CDF & D0 Higgs Search

Results from the Full Tevatron Data Set

Wade Fisher Michigan State University

On Behalf of the CDF and DØ Collaborations

Tevatron Higgs Seminar 2 July 2012, Fermilab

The 2nd Half of Today's Presentation

DØ Higgs boson searches in a nutshell

- Discussion of updates since winter 2012
- Short review on what's to come
- DØ Higgs search results

New Tevatron Higgs search results

- Details of combination procedures
- Updated CDF + DØ Higgs combination
- Discussion of results

The DØ Higgs Search

- A broad search program
 - Search for Higgs decays in $H \rightarrow bb/WW/\gamma\gamma/\tau\tau$
 - Allow acceptance from $H \rightarrow ZZ/cc/Zy$
 - Production is dominated by gluon fusion and associated production

Channel	$\begin{array}{c} \text{Luminosity} \\ \text{(fb}^{-1}) \end{array}$	m_H range (GeV/c^2)
$H+(X) \rightarrow \ell \nu + \geq jj$ $(0,1,\geq 2b\text{-tags}) \times (2,3,4+\text{ jet})$	9.7	100-200
$ZH \to \nu \bar{\nu} b \bar{b}$ (MS,TS)	9.5	100-150
$ZH \rightarrow \ell^+ \ell^- b\bar{b}$ (TST,TLDT)× $(ee,\mu\mu,ee_{ICR},\mu\mu_{trk})$	9.7	100-150
$VH \to e^{\pm}\mu^{\pm} + X$	9.7	115-200
$H \to W^+ W^- \to \ell^{\pm} \nu \ell^{\mp} \nu (0,1,2+\text{ jet})$	9.7	115-200
$H \to W^+ W^- \to \mu \nu \tau_{\rm had} \nu$	7.3	115-200
$H \to W^+ W^- \to \ell \bar{\nu} j j$	5.4	130-200
$VH \to \ell\ell\ell + X$	9.7	100-200
$VH \to \tau \tau \mu + X$	7.0	115-200
$H o \gamma \gamma$	9.7	100-150

The DØ H→diphoton Analysis

- Update recovers improvements unrealized for winter 2012 conferences
 - Improvement in MC/data statistics for background modeling
 - To combat systematic uncertainties, analysis is now split into jet-dominated vs photon-dominated fake rate regions
 - <u>Bottom line:</u> 20-30% improvement in expected limits

The DØ H→WW→lvlv Analysis

- More data & refined analysis technique
 - Di-electron channel adds 12% more data & improves electron identificiation efficiency
 - Di-muon and di-electron channels now split search sample into regions dominated by Diboson and W/Z+jet backgrounds
 - Technique improves expected limits by 5-10%

W/Z+jet Dominated

Events data 35 Z+jets 30 Diboson 25 W+jets 20 Multijet 15 ttbar Sig Tot M_u = 165 GeV 0.2 0.4 0.6 Final Discriminant

Diboson-Dominated

The DØ WH→lvbb Analysis

- Updates to the WH→Ivbb Higgs search
 - Additional muon triggers
 - Improved multijet modeling & rejection
 - Improved signal isolation via separation into 3 double b-tagged final states (vs 2 previously)
 - Bottom line: 10-17% improvements in expected limits

The DØ ZH→llbb Analysis

95% CL Limit/SM

10

Comparison of Expected limits: ZH→ IIbb

Expected Limit, Summer 2012
 Expected Limit, Spring 2012

Summer 2012 Expected ±1 s.d. Summer 2012 Expected ±2 s.d.

- Updates to the ZH \rightarrow IIbb Higgs search
 - Selection requirements relaxed
 - Isolation of top quark backgrounds represents largest change

Updates to other DØ Analyses

Added new e/µ+MET+4Jets analysis

- Primarily sensitive to $VH \rightarrow VWW$ processes
- Contributes mostly for $m_{\mu} \sim 165 \text{ GeV}$

Update to VH \rightarrow VVV \rightarrow trileptons+X (µµe) search

 Additional data (~12%), improved Zy background model, further reject backgrounds

 $ZH \rightarrow vvbb$ search significantly refines MVA training

 Boost training performance via large increase in MC statistics (true for other analyses too)

Planned analysis updates

- Winter→Summer time window was short: some updates didn't make it
 - <u>H \rightarrow WW \rightarrow lvjj:</u> will add 80% in data with significant search improvements
 - <u>VH \rightarrow VVV \rightarrow eeµ, $\mu\tau\tau$: add ~12% in data, MVA analysis improvements</u>
 - $VH \rightarrow SS e\mu$: many new studies in multijet modeling & MVA treatment
 - <u>H→WW→ $ev\mu v$ </u>: adopt splitting in WW vs W+jets enriched regions (5-10% gain)
 - $\underline{ZH \rightarrow vvbb}$ (3jets): challenging final state for trigger modeling
 - $VH \rightarrow e/\mu \tau + jj$: Will update to full luminosity, with modeling improvements

Channel	$\begin{array}{c} \text{Luminosity} \\ \text{(fb}^{-1}) \end{array}$	m_H range $({ m GeV}/c^2)$
$H+(X) \rightarrow \ell \nu + \geq jj (0,1,\geq 2b\text{-tags}) \times (2,3,4+\text{ jet})$	9.7	100-200
$ZH \to \nu \bar{\nu} b \bar{b}$ (MS,TS)	9.5	100-150
$ZH \rightarrow \ell^+ \ell^- b\bar{b}$ (TST,TLDT)×(ee, $\mu\mu$,ee _{ICR} , $\mu\mu_{trk}$)	9.7	100-150
$VH \to e^{\pm}\mu^{\pm} + X$	9.7	115-200
$H \to W^+ W^- \to \ell^{\pm} \nu \ell^{\mp} \nu (0, 1, 2+ \text{ jet})$	9.7	115-200
$H \to W^+ W^- \to \mu \nu \tau_{\rm had} \nu$	7.3	115-200
$H \to W^+ W^- \to \ell \bar{\nu} j j$	5.4	130-200
$VH \rightarrow \ell\ell\ell + X$	9.7	100-200
$VH \rightarrow \tau \tau \mu + X$	7.0	115-200
$H ightarrow \gamma \gamma$	9.7	100-150

Bottom line: 5-10% overall improvement still possible for DØ

The Updated DØ Higgs Search

- 95% C.L. upper limits on SM Higgs boson production at the Tevatron
 - Expected exclusion: 156 < M₁ < 173 GeV
 - Observed exclusion: $159 < M_{\mu} < 170 \text{ GeV}$

The Look Elsewhere Effect

Could a significant result happen "by chance"?
 Two main considerations: p-values & the look elsewhere effect (LEE)

p-value:

The probability of obtaining a result as extreme as the one observed, assuming the NULL hypothesis is true. (*NULL hypothesis* = "there is no Higgs boson")
In other words, "The probability that the background fluctuated up by chance."
p-values of 0.15866 / 0.02275 / 0.00135 correspond to 1/2/3 standard deviations

The Look Elsewhere Effect (LEE)

The probability of obtaining a result as extreme as the one observed in **all of the places that you looked.**We test Higgs masses from 100-200 GeV (100-150 GeV for H→bb), so we must account for the number of independent search regions in that range.

Ultimately it's driven by mass resolution.
 Eg, dijet invariant mass for H→bb.

- We use a LEE factor of 4 (2) for our global ($H \rightarrow bb$) search.

The Updated DØ Higgs Search

Two different test of the data

- Left: Local p-value distribution for background-only expectation.
 - Minimum local p-value: 2.0 standard deviations
 - Global p-value with LEE factor of 4: 1.3 standard deviations
- **<u>Right</u>**: Maximum likelihood fit to data with Higgs boson production rate as free parameter.

CDF & DØ Individual Results

- Results from Tevatron experiments
 - Similar search sensitivity over entire probed mass region
 - DØ: Exclude 159 < M₁ < 170 GeV
 - CDF: Exclude 90 < $M_{_{H}}$ < 97 & 147 < $M_{_{H}}$ < 175 GeV

CDF & DØ Combined Distributions

CDF & DØ Combined Distributions

Upper Limits on Higgs Boson Production

95% C.L. upper limits on SM Higgs boson production at the Tevatron

- Expected exclusion: $100 < M_{_{I}} < 120 \text{ GeV}$ $139 < M_{_{I}} < 184 \text{ GeV}$

Upper Limits on Higgs Boson Production

• 95% C.L. upper limits on SM Higgs boson production at the Tevatron

- Expected exclusion: $100 < M_{_{I}} < 120 \text{ GeV}$ 139 < $M_{_{I}} < 184 \text{ GeV}$
- Observed exclusion: $100 < M_{u} < 103 \text{ GeV}$ $147 < M_{u} < 180 \text{ GeV}$

17

Two different tests of the data, comparing to S+B and B-only predictions

- **Left:** Local p-value distribution for background-only expectation.
 - Minimum local p-value: 3.0 standard deviations
 - Global p-value with LEE factor of 4: 2.5 standard deviations
- **<u>Right</u>**: Maximum likelihood fit to data with Higgs rate as free parameter.

• Considering separately the $H \rightarrow bb$ and $H \rightarrow WW$ channels

- Local p-value distribution for background-only expectation.
 - Minimum H \rightarrow bb local p-value: 3.2 standard deviations
 - Global H \rightarrow bb p-value with LEE factor of 2: **2.9 standard deviations**

• Considering separately the $H \rightarrow bb$ and $H \rightarrow WW$ channels

- Local p-value distribution for background-only expectation.
 - Minimum H \rightarrow bb local p-value: 3.2 standard deviations
 - Global H \rightarrow bb p-value with LEE factor of 2: **2.9 standard deviations**

- Revisit s/b rebinned distribution plot for M_{μ} =125 GeV
 - Cumulative distribution seems to prefer S+B model
 - Background-subtracted plot illustrates several interesting candidate events

100

-100

-200

-300

0

Overlaying a Higgs Signal

Overlaying a Higgs Signal

Log-Likelihood Distributions

- The log-likelihood ratio helps to gauge the relative agreement of the data with the background or signal+background models
- Distributions are populated with pseudo-experiments to get an estimate of significance.

Background-Only Pseudo-Experiments Signal+Bkgd Pseudo-Experimentss

Observed LLR

Log-Likelihood Distributions

28

Conclusions

- The data appear to be incompatible with the background, with a global p-value of:

2.5 s.d. (3.0 local) H→bb only: 2.9 s.d. (3.2 local)

– Tevatron data are compatible with SM Higgs boson production for $115 < M_{\perp} < 140$

 – Tevatron data will play a large role in any potential measurements of
 σ(WH+ZH)×BR(H→bb) for years to come

Tevatron Run II Preliminary, $L \le 10.0 \text{ fb}^{-1}$

For additional details see

- Tevatron: http://tevnphwg.fnal.gov/results/SM_Higgs_Summer_12/index.html
- CDF: http://www-cdf.fnal.gov/physics/new/hdg/Results.html
- DØ: http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.html

Thank you, Fermilab

Special thanks to every single person & group at Fermilab who made this possible

It really is a huge team effort!!