been recently revisited with DM=singlet scalar *S*, vector *V*, fermion χ [Djouadi et al '11, '12]
 - DM stability : Z₂ symmetry
 - Higgs-DM interactions :

$$\begin{array}{lll} \mathcal{L} & \supset & \lambda_{\mathcal{S}} \mathcal{S}^{2}(H^{\dagger}H) \\ & & \lambda_{V} V_{\mu} V^{\mu}(H^{\dagger}H) \\ & & \frac{\lambda_{\chi}}{\Lambda} \bar{\chi} \chi(H^{\dagger}H) \end{array}$$

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

June 2012 5 / 17

- Typically $(H^{\dagger}H)$ dark sector operators drive the SM-DM interactions [Patt-Wilczeck '06]
- Several extensions of the Standard model have been recently revisited with DM=singlet scalar *S*, vector *V*, fermion χ [Djouadi et al '11, '12]
 - DM stability : Z₂ symmetry
 - Higgs-DM interactions :

$$egin{array}{lll} \mathcal{L} & \supset & \lambda_{\mathcal{S}}\mathcal{S}^2(H^\dagger H) \ & \lambda_V V_\mu V^\mu(H^\dagger H) \ & rac{\lambda_\chi}{\Lambda} ar\chi \chi(H^\dagger H) \end{array}$$

Direct detection : a serious threat for Higgs portal DM

Results from 100 Live Days of XENON100 Data

E. Aprile et al PRD '11

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

June 2012 6 / 17

3 🕨 🖌 3

Direct detection : a serious threat for Higgs portal DM

Relevant process for elastic scattering :

Results from 100 Live Days of XENON100 Data

E. Aprile et al PRD '11

< ∃ > <

Direct detection : a serious threat for Higgs portal DM

Relevant process for elastic scattering :

For e.g. $M_h \sim 125~{
m GeV}$ [Djouadi et al '11]

• Scalar, Vector DM ruled out for $m_{\rm DM} \lesssim 80 {\rm GeV}$

except for small resonant region $m_{\rm DM} \sim 62 \text{ GeV}$ and $\lambda_{\rm DM} \ll 1$

June 2012 6 / 17

Direct detection : a serious threat for Higgs portal DM

Relevant process for elastic scattering :

For e.g. $M_h \sim 125~{
m GeV}$ [Djouadi et al '11]

- Scalar, Vector DM ruled out for $m_{\rm DM} \lesssim 80 {\rm GeV}$
- Fermionic DM ruled out for *m*_{DM} up to TeV scale

except for small resonant region $m_{\rm DM} \sim 62 \text{ GeV}$ and $\lambda_{\rm DM} \ll 1$

We will see that Higgs Portal fermionic DM below the TeV range can be obtained : [LLH, Schwetz & Zupan '12]

• In an Effective Field Theory (EFT) : "The pseudo Higgs portal" see also [Pospelov& Ritz '11]

Two types of dim-5 operators considered : $H_{\text{eff}} = \frac{1}{\Lambda_1}Q_1 + \frac{1}{\Lambda_5}Q_5$

$$Q_1 = (H^{\dagger}H)(\bar{\chi}\chi), \qquad Q_5 = i(H^{\dagger}H)(\bar{\chi}\gamma_5\chi),$$

A B > A B >

We will see that Higgs Portal fermionic DM below the TeV range can be obtained : [LLH, Schwetz & Zupan '12]

• In an Effective Field Theory (EFT) : "The pseudo Higgs portal" see also [Pospelov& Ritz '11]

Two types of dim-5 operators considered : $H_{\text{eff}} = \frac{1}{\Lambda_1}Q_1 + \frac{1}{\Lambda_2}Q_5$

$$Q_1 = (H^{\dagger}H)(\bar{\chi}\chi), \qquad Q_5 = i(H^{\dagger}H)(\bar{\chi}\gamma_5\chi),$$

• When EFT breaks down : two other options in the scalar interaction case.

We will see that Higgs Portal fermionic DM below the TeV range can be obtained : [LLH, Schwetz & Zupan '12]

• In an Effective Field Theory (EFT) : "The pseudo Higgs portal" see also [Pospelov& Ritz '11]

Two types of dim-5 operators considered : $H_{\text{eff}} = \frac{1}{\Lambda_1}Q_1 + \frac{1}{\Lambda_5}Q_5$

$$Q_1 = (H^{\dagger}H)(\bar{\chi}\chi), \qquad Q_5 = i(H^{\dagger}H)(\bar{\chi}\gamma_5\chi),$$

• When EFT breaks down : two other options in the scalar interaction case.

• "Resonant Higgs portal" : driven by resonant annihilation into *H* or another mediator

We will see that Higgs Portal fermionic DM below the TeV range can be obtained : [LLH, Schwetz & Zupan '12]

• In an Effective Field Theory (EFT) : "The pseudo Higgs portal" see also [Pospelov& Ritz '11]

Two types of dim-5 operators considered : $H_{\text{eff}} = \frac{1}{\Lambda_1}Q_1 + \frac{1}{\Lambda_5}Q_5$

$$Q_1 = (H^{\dagger}H)(\bar{\chi}\chi), \qquad Q_5 = i(H^{\dagger}H)(\bar{\chi}\gamma_5\chi),$$

• When EFT breaks down : two other options in the scalar interaction case.

- "Resonant Higgs portal" : driven by resonant annihilation into *H* or another mediator
- "Indirect Higgs portal": driven by annihilation into a low mass mediator = secluded DM [Pospelov '07]

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

June 2012 8 / 17

$$H_{\text{eff}} = \frac{1}{\Lambda_1} Q_1 + \frac{1}{\Lambda_5} Q_5 \quad \text{with} \quad Q_1 = (H^{\dagger} H)(\bar{\chi}\chi) \quad \text{and} \quad Q_5 = i(H^{\dagger} H)(\bar{\chi}\gamma_5\chi) \,,$$

• Annihilation : $\chi \chi \rightarrow SM SM$

$$\sigma_{\rm ann} {\rm v} = {f(m_\chi) \over 4\pi} \times \qquad {{\rm v}^2 \over \Lambda_1^2} \quad {\rm or} \quad {1 \over \Lambda_5^2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Annihilation

三日 のへの

$$H_{\rm eff} = \frac{1}{\Lambda_1} Q_1 + \frac{1}{\Lambda_5} Q_5 \quad \text{with} \quad Q_1 = (H^{\dagger} H)(\bar{\chi}\chi) \quad \text{and} \quad Q_5 = i(H^{\dagger} H)(\bar{\chi}\gamma_5\chi) \,,$$

• Annihilation : $\chi \chi \rightarrow SM SM$

$$\sigma_{\rm ann} {\bf v} = {f(m_\chi) \over 4\pi} \times \qquad {{\bf v}^2 \over \Lambda_1^2} \quad {\rm or} \quad {1 \over \Lambda_5^2}$$

(日)

Annihilation

 \rightsquigarrow annihilation through parity conserving interactions is velocity suppressed.

E SQA

$$H_{\rm eff} = \frac{1}{\Lambda_1} Q_1 + \frac{1}{\Lambda_5} Q_5 \quad \text{with} \quad Q_1 = (H^{\dagger} H)(\bar{\chi}\chi) \quad \text{and} \quad Q_5 = i(H^{\dagger} H)(\bar{\chi}\gamma_5\chi) \,,$$

Annihilation

• Annihilation : $\chi \chi \rightarrow SM SM$

$$\sigma_{\rm ann} {
m v} = {f(m_\chi) \over 4\pi} imes ~~ {{
m v}^2 \over \Lambda_1^2} ~~ {
m or} ~~ {1 \over \Lambda_5^2}$$

- \rightsquigarrow annihilation through parity conserving interactions is velocity suppressed.
- Elastic scattering : $\chi p \rightarrow \chi p$

$$\sigma_{\rm p} = \frac{4}{\pi} \left(m_p f_p \right)^2 \left(\frac{m_{\rm red}}{m_h^2} \right)^2 \times \qquad \frac{1}{\Lambda_1^2} \quad \text{or} \quad \frac{2 \, \mathrm{v}^2}{\Lambda_5^2}$$

(3)

= 200

$$H_{\text{eff}} = \frac{1}{\Lambda_1} Q_1 + \frac{1}{\Lambda_5} Q_5 \quad \text{with} \quad Q_1 = (H^{\dagger} H)(\bar{\chi}\chi) \quad \text{and} \quad Q_5 = i(H^{\dagger} H)(\bar{\chi}\gamma_5\chi) \,,$$

Annihilation

• Annihilation : $\chi \chi \to SM SM$

$$\sigma_{\rm ann} {\rm v} = {f(m_\chi) \over 4\pi} imes ~~ {{\rm v}^2 \over \Lambda_1^2} ~~ {\rm or} ~~ {1 \over \Lambda_5^2}$$

- \rightsquigarrow annihilation through parity conserving interactions is velocity suppressed.
- Elastic scattering : $\chi p \rightarrow \chi p$

$$\sigma_{\rm p} = \frac{4}{\pi} \left(m_p f_p \right)^2 \left(\frac{m_{\rm red}}{m_h^2} \right)^2 \times \qquad \frac{1}{\Lambda_1^2} \quad \text{or} \quad \frac{2 \, {\rm v}^2}{\Lambda_5^2}$$

 \rightsquigarrow scattering through parity violating interactions is velocity suppressed.

イロト イポト イヨト イヨト

EL OQA

For $M_h = 125$ GeV and $\Omega_{\chi} = \Omega_{WMAP}$

Except for the resonant region :

• In the parity conserving case : $m_{\chi} \gtrsim 2 \text{ TeV}$ [Djouadi et al '11]

 ↓ ■ ■ ● へ

 June 2012
 10 / 17

< ∃ >

Except for the resonant region :

- In the parity conserving case : $m_{\chi}\gtrsim 2~{
 m TeV}$ [Djouadi et al '11]
- For $\Lambda_1/\Lambda_5 \sim 1$: $m_{\chi} \gtrsim 100 \text{ GeV}$ is allowed

June 2012 10/17

E SQA

→ 3 → < 3</p>

Except for the resonant region :

- In the parity conserving case : $m_\chi\gtrsim 2~{
 m TeV}$ [Djouadi et al '11]
- For $\Lambda_1/\Lambda_5 \sim 1$: $m_\chi \gtrsim 100 \text{ GeV}$ is allowed

E SQA

→ 3 → < 3</p>

Except for the resonant region :

- In the parity conserving case : $m_\chi\gtrsim 2~{
 m TeV}~_{
 m [Djouadi~et~al~^{11}]}$
- For $\Lambda_1/\Lambda_5 \sim 1$: $m_\chi \gtrsim 100 \text{ GeV}$ is allowed

→ In the framework of EFT, Higgs portal fermionic DM is viable below the TeV range including parity violating interaction

Laura Lopez Honorez (MPIK-Hd)

June 2012 10 / 17

비로 《문》《문》《聞》《曰》

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

June 2012 11 / 17

Toy model ingredients

- SM with a Higgs doublet $H \rightarrow 1/\sqrt{2}(h + v_1)$ + fermionic DM χ
- + extra real singlet scalar mediator $\varphi = \phi + v_2$ with :

Toy model ingredients

- SM with a Higgs doublet $H \rightarrow 1/\sqrt{2}(h + v_1)$ + fermionic DM χ
- + extra real singlet scalar mediator $\varphi = \phi + v_2$ with :

$$\mathcal{L} \supset -\frac{1}{2} \bar{\chi}(\mu_{\chi} + g\varphi) L\chi + \text{h.c.}$$

ELE DOG

Toy model ingredients

- SM with a Higgs doublet $H \rightarrow 1/\sqrt{2}(h + v_1)$ + fermionic DM χ
- + extra real singlet scalar mediator $\varphi = \phi + v_2$ with :

$$\mathcal{L} \supset -\frac{1}{2}\bar{\chi}(\mu_{\chi} + g\varphi)L\chi + \text{h.c.} \rightsquigarrow -\frac{1}{2}(m_{\chi}\bar{\chi}\chi + g_{S}\phi\bar{\chi}\chi + ig_{P}\phi\bar{\chi}\gamma_{5}\chi)$$

$$m_{\chi} = |\mu_{\chi} + gv_{2}|, g_{S} = \text{Re}(ge^{-i\beta}) \text{ and } g_{P} = \text{Im}(ge^{-i\beta}) \text{ with } \beta = \text{Arg}(\mu_{\chi} + gv_{2})$$

ELE DOG

Toy model ingredients

- SM with a Higgs doublet $H \rightarrow 1/\sqrt{2}(h + v_1)$ + fermionic DM χ
- + extra real singlet scalar mediator $\varphi = \phi + v_2$ with :

$$\mathcal{L} \supset -\frac{1}{2}\bar{\chi}(\mu_{\chi} + g\varphi)L\chi + \text{h.c.} \longrightarrow -\frac{1}{2}(m_{\chi}\bar{\chi}\chi + g_{S}\phi\bar{\chi}\chi + ig_{P}\phi\bar{\chi}\gamma_{5}\chi)$$

$$_{m_{\chi}} = |\mu_{\chi} + gv_{2}|, g_{S} = \text{Re}(ge^{-i\beta}) \text{ and } g_{P} = \text{Im}(ge^{-i\beta}) \text{ with } \beta = \text{Arg}(\mu_{\chi} + gv_{2})$$

$$V(\varphi, H) = -\mu_{H}^{2}H^{\dagger}H + \lambda_{H}(H^{\dagger}H)^{2} - \frac{\mu_{\varphi}^{2}}{2}\varphi^{2} + \frac{\lambda_{\varphi}}{4}\varphi^{4} + \frac{\lambda_{4}}{2}\varphi^{2}H^{\dagger}H + \frac{\mu}{\sqrt{2}}\varphi(H^{\dagger}H)^{2}$$

Toy model ingredients

- SM with a Higgs doublet $H \rightarrow 1/\sqrt{2}(h + v_1)$ + fermionic DM χ
- + extra real singlet scalar mediator $\varphi = \phi + v_2$ with :

$$\mathcal{L} \supset -\frac{1}{2}\bar{\chi}(\mu_{\chi} + g\varphi)L\chi + \text{h.c.} \longrightarrow -\frac{1}{2}(m_{\chi}\bar{\chi}\chi + g_{S}\phi\bar{\chi}\chi + ig_{P}\phi\bar{\chi}\gamma_{5}\chi)$$

$$_{m_{\chi}} = |\mu_{\chi} + gv_{2}|, g_{S} = \text{Re}(ge^{-i\beta}) \text{ and } g_{P} = \text{Im}(ge^{-i\beta}) \text{ with } \beta = \text{Arg}(\mu_{\chi} + gv_{2})$$

$$V(\varphi, H) = -\mu_{H}^{2}H^{\dagger}H + \lambda_{H}(H^{\dagger}H)^{2} - \frac{\mu_{\varphi}^{2}}{2}\varphi^{2} + \frac{\lambda_{\varphi}}{4}\varphi^{4} + \frac{\lambda_{4}}{2}\varphi^{2}H^{\dagger}H + \frac{\mu}{\sqrt{2}}\varphi(H^{\dagger}H)^{2}$$

• Beyond EFT, we consider now $g_P = 0$

Toy model ingredients

- SM with a Higgs doublet $H \rightarrow 1/\sqrt{2}(h + v_1)$ + fermionic DM χ
- + extra real singlet scalar mediator $\varphi = \phi + v_2$ with :

$$\mathcal{L} \supset -\frac{1}{2}\bar{\chi}(\mu_{\chi} + g\varphi)L\chi + \text{h.c.} \longrightarrow -\frac{1}{2}(m_{\chi}\bar{\chi}\chi + g_{S}\phi\bar{\chi}\chi + ig_{P}\phi\bar{\chi}\gamma_{5}\chi)$$

$$_{m_{\chi} = |\mu_{\chi} + gv_{2}|, g_{S} = \text{Re}(ge^{-i\beta}) \text{ and } g_{P} = \text{Im}(ge^{-i\beta}) \text{ with } \beta = \text{Arg}(\mu_{\chi} + gv_{2})$$

$$V(\varphi, H) = -\mu_{H}^{2}H^{\dagger}H + \lambda_{H}(H^{\dagger}H)^{2} - \frac{\mu_{\varphi}^{2}}{2}\varphi^{2} + \frac{\lambda_{\varphi}}{4}\varphi^{4} + \frac{\lambda_{4}}{2}\varphi^{2}H^{\dagger}H + \frac{\mu}{\sqrt{2}}\varphi(H^{\dagger}H)^{2}$$

- Beyond EFT, we consider now $g_P = 0$
- λ_4 and $\mu \rightsquigarrow h \phi$ mixing : physical states $H_1 \& H_2$ with α mixing.
 - we consider the case $\alpha \to 0 \equiv H_1 \simeq h$
 - all $\bar{\chi}\chi \to SM SM$ processes have $\sigma \propto \sin^2(2\alpha)$

イロト (過) (ヨ) (ヨ) (ヨ) ()

Toy Model : DM signatures for scalar interactions

• Direct detection of DM :

$$\sigma_p \propto g_S^2 \sin^2 2lpha m_{
m red}^2 \left(rac{1}{m_{H_1}^2} - rac{1}{m_{H_2}^2}
ight)^2$$

E SQA

Toy Model : DM signatures for scalar interactions

• Direct detection of DM :

$$\sigma_p \propto g_S^2 \sin^2 2lpha m_{
m red}^2 \left(rac{1}{m_{H_1}^2} - rac{1}{m_{H_2}^2}
ight)^2$$

- Colliders and Higgs searches :
 - Bounds on the production Higgs cross-section constrain :

$$r_i \equiv rac{\sigma_{H_i} \mathrm{Br}_{H_i o X}}{\sigma_{H_i}^{\mathrm{SM}} \mathrm{Br}_{H_i o X}^{\mathrm{SM}}}$$

Laura Lopez Honorez (MPIK-Hd)

• • = • • = •

Toy Model : DM signatures for scalar interactions

• Direct detection of DM :

$$\sigma_p \propto g_S^2 \sin^2 2lpha m_{
m red}^2 \left(rac{1}{m_{H_1}^2} - rac{1}{m_{H_2}^2}
ight)^2$$

- Colliders and Higgs searches :
 - Bounds on the production Higgs cross-section constrain :

$$r_i \equiv rac{\sigma_{H_i} \mathrm{Br}_{H_i o X}}{\sigma_{H_i}^{\mathrm{SM}} \mathrm{Br}_{H_i o X}^{\mathrm{SM}}}$$

• mixing and invisible branchings can reduce the signal strength [Beak '11, Englert '12] :

$$r_1 = \cos^4 \alpha \, \frac{\Gamma_{H_1}^{\text{SM}}}{\Gamma_{H_1}}$$
 and $r_2 = \sin^4 \alpha \, \frac{\Gamma_{H_2}^{\text{SM}}}{\Gamma_{H_2}}$

• We spot "SM Higgs-like" H_1 as $r_1 > 0.9$

Example $m_{H_1} = 125$ GeV and $m_{H_2} = 2$ TeV

Constraints

- $0.09 < \Omega_{\chi} h^2 < 0.13$
- potential bounded from below $\lambda_{\phi}, \lambda_{H} > 0$ and $\lambda_{4} > -2\sqrt{\lambda_{\phi}\lambda_{H}}$
- $10^{-4} \text{ GeV} \le |\mu|, v_2 \le 10^4 \text{ GeV},$ and $10^{-5} \le |\lambda_4|, |g_S| \le \pi$

A B > A B

▲ 王 = シ へ C
 June 2012 14 / 17

Example $m_{H_1} = 125$ GeV and $m_{H_2} = 2$ TeV

Constraints

- $0.09 < \Omega_{\chi} h^2 < 0.13$
- potential bounded from below $\lambda_{\phi}, \lambda_{H} > 0$ and $\lambda_{4} > -2\sqrt{\lambda_{\phi}\lambda_{H}}$
- $10^{-4} \text{ GeV} \le |\mu|, v_2 \le 10^4 \text{ GeV},$ and $10^{-5} \le |\lambda_4|, |g_S| \le \pi$

Viable fermionic DM for "scalar" Higgs portal

- at Higgs or mediator resonances : $m_{\chi} \approx m_{H_1}/2$ or $m_{H_2}/2$
- for $m_{\chi} < m_{H_2}$: Ω_{χ} mainly driven by α independent processes $\chi \chi \to \phi \phi$ while $\sigma_p \propto \sin^2(2\alpha)$

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

Indirect Higgs portal

We see that for $m_{H_2} < m_{\chi}$

• $g_S \phi \bar{\chi} \chi$

 \rightsquigarrow *u*- and *t*-channel annihilation channels $\sigma_{\chi\chi \to \phi\phi} = \frac{3g_S^4 v}{32\pi m_\chi^2}$ $\rightsquigarrow g_S$ fixed for a given m_χ to comply with WMAP

→ 3 → < 3</p>

Indirect Higgs portal

We see that for $m_{H_2} < m_{\chi}$

• $g_S \phi \bar{\chi} \chi$

 \rightsquigarrow *u*- and *t*-channel annihilation channels $\sigma_{\chi\chi\to\phi\phi} = \frac{3g_S^4 v}{32\pi m_\chi^2}$ $\rightsquigarrow g_S$ fixed for a given m_χ to comply with WMAP

• $\frac{\lambda_4}{2}\varphi^2 H^{\dagger}H + \frac{\mu}{\sqrt{2}}\varphi(H^{\dagger}H)^2$ provides a link between dark and visible thermal bath through $\phi\phi \leftrightarrow hh, \phi\leftrightarrow hh, \phi\phi\leftrightarrow h$

ELE DOG

Indirect Higgs portal

We see that for $m_{H_2} < m_{\chi}$

• $g_S \phi \bar{\chi} \chi$

 \rightsquigarrow *u*- and *t*-channel annihilation channels $\sigma_{\chi\chi\to\phi\phi\phi} = \frac{3g_S^4 v}{32\pi m_\chi^2}$ $\rightsquigarrow g_S$ fixed for a given m_χ to comply with WMAP

• $\frac{\lambda_4}{2}\varphi^2 H^{\dagger}H + \frac{\mu}{\sqrt{2}}\varphi(H^{\dagger}H)^2$ provides a link between dark and visible thermal bath through $\phi\phi \leftrightarrow hh, \phi\leftrightarrow hh, \phi\phi\leftrightarrow h$

- The Higgs portal acts indirectly
- large range of viable fermionic DM masses allowed for scalar type of interactions

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

Conclusion

Viable Higgs Portal fermionic DM below the TeV range can be obtained :

[LLH, Schwetz & Zupan '12]

• In an Effective Field Theory (EFT) Two types of dim-5 operators have to be considered : $H_{\text{eff}} = \frac{1}{\Lambda_1}Q_1 + \frac{1}{\Lambda_5}Q_5$

$$Q_1 = (H^{\dagger}H)(ar{\chi}\chi) \,, \qquad Q_5 = i(H^{\dagger}H)(ar{\chi}\gamma_5\chi) \,,$$

 \rightarrow parity violating interactions have to be taken into account ≡ "Pseudo-Higgs portal".

- When EFT breaks down : two other options for scalar interactions. Illustration in a toy model with H, χ and an extra scalar mediator ϕ
 - "Resonant Higgs portal" : driven by resonant annihilation into *H* or the mediator
 - "Indirect Higgs portal" : driven by annihilation into the extra mediator

Thank you for your attention !!!

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

June 2012 17 / 17

• • = • • = •

三日 のへの

Backup

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

June 2012 18 / 17

Backup

Mixing

We define the mass eigenstates H_1 and H_2 in the following way :

$$H_1 = c_{\alpha}h + s_{\alpha}\phi \tag{1}$$

$$H_2 = -s_\alpha h + c_\alpha \phi \tag{2}$$

(3)

with $c_{\alpha} = \cos(\alpha)$, $s_{\alpha} = \sin(\alpha)$, and α is the mixing angle which depends on the parameters present in the scalar potential in the following way :

$$\tan(2\alpha) = \frac{\sqrt{2}\mu v_1 + 2\lambda_4 v_1 v_2}{2\lambda_H v_1^2 - 2\lambda_\phi v_2^2 + \mu v_1^2 / (2\sqrt{2}v_2)}$$
(4)

June 2012 19 / 17

Backup

Laura Lopez Honorez (MPIK-Hd)

Fermionic DM via Higgs portal

June 2012 20 / 17

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・