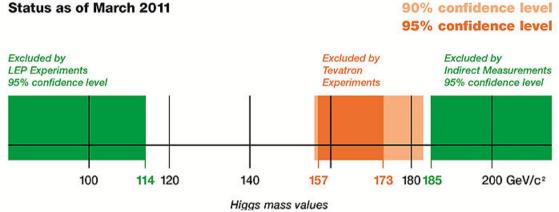
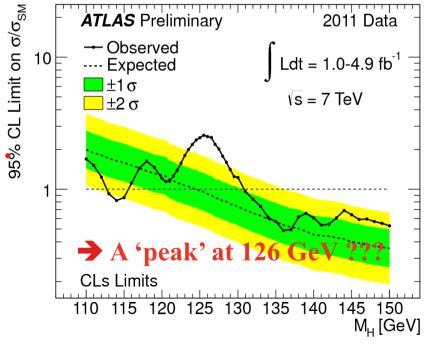

Sterile Neutrinos as Warm Dark Matter

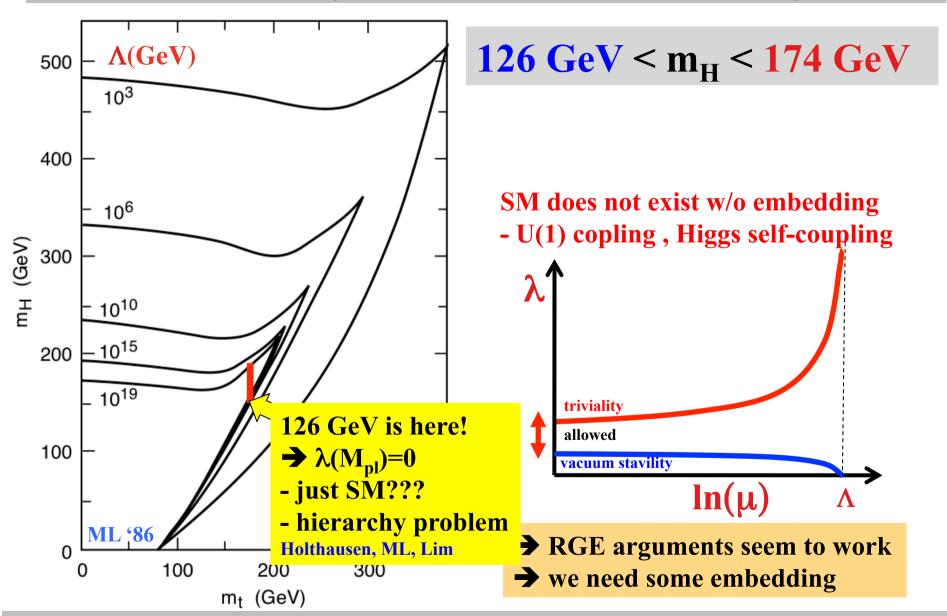
Manfred Lindner



SM works perfectly & Higgs Mass Range is converging



Search for the Higgs Particle



- if SM Higgs exists → light
- no (clear) signs for anything else
- → just the SM?
- **→** Dark Matter?

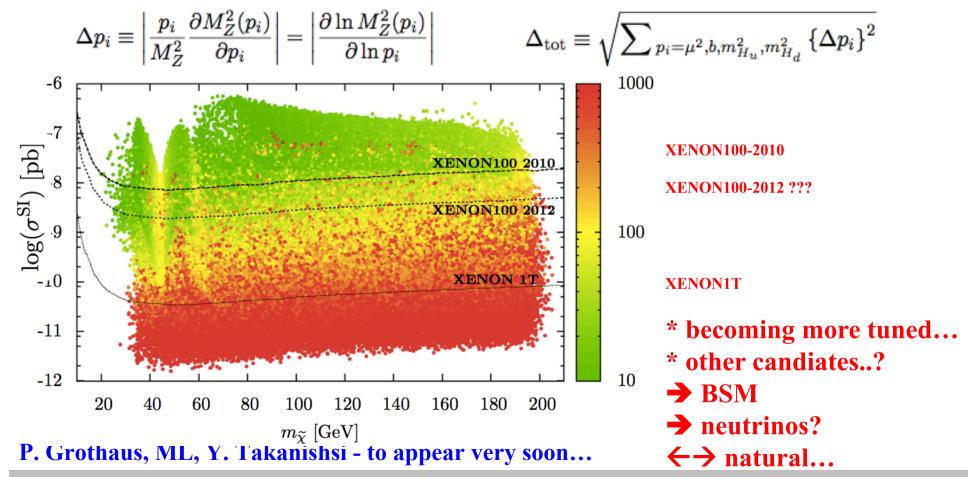
Triviality and Vacuum Stability

The SM works perfect but must be extended....

Hierarchy problem

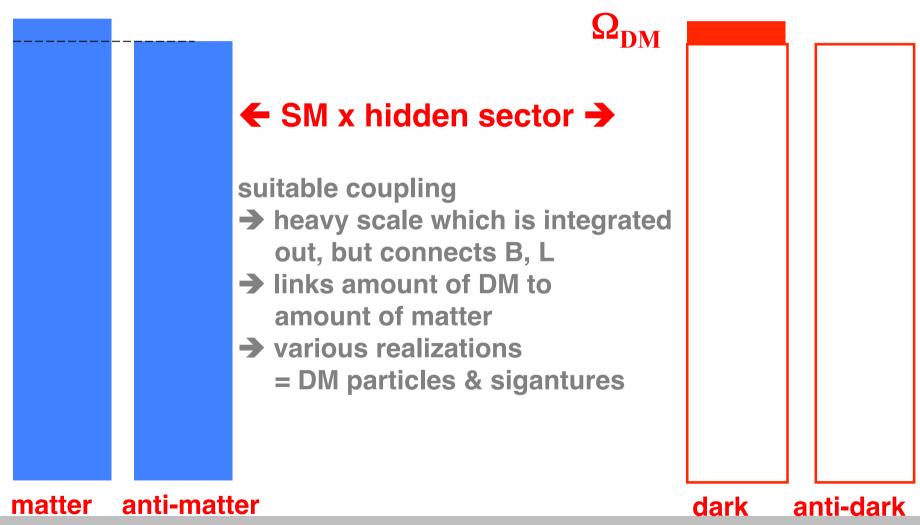
- separation of two scalar scales is unstable... SUSY, TeV physics
- Planck scale physics: New concepts ... ???
- Many theoretical reasons for BSM physics...
- SM cannot explain Baryon Asymmetry of the Universe (BAU)

BUT: Massive neutrinos require SM extension → SM+


- **→** leptogenesis = one of the best BAU explanations
- → nothing else needed!

Dark Matter

- an extra particle is needed which is DM
- particles connected to the hierarchy problem, strong CP, ...
- massive neutrinos require new physics ←→ DM?


Most favoured Dark Matter: WIMPs

- Candidates in BSM models ←→ hierarchy problem
- WIMP miracle → correct abundance
- MSSM neutralino: Level of fine-tuning $\rightarrow \Delta_{tot}$

New Directions: Asymmetric Dark Matter

→ Why is $\Omega_{\rm DM} \simeq 5 * \Omega_{\rm baryonic}$? (a factor 5 or 500?)

Most minimalistic: DM & Neutrino Mass

New Physics: Neutrino Mass Terms

Mass terms $\sim mLR = (2,1)$

→ Simplest possibility: add 3 right handed neutrino fields

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$\boxed{L_Q = \left(\begin{array}{c} l_u \\ l_d \end{array}\right)}$	3	2	1/3
r_u	3	1	4/3
r_d	3	1	-2/3
$L_L = \begin{pmatrix} l_{\nu} \\ l_{e} \end{pmatrix}$	1	2	-1
$r_{ u}$???	1	1	0
r_e	1	1	-2

like quarks and charged leptons → Dirac mass terms (including NMS mixing)

New ingredients:

- 1) Majorana mass (explicit)
- 2) lepton number violation

6x6 block mass matrix block diagonalization M_R heavy → 3 light v's

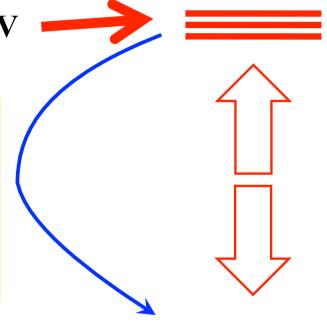
NEW ingredients, 9 parameters → SM+ and sea-saw

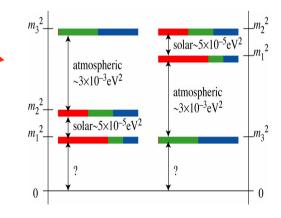
Sterile Neutrino Spectrum

The standard picture:

3 heavy sterile neutrinos typ. $\geq 10^{13}$ GeV

→ leptogenesis, role in GUTs, ...


Some mechanism which makes


1, 2, ... heavy states light?

- → light sterile neutrino(s)
- \rightarrow tiny heavy-light mixing expected $\theta^2 < O(m_v/m_s)$

3 light active neutrinos

- **→** this cold easily be wrong
- more than $3 N_R$ states, ...
- M_R may have special eigenvalues, ...
- **→** light sterile neutrinos ?!

Evidences for Light Sterile Neutrinos

Particle Physics:

Reactor anomaly, LSND, MiniBooNE, MINOS, Gallex...

- → evidences for light sterile v's?
- → New and better data / experiments are needed to clarify the situation
- → maybe something exciting around the corner?
- → but eV scale and sizable mixings

CMB: extra eV-ish neutrinos J. Hamann et al., ...

BBN: extra v's possible: N_v ~ 3.7 ± 1

E. Aver, K. Olive, E. Skillman (2010), Y. Izotov, T. Thuan(2010)

Astrophysics:

Effects of keV-ish sterile v's on pulsar kicks, PN star kicks, ...

Kusenko, Segre, Mocioiu, Pascoli, Fuller et al., Biermann & Kusenko, Stasielak et al., Loewenstein et al., Dodelson, Widrow, Dolgov, ...

Most likely not all of them are true! → consequences?

Could Neutrinos be Dark Matter?

- Active neutrinos would be perfect Hot Dark Matter → ruled out:
 - destroys small scale structures in cosmological evolution
 - measured neutrino masses too small → maybe HDM component
- **keV sterile neutrinos: Warm Dark Matter >** workes very well:
 - → relativistic at decoupling
 - → non-relativistic at radiation to matter dominance transition
 - OK for $M_X \simeq$ few keV with very tiny mixing
 - reduced small scale structure -> smoother profile, less dwarf satellites
 - → scenario where one sterile neutrino is keV-ish, the others heavy
 - \rightarrow tiny active sterile mixings $O(m_v/M_R)$
 - **←→** observational hints from astronomy
 - hints that a keV sterile particle may exist right-handed neutrino?

Note: Right-handed neutrinos exist probably anyway – just make one light!

keV sterile Neutrinos as WDM

The vMSM

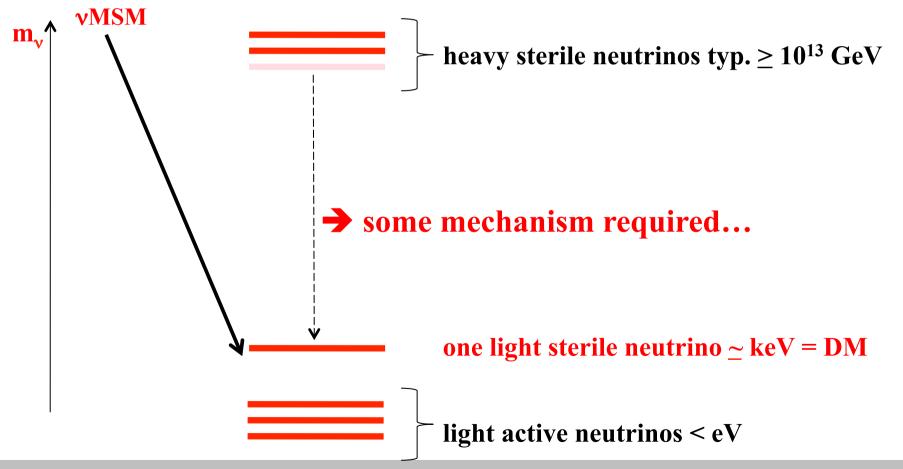
Asaka, Blanchet, Shaposhnikov, 2005 Asaka, Shaposhnikov, 2005

Particle content:

- Gauge fields of SU(3)_c x SU(2)_W x U(1)_Y: γ , W_±, Z, g
- Higgs doublet: Φ =(1,2,1)

		SU(3)c	SU(2) _W	U(1) _Y	U(1)em
11 1	$\frac{1}{1}$	3	2	+1/3	(+2/3)
II	$\mathfrak{1}_{\mathrm{R}}$	3	1	+4/3	+2/3
	$d_{\mathbf{R}}$	3	1	-2/3	-1/3
\(\frac{\partial}{e}\)	'e) [1	2	-1	(°)
\parallel	$\exists_{\mathbf{R}}$	1	1	-2	-1
	N	1	1	0	0

x3 generations


- → lepton sector more symmetric to the quark sector
- → Majorana masses for N
- \rightarrow choose for one sterile $\nu \sim \text{keV}$ mass \rightarrow exceeds lifetime of Universe

Matter

Virtue and Problem of the vMSM

vMSM: Scenario with sterile v and tiny mixing → never enters thermal equilibrium

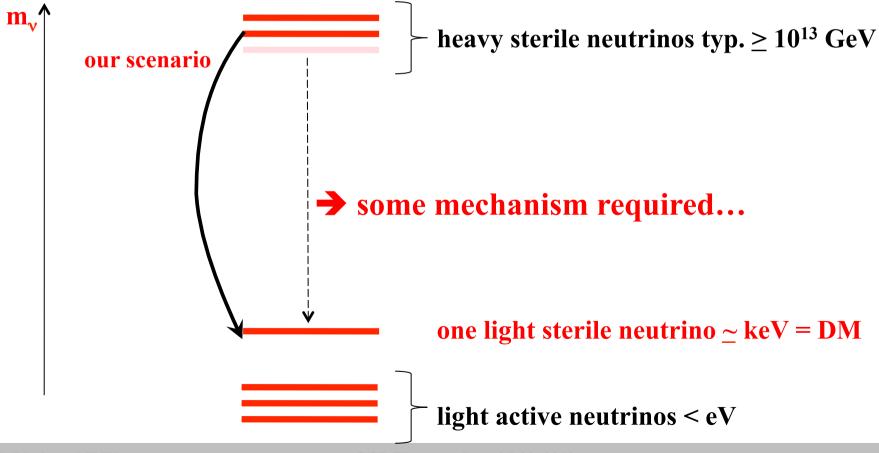
- → requires non-thermal production from other particles (avoid over-closure)
- new physics before the beginning of the thermal evolution sets abundance

Alternative Scenario with Thermal Abundance

An alternative scenario: Bezrukov, Hettmannsperger, ML

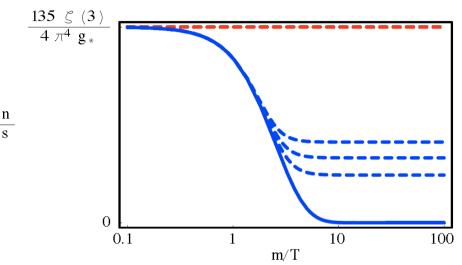
- Three right-handed neutrinos N_1 , N_2 , N_3
- Dirac and Majorana mass terms
- N Charged under some (BSM) gauge group → scale M (~sterile)
- Specific example: LR-symmetry $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Roles played by the sterile (~right-handed) neutrinos:


N_1 – Warm Dark Matter

- $reve{\ }$ Mass $M_1\sim {\sf keV}$
- Lifetime $au_1 > au_{ ext{Universe}} \sim 10^{17} ext{ s}$

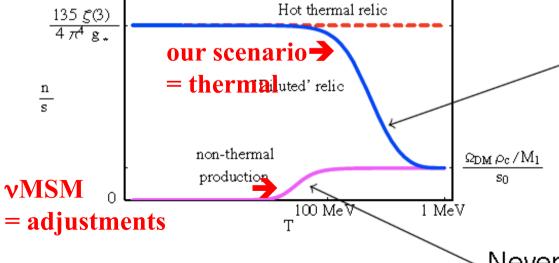
$N_{2,3}$ – dilute entropy after DM decoupling


- $Mass M_{2,3} > GeV$
- Lifetime $\tau_{2.3} \lesssim$ 0.1 s

Thermal production of the correct abundance in our model:

Obtaining the correct Abundance

Usual thermal WIMP case:



$$rac{\Omega}{\Omega_{DM}} \simeq \left(rac{10}{g_{*f}}
ight) \left(rac{M}{10\,eV}
ight)$$
 Decoupled relativistic

CDM: (M>>MeV)

 $\Omega \sim \Omega_{
m DM}$ Decoupled nonrelativistic

keV sterile neutrinos:

Diluted after decoupling (entropy generated by other particle decay)

$$\Omega \sim \Omega_{\text{DM}}$$

Never entered thermal equilibrium

Sterile Neutrino DM Freeze-Out & Abundance

Decoupling of N_1 in early Universe: sterile neutrino DM is light

- → freezout while relativistic → calculation like for active neutrinos + suppression of annihilation x-section by M
- Freeze-out temperature:

$$T_{\mathsf{f}} \sim g_{*\mathsf{f}}^{1/6} \left(rac{\mathit{M}}{\mathit{M}_{\mathit{W}}}
ight)^{4/3} (1 \div 2) \; \mathsf{MeV}$$

Abundance of N₁ today:

$$rac{\Omega_{ extsf{N}}}{\Omega_{ extsf{DM}}} \simeq rac{1}{S} \left(rac{10.75}{g_{* extsf{f}}}
ight) \left(rac{ extsf{M}_1}{1 ext{keV}}
ight) imes 100$$

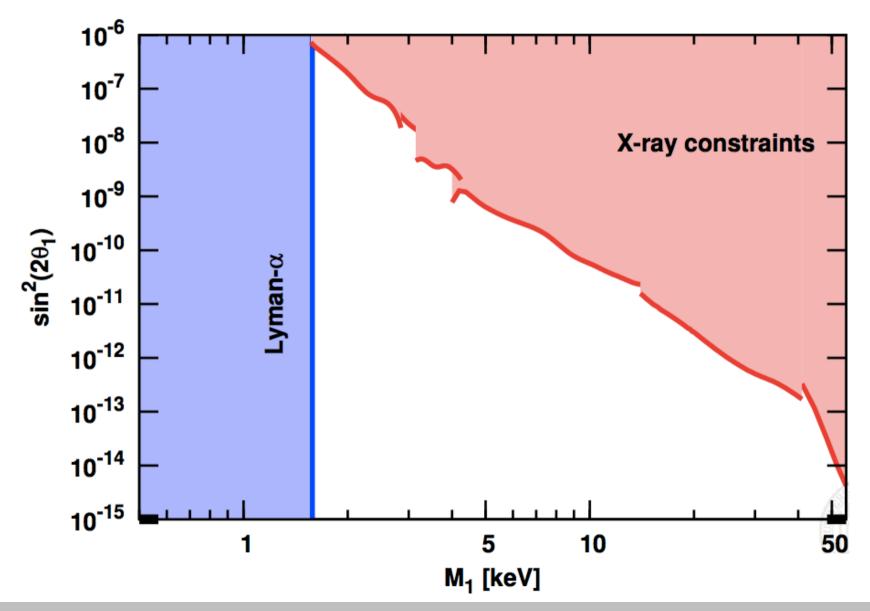
Required entropy generation factor:

$$S \simeq 100 \left(rac{10.75}{g_{*\mathrm{f}}}
ight) \left(rac{\mathit{M}_{1}}{1\mathrm{keV}}
ight)$$

Entropy Generation by out-of Equilibrium Decay

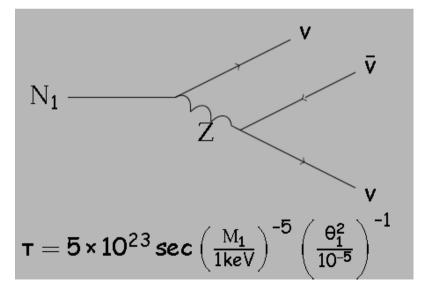
Heavy particle (here: N_3) dropping out of thermal equilibrium while relativistic $T_f > M_2$: \rightarrow bounds gauge scale from below

$$M > rac{1}{g_{*f}^{1/8}} \left(rac{M_2}{{
m GeV}}
ight)^{3/4} (10 \div 16) {
m TeV}$$

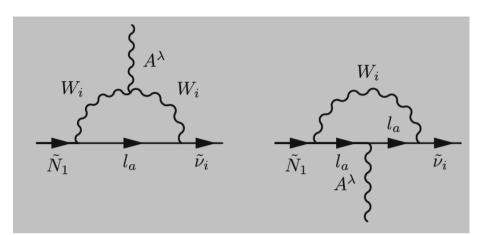

- → sufficiently long lived → become non-relativistic
- → dominates expansion of Universe during its decay
- → entropy generation factor →

$$S\simeq 0.76rac{ar{g}_*^{1/4} \emph{M}_2}{g_*\sqrt{\Gamma_2 \emph{M}_{ extsf{Pl}}}}$$

$$rac{s_{ ext{after}}}{s_{ ext{before}}} = S rac{a_{ ext{before}}^3}{a_{ ext{after}}^3}$$


 \rightarrow fixes decay width Γ_2

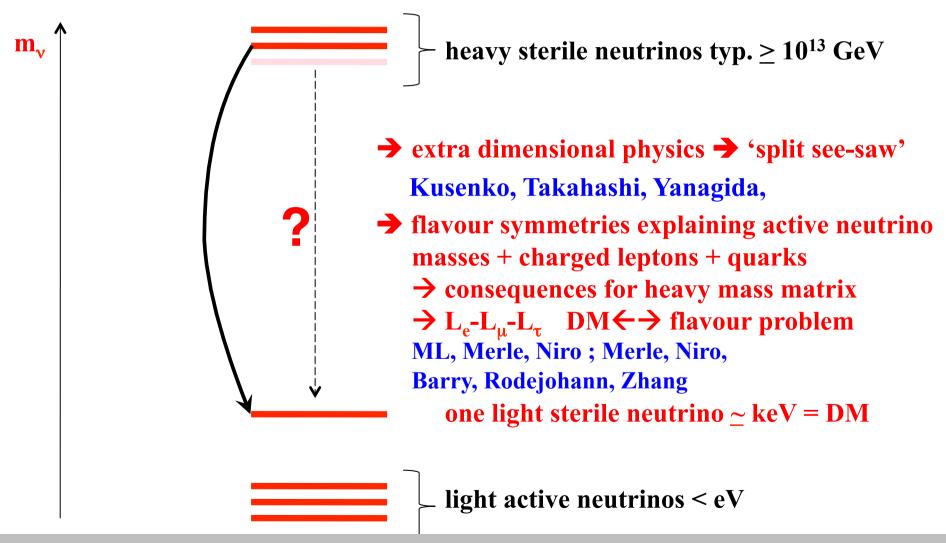
Allowed Parameter Range



Observing keV-ish Neutrino DM

- LHC
 - sterile neutrino DM is not observable
 - WIMP-like particles still possible but not DM
- direct searches
 - sterile ν DM extremely difficult; maybe in β -decay (MARE)
- astrophysics/cosmology → at some level: keV X-rays
 - **→** sterile neutrino DM is decaying into active neutrinos
 - decay $N_1 \rightarrow \nu \bar{\nu} \nu$, $N_1 \rightarrow \nu \bar{\nu} \bar{\nu}$
 - not very constraining since $\tau >> \tau_{\rm Universe}$

- - radiative decays $N_1 \rightarrow v\gamma$
 - \rightarrow photon line $E_{\gamma} = m_s/2$

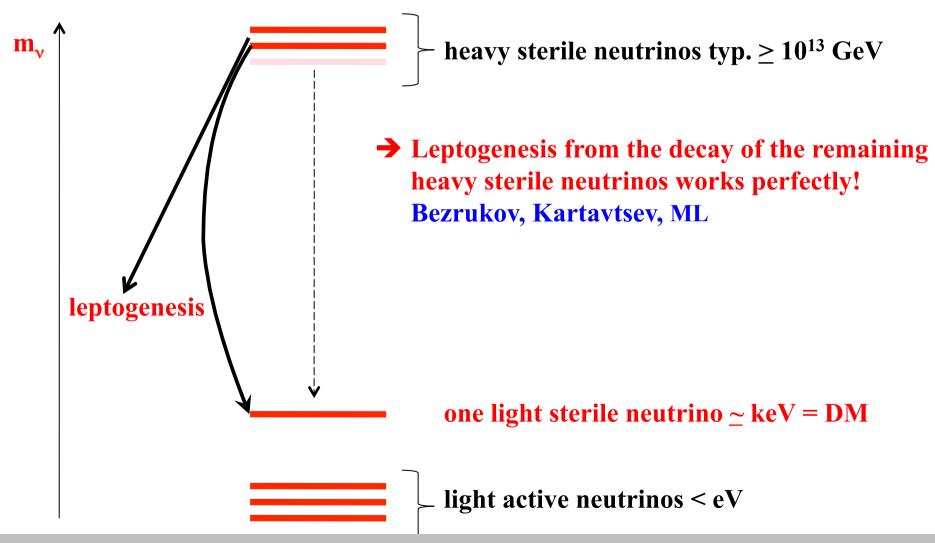

- so far: observational limit on active-sterile mixing angle

$$\Gamma_{N_1 \to \nu \gamma} \simeq 5.5 \times 10^{-22} \theta_1^2 \left(\frac{M_1}{1 \text{ keV}}\right)^5 \text{s}^{-1}$$
 $\theta_1^2 \lesssim 1.8 \times 10^{-5} \left(\frac{1 \text{ keV}}{M_1}\right)^5$

- mixing tiny, but naturally expected to be tiny: O(scale ratio)

Explaining keV-ish Sterile Neutrinos

Possible scenario: See-saw + a reason why 1 sterile ν is light


How it may work...

Neutrino mass matrix:

$$\begin{split} \Psi &\equiv \left((\nu_{eL})^C, (\nu_{\mu L})^C, (\nu_{\tau L})^C, N_{1R}, N_{2R}, N_{3R} \right)^T \\ \mathcal{M}_{\nu} &= \begin{pmatrix} 0 & m_L^{e\mu} & m_L^{e\tau} & m_D^{e\tau} & 0 & 0 \\ m_L^{e\mu} & 0 & 0 & 0 & m_D^{\mu 2} & m_D^{\mu 3} \\ m_L^{e\tau} & 0 & 0 & 0 & m_D^{\tau 2} & m_D^{\tau 3} \\ \hline m_D^{e1} & 0 & 0 & 0 & M_R^{12} & M_R^{13} \\ 0 & m_D^{\mu 2} & m_D^{\tau 2} & 0 & 0 \\ 0 & m_D^{\mu 3} & m_D^{\tau 3} & M_R^{13} & 0 & 0 \end{pmatrix} \\ & &\Rightarrow \text{massless sterile state + soft breaking} \\ &\Rightarrow \text{light sterile } \nu \end{split}$$

Leptogenesis

...there still exist heavy sterile states ...

Conclusions

- A keV-ish sterile neutrino is a very well motivated and good working Warm Dark Matter candidate ←→ finite ν-masses
- Simplest realization: ∨MSM → requires non-thermal production
- Our scenario: Sterile v's which are charged under some extended gauge group → abundance from thermal production
 - **→** interesting constrains
 - small mixings from X-ray constraints and entropy generation (DM abundance)
 - masses bound by BBN
- **→** Implications for neutrino mass generation:
 - type-I see-saw not possible
 - type-II works ←→ very natural in gauge extensions
 - requires one sterile neutrino to be light
- **→** Combination with Leptogenses **→** BAU
- → More general scenarios: just invent some mechanism which 'naturally' explains light sterile neutrinos