ICARUS report to the June 2012 SPS-C

Jan Kisiel

Inst. of Physics, Univ. Silesia, Katowice, Poland For the ICARUS Collaboration

The ICARUS Collaboration

M. Antonelloa, P. Aprilia, B. Baibussinov ${ }^{\text {b }}$, M. Baldo Ceolin ${ }^{\text {b,t }}$, P. Benettic, E. Calligarich ${ }^{c}$, N. Cancia, S. Centrob, A. Cesana ${ }^{f}$, K. Cieslikg, D. B. Cline ${ }^{\text {h }}$ A.G. Coccod, A. Dabrowska9, D. Dequal ${ }^{\text {b }}$, A. Dermenevi, R. Dolfinic, C. Farnese ${ }^{\text {b }}$, A. Fava ${ }^{\text {b }}$, A. Ferrarij, G. Fiorillod, D. Gibin ${ }^{\text {b }}$, A. Gigli Berzolaric,t, S. Gninenkoi, A. Guglielmib, M. Haranczykg, J. Holeczek', A. Ivashkini, J. Kisiel', I. Kochanek', J. Lagodam, S. Mania', G. Mannocchin, A. Menegollic, G. Meng ${ }^{\text {b }}$, C. Montanaric, S. Otwinowski${ }^{\text {h }}$, L. Perialen, A. Piazzolic, P. Picchin, F. Pietropaolo ${ }^{\text {b }}$, P. Plonskio, A. Rappoldic, G.L. Rasellic, M. Rossellac, C. Rubbia ${ }^{a, j}$, P. Salaf, E. Scantamburlo ${ }^{e}$, A. Scaramellif, E. Segreto ${ }^{a}$, F. Sergiampietrip, D. Stefana, R. Sulejm,a, M. Szarskag, M. Terranif, F. Varaninib, S. Venturab, C. Vignolia, H. Wangh, X. Yang ${ }^{\text {h }, ~ A . ~ Z a l e w s k a g, ~ K . ~ Z a r e m b a ~}{ }^{\circ}$.
a Laboratori Nazionali del Gran Sasso dell'INFN, Assergi (AQ), Italy
b Dipartimento di Fisica e INFN, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
c Dipartimento di Fisica Nucleare e Teorica e INFN, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
d Dipartimento di Scienze Fisiche, INFN e Università Federico II, Napoli, Italy
e Dipartimento di Fisica, Università di L'Aquila, via Vetoio Località Coppito, I-67100 L'Aquila, Italy
f INFN, Sezione di Milano e Politecnico, Via Celoria 16, I-20133 Milano, Italy
g Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Krakow, Poland
h Department of Physics and Astronomy, University of California, Los Angeles, USA
i INR RAS, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
j CERN, CH-1211 Geneve 23, Switzerland
k Institute of Theoretical Physics, Wroclaw University, Wroclaw, Poland
1 Institute of Physics, University of Silesia, 4 Uniwersytecka st., 40-007 Katowice, Poland
m National Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock/Swierk, Poland
n Laboratori Nazionali di Frascati (INFN), Via Fermi 40, I-00044 Frascati, Italy
o Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska, 00665 Warsaw, Poland
p INFN, Sezione di Pisa. Largo B. Pontecorvo, 3, I-56127 Pisa, Italy

The ICARUS T600 detector

Cathode

- Two identical modules
- $3.6 \times 3.9 \times 19.6 \approx 275 \mathrm{~m}^{3}$ each
- Liquid Ar active mass: $\approx 476 \dagger$
- Drift length $=1.5 \mathrm{~m}(1 \mathrm{~ms})$
- $\mathrm{HV}=-75 \mathrm{kV} \quad \mathrm{E}=0.5 \mathrm{kV} / \mathrm{cm}$ - 4 wire chambers:
- v-drift $=1.55 \mathrm{~mm} / \mu \mathrm{s}$
- 2 chambers per module
- 3 readout wire planes per chamber, wires at 0 , $\pm 60^{\circ}$
- ≈ 54000 wires, 3 mm pitch, 3 mm plane spacing - 20+54 PMTs, 8 " \varnothing, for scintillation light:
- VUV sensitive (128nm) with wave shifter (TPB)

Key feature: LAr purity from electro-negative molecules $\left(\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}\right)$. Now: 0.06 ppb (O_{2} equivalent) -> 5 ms lifetime.

The ICARUS detector in underground Hall B of LNGS

LAr purification

LAr continuously filtered, e- life-time measured by charge attenuation study on cosmic μ tracks.
$\tau_{\text {ele }}>5 \mathrm{~ms}$ ($\sim 60 \mathrm{ppt}\left[\mathrm{O}_{2}\right]_{e q}$) corresponding to a maximum charge attenuation of 17% at 1.5 m
These results allow operation at larger drift distances

LAr recirculation system upgrade:

- 11 accidental stops up to now (LAr immersed pumps)
- New pumps with non-immersed motor already ordered - installation 2012. Similar pumps operating since 2010 on the LN2 circulation systems worked without any accidental stop.

ICARUS T600 trigger system

- CNGS:
> CNGS "Early Warning" signal sent 80 ms before the SPS p extraction: allows opening a 60 ms wide gate around neutrino arrival time at LNGS.
\Rightarrow PMT sum signal for each chamber in coincidence with the beam gate.

- Cosmic Rays:
2.40 ms offset value in agreement with $2.44 \mathrm{~ms} v$ tof (40μ s fiber transit time from external lab to Hall B)
$>$ Spill duration reproduced ($10.5 \mu \mathrm{~s}$), 1 mHz event rate , \approx 80 events/day
> PMT sum signal: coincidence of two adjacent chambers (50\% cathode transparency)
$>$ Globally 35 mHz trigger rate achieved: ~130 cosmic events/h
- Local trigger based on deposited charge (SuperDaedalus):
$>$ on-line hit-finding/zero-skipping algorithm implemented in FPGA's, used to improve trigger efficiency at low energy (below 500 MeV)

Light detection system upgrades (1)

- PMTs sum signal used as cosmic trigger during 2011: 28 mHz trigger rate $\sim \underline{100}$ cosmic events/hour collected; 160 events/hour predicted by Monte Carlo
- Difference due to PMT's HV biasing/signal read-out (impedance termination mismatch). Only prompt photons ($30-40 \%$ of total) can be exploited.
- The full PMTs read-out system re-designed, tested in 2011 during CNGS beam shutdown and installed after the beam stop
A. PMT signal for trigger: custom lownoise integrating preamplifier for each PMT + external active signal adder \rightarrow light signal slow component integration ($R C=10 \mu s$), $2 x$ signal amplitude increase (at least). Slow component of the light signal recorded.
B. Monitoring system of the single PMT rates
c. v-tof Timing: direct PMT-sum signal recording with higher granularity ($\times 3$)

Light detection system upgrades (2)

- Tests on PMTs cosmic trigger in December 2011 and March 2012 with threshold of ~ 100 (200) phe West (East) cryostat.
- 35 mHz trigger rate achieved, ~ 130 cosmic events/hour collected.
- Increase of the rates in the East half-module below $\sim 1 \mathrm{GeV}$ obtained

West: 2011-2012 comparison

East: 2011-2012 comparison

Triggering on local charge deposition

- New algorithm to detect local Region of Interest (ROI) implemented in a new SuperDaedalus chip (FPGA) to trigger charge deposition on TPC wires.

[B.Baibussinov et al., JInst 5:P12006 (2010)].
On each channel a "peak signal" is generated when $S(\dagger)$ is over threshold.

On each 32 wire board a Global-Trigger-Out (GTO) signal is generated if at least one of two 16-channel blocks has reached majority threshold.

$S(t)=Q_{8}(t)-Q_{128}(t) \quad$ Low and high frequency noise washed out

Peak stretching ($25 \div 125 \mu s$) to guarantee high efficiency for inclined tracks

Equipping T600 with SuperDaedalus

- December 2011: 700 SuperDaedalus chip have been installed in the detector, covering all the Collection views (23000 channels)
- Induction 2 view will be equipped within July 2012 (~ 23000 additional channels).
- It has been possible to trigger on the GTO signals with a trigger rate of ~ 150 mHz , well below the DAQ limit
- Data analysis is in progress.
- Preliminary results indicate a promising improvement of the cosmic event trigger efficiency in the 100 $\div 500 \mathrm{MeV}$ energy range (2 examples below).
- Presently SuperDaedalus are embedded in the CNGS trigger (coincidence of one GTO with the CNGS beam early waring gate).

Low energy e.m. interaction

Atmospheric muon

CNGS neutrino runs - summary

- ICARUS T600 fully operational since Oct. $1^{\text {st }} 2010$

2010: Oct. $1^{\text {st }} \div$ Nov. $22^{\text {nd }}$

2012: March $23^{\text {rd }} \div$ now

2011: Mar. $19^{\text {th }} \div$ Nov. $14^{\text {th }}$

- Detector live-time > 93\%
\Rightarrow November 2011 and May 2012: timing measurement with bunched beam.
> 2011 run: expected 1200 CC and 390 NC events (so far, for 2.710^{19} pot 925 v interactions in 447 t fiducial volume with ~ 3% detector electronic inefficiency - DAQ crate off; 975 interactions expected from MC assuming full detector efficiency).

Progress on data analysis

- The analysis of CNGS neutrino events is ongoing. Results will be presented when final.
- First step on cosmic-ray analysis: automatic reconstruction of deposited energy from c-muons in agreement with expectations
- In parallel, optimization of analysis tools in term of performance, calibrations and event reconstruction:
> Progresses in 3D reconstruction, leading to better performance especially for horizontal tracks
> Momentum measurement by M.S. for escaping muons, under refinement
> Progresses in the Particle Identification Algorithm
> Progresses in automatic reconstruction: vertex finding, clustering, track finding
> Developments on tools for calorimetric reconstruction midde: $12^{\text {I2 }}$

Cosmic ray muon spectrum

- CR data automatically filtered: > Skip fake triggers
> Find "good" muons for purity
- First reconstruction
- Good agreement of energy spectrum with MC expectation is found (MC simulation includes light collection and trigger conditions).

East semimodule

Particle identification: $\mathrm{dE} / \mathrm{dx}+$ decay products energy deposit

PId algorithm: neural network approach

MC test of the particle id algorithm:
purity as a function of the observed track length before complete stop
$>$ purity and efficiency is above 80% for tracks longer than $6 \mathrm{~cm}(p, K, \pi$ and $\mu)$
$>\sim 100 \%$ separation of protons and kaons with the use of decay products

$\mathrm{dE} / \mathrm{dx}$ for stopping particles

$\mathrm{dE} / \mathrm{dx}$ as a function of residual range for stopping particles, 2011 data sample, quenching correction applied.

3D reconstruction

Induction2

NEW: Single 3D PLA-fit optimized to all available hits in the 2D wire planes and all identified 3D reference points (vertices, delta rays). 2D hit-to-hit associations are not longer needed -> missing parts in a single view and horizontal tracks are now accepted.

Automation of the event reconstruction

> A challenging task due to the complexity of high energy CNGS events.
$>$ Algorithm for identification and reconstruction of the promary vertex exploits relative angular distribution of hit positions. Identified 2D vertices are merged together to recontruct 3D vertex.
$>$ Validation with visually identified CNGS vertices. Distributions of the distance between reconstructed and visually identified vertex position.

Obtained, with real CNGS data, algorithm efficiency ~ 97\%.

m.i.p. calibration with CNGS muons

$\mathrm{dE} / \mathrm{d} \times$ distribution for real and MC muon tracks from CNGS events

- Tracks reconstructed in 3D. δ rays and showers rejected. Same reconstruction on MC muons with CNGS spectrum.
- Very good agreement ($\sim 2-3 \%$) - residual small difference due to noise patterns and their effects on δ ray.

Calibration with stopping particles: data sample

Data : 320 stopping particle tracks visually selected :

- no decay products
- increasing ionization density at the end
- at least 5 hits in Collection
- clean view in Collection

This sample contains both protons and pions (or even muons): stopping π^{-}and μ^{-}can be absorbed by Ar nuclei, with sizeable probability of emitting only photons and neutrons.

The PID: works on the behavior of $d E / d x$ versus residual range

- segment length obtained from 3D track reconstruction
- deposited charge evaluated from collection wire signals without corrections for quenching effects

Points from real tracks are compared to the MC predictions for different particle species

Calibration with stopping particles: examples

$\mathrm{d} E / \mathrm{d} x$ vs range - MC pattern vs real data
 consistent with any pattern, most probably protons interacting at very low energy with emission of neutrons
 and photons

Methods for identification of non-stopping particles are under development (including quenching correction)

Muon momentum by multiple scattering

- Key tool to measure momentum of non-contained μ 's: essential for $v_{\mu} C C$ event reconstruction.

Two methods under development:
> 2D track projection in Coll. view is repeatedly segmented at various segment lengths ($L_{\text {seg }}$); deflection angles θ along the track are extracted by linear fit; to estimate muon momentum the distribution of $\theta\left(L_{\text {seg }}\right)$ is fitted - the opimization of the track segmentation not needed. (A.Ferrari, C.Rubbia - ICARUS TN 99)
$>$ Kalman fit of the segmented track; muon momentum p extracted from deflection angle θ. (ICARUS Coll. - Eur. Phys. J C48 (2006) 667)

- Both methods under validation on stopping μ 's and extended to higher energy.
- $\Delta p / p$ depends mainly on the track length: for CNGS $\Delta \mathrm{p} /$ $p<20 \%$ expected on average.

Run 9809 Event 651

6 protons, 1 pion decays at rest

Example of data: kaon decay in a CNGS event

π^{0} identification / reconstruction in CNGS events (1)

Collection view

Minv= $104 \mathrm{MeV} / \mathrm{c}^{2}$ $\mathrm{p} \pi=165 \mathrm{MeV} / \mathrm{c}$ (0.478, -0.729, 0.49)

Edep $=87 \pm 7 \mathrm{MeV}$
65°

$$
\text { Edep }=108 \pm 9 \mathrm{MeV}
$$

Conversion distances:
$71.2 \mathrm{~cm}, 13.7 \mathrm{~cm}, 41.8 \mathrm{~cm}, 17.4 \mathrm{~cm}$

$$
\text { Edep }=229 \pm 20 \mathrm{MeV}
$$

Initial ionizations:
5.1, 6.1, 3.1 and 4.4 MeV/cm

$\mathrm{Edep}^{\text {d }}=139 \pm 12 \mathrm{MeV}$

$$
\text { Minv }=133 \mathrm{MeV} / \mathrm{c}^{2}
$$

Wire coordinate ($\sim 3 \mathrm{~m}$)

$$
\begin{aligned}
& p \pi=344 \mathrm{MeV} / \mathrm{c} \\
& (0.697,0.497,-0.517) \text { CNGS } v \text { béam direction }
\end{aligned}
$$

$$
\mathrm{p} \pi=344 \mathrm{MeV} / \mathrm{c}
$$

π^{0} showers identified by:

- 2γ conversion separated from primary vertex
- Reconstruction of $\gamma \gamma$ invariant mass
- Ionization in the first segment of showers (1 or 2 mips)

π^{0} identification / reconstruction in CNGS events (2)

Mean: 133.8 ± 4.4 (stat)
± 4 (syst) MeV/c²
$\sigma=20.5 \mathrm{MeV}$

$\mathrm{dE} / \mathrm{dx}$ in the first 2.5 cm of candidate photon shower

Total energy deposition in CNGS n events

- Comparison of the predicted (full MC) and detected deposited energy spectrum from NC and CC events on 2010 statistics and a subset of the 2011 statistics
- Used for the "superluminal" neutrino searches

Search for superluminal v's radiative processes in ICARUS Phys. Lett. B-711 (2012) 270-275

- Cohen and Glashow [Phys. Rev. Lett., 107 (2011) 181803] argued that superluminal v should loose energy mainly via $e^{+} e^{-}$bremsstrahlung, on average $0.78 \cdot E_{v}$ energy loss/emission
- Full FLUKA simulation of the process kinematics, folded in the CNGS beam, studied as a function of $\delta=\left(v_{v}{ }^{2}-c^{2}\right) / c^{2}$
For $\delta=510^{-5}$ (OPERA first claim):
> full v event suppression for $E>30 \mathrm{GeV}$
> ~107 $e^{+} e^{-}$pairs $/ 10^{19} \mathrm{pot} / \mathrm{kt}$
- Effects searched in 6.710^{18} pot $\cdot k t$ ICARUS exposure (2010/11) to CNGS
- No spectrum suppression found in both NC , CC data (~ 400 events)
- No e+e- pair bremsstrahlung event candidate found
- The lack of pair in CNGS ICARUS 2010/2011 data, sets the limit:

$$
\delta=\left(v_{v}{ }^{2}-c^{2}\right) / c^{2}<2.510^{-8} 90 \% C L
$$

- comparable to the SuperK atm. limit $\delta<1.410^{-8}$, somewhat larger than the lower energy velocity constraint $\delta<41^{-9}$ from SN1987A.

Neutrino time of flight with CNGS bunched beam

- 2011 low intensity bunched beam: 4 bunches/spill, 3 ns FWHM, 524 ns separation.
- ICARUS observed 7 beam-associated events, (~2.2 10^{16} pot collected): $2 C C v_{\mu}$ events, 1 NC v event, 1 stopping + 3 crossing μ 's from v interaction in upstream rock.
- Arrival time determined using the prompt scintillation light signals ($\sim n s$ resolution) and the accurate localization of each event w.r.t. PMT position.

Neutrino time of flight: 2011 result
 Phys. Lett. B 713 (2012) 17-22

- All fixed delays/propagation times calibrated (thanks also to LNGS and CERN)
- Baseline estimation relies on existing available geodesy data (OPERA/ LNGS)
- Variable corrections to GPS from OPERA/CERN recipe
- The average $\delta t=$ tof $_{c}$ - tof ${ }_{v}$ of the 7 events is +0.3 ns with an r.m.s. of 10.5 ns ; statistical error on the average $=4.9 \mathrm{~ns}$; systematic error \sim 9 ns

Data taking/analysis with 2012 bunched CNGS

- New beam structure: 64 bunches, 3 ns width, 100 ns spacing.
- Beam related events observed in ICARUS (for ~1.8 1017 pot):
>16 crossing μ 's (1 stopping) from the upstream rock;
$\Rightarrow 7 C C v_{\mu}$ events:
$>2 N C v$ event.
- Analysis in progress:

PPRELIMINARY results compatible with 2011 value: 0 to 3 ns depending on timing synchronization path;
$>$ distribution r.m.s: $\sim 3.7 \mathrm{~ns}$ (10.5 in 2011)
$>$ Systematics corrections and offset under final evaluation (PMT-DAQ propagation chain, topological corrections, timing delay).

Conclusions

- ICARUS T600 is the first large LAr TPC operated underground.
- The T600 is acquiring data without interruption since mid-2010 @ LNGS with CNGS beam, searching for $v_{\mu} \rightarrow v_{\tau}$ and $v_{\mu} \rightarrow v_{e}$ oscillations as well as for athmospheric v's and proton decay.
- High detection efficiency reached for CNGS events.
- Quality of data as expected.
- Data analysis in progress, results expected on:
$>$ Search for $v_{\mu} \rightarrow v_{e}$ oscillations and LNSD effect
$>$ Search for $v_{\mu} \rightarrow v_{\tau}$ oscillations
- Contributions to the "superluminal" neutrino problem (published).

