ICARUS report to the June 2012 SPS-C

Jan Kisiel Inst. of Physics, Univ. Silesia, Katowice, Poland For the ICARUS Collaboration

The ICARUS Collaboration

M. Antonello^a, P. Aprili^a, B. Baibussinov^b, M. Baldo Ceolin^{b,†}, P. Benetti^c, E. Calligarich^c, N. Canci^a, S. Centro^b, A. Cesana^f, K. Cieslik^g, D. B. Cline^h,
A.G. Cocco^d, A. Dabrowska^g, D. Dequal^b, A. Dermenevⁱ, R. Dolfini^c, C. Farnese^b,
A. Fava^b, A. Ferrari^j, G. Fiorillo^d, D. Gibin^b, A. Gigli Berzolari^{c,†}, S. Gninenkoⁱ,
A. Guglielmi^b, M. Haranczyk^g, J. Holeczek^l, A. Ivashkinⁱ, J. Kisiel^l, I. Kochanek^l,
J. Lagoda^m, S. Mania^l, G. Mannocchiⁿ, A. Menegolli^c, G. Meng^b, C. Montanari^c,
S. Otwinowski^h, L. Perialeⁿ, A. Piazzoli^c, P. Picchiⁿ, F. Pietropaolo^b, P. Plonski^o,
A. Rappoldi^c, G.L. Raselli^c, M. Rossella^c, C. Rubbia^{a,j}, P. Sala^f, E. Scantamburlo^e,
A. Scaramelli^f, E. Segreto^a, F. Sergiampietri^p, D. Stefan^a, R. Sulej^{m,a},
M. Szarska^g, M. Terrani^f, F. Varanini^b, S. Ventura^b, C. Vignoli^a, H. Wang^h,
X. Yang^h, A. Zalewska^g, K. Zaremba^o.

- a Laboratori Nazionali del Gran Sasso dell'INFN, Assergi (AQ), Italy
- b Dipartimento di Fisica e INFN, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
- c Dipartimento di Fisica Nucleare e Teorica e INFN, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
- d Dipartimento di Scienze Fisiche, INFN e Università Federico II, Napoli, Italy
- e Dipartimento di Fisica, Università di L'Aquila, via Vetoio Località Coppito, I-67100 L'Aquila, Italy
- f INFN, Sezione di Milano e Politecnico, Via Celoria 16, I-20133 Milano, Italy
- g Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Krakow, Poland
- h Department of Physics and Astronomy, University of California, Los Angeles, USA
- i INR RAS, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
- j CERN, CH-1211 Geneve 23, Switzerland
- k Institute of Theoretical Physics, Wroclaw University, Wroclaw, Poland
- I Institute of Physics, University of Silesia, 4 Uniwersytecka st., 40-007 Katowice, Poland
- m National Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock/Swierk, Poland
- n Laboratori Nazionali di Frascati (INFN), Via Fermi 40, I-00044 Frascati, Italy
- o Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska, 00665 Warsaw, Poland
- p INFN, Sezione di Pisa. Largo B. Pontecorvo, 3, I-56127 Pisa, Italy

The ICARUS T600 detector

Two identical modules

- 3.6 x 3.9 x 19.6 ≈ 275 m³ each
- Liquid Ar active mass: ≈ 476 t
- Drift length = 1.5 m (1 ms)
- HV = -75 kV E = 0.5 kV/cm
- v-drift = 1.55 mm/µs

• 4 wire chambers:

- 2 chambers per module
 - 3 readout wire planes per chamber, wires at 0, $\pm 60^{\circ}$
- ≈ 54000 wires, 3 mm pitch, 3 mm plane spacing
- 20+54 PMTs , 8" Ø, for scintillation light:

VUV sensitive (128nm) with wave shifter (TPB)

Key feature: LAr purity from electro-negative molecules (O_2 , H_2O , CO_2). Now: 0.06 ppb (O_2 equivalent) -> 5 ms lifetime.

The ICARUS detector in underground Hall B of LNGS

LAr purification

LAr continuously filtered, e⁻ life-time measured by charge attenuation study on cosmic μ tracks.

 τ_{ele} > 5ms (~60 ppt $[O_2]_{eq})$ corresponding to a maximum charge attenuation of 17% at 1.5m

These results allow operation at larger drift distances

LAr recirculation system upgrade:

- 11 accidental stops up to now (LAr immersed pumps)
- New pumps with non-immersed motor already ordered installation 2012. Similar pumps operating since 2010 on the LN2 circulation systems worked without any accidental stop.

ICARUS T600 trigger system

CNGS:

- CNGS "Early Warning" signal sent 80 ms before the SPS p extraction: allows opening a 60 ms wide gate around neutrino arrival time at LNGS.
- > PMT sum signal for each chamber in coincidence with the beam gate.

• Cosmic Rays:

- 2.40 ms offset value in agreement with 2.44 ms v tof (40 µs fiber transit time from external lab to Hall B)
- Spill duration reproduced (10.5µs), 1 mHz event rate , ≈ 80 events/day
- PMT sum signal: coincidence of two adjacent chambers (50% cathode transparency)
- Globally 35 mHz trigger rate achieved: ~130 cosmic events/h
- Local trigger based on deposited charge (SuperDaedalus):
 - on-line hit-finding/zero-skipping algorithm implemented in FPGA's, used to improve trigger efficiency at low energy (below 500 MeV) Slide: 6

Light detection system upgrades (1)

- PMTs sum signal used as cosmic trigger during 2011: 28 mHz trigger rate ~ <u>100</u> <u>cosmic events/hour</u> collected; <u>160 events/hour</u> predicted by Monte Carlo
- Difference due to PMT's HV biasing/signal read-out (impedance termination mismatch). Only prompt photons (30-40% of total) can be exploited.
- The full PMTs read-out system re-designed, tested in 2011 during CNGS beam shutdown and installed after the beam stop
 - A. PMT signal for trigger: custom lownoise integrating preamplifier for each PMT + external active signal adder → light signal slow component integration (RC = 10 µs), 2x signal amplitude increase (at least). Slow component of the light signal recorded.
 - B. Monitoring system of the single PMT rates
 - c. v-tof Timing: direct PMT-sum signal recording with higher granularity (x 3)

Light detection system upgrades (2)

- Tests on PMTs cosmic trigger in December 2011 and March 2012 with threshold of ~ 100 (200) phe West (East) cryostat.
- 35 mHz trigger rate achieved, ~ <u>130 cosmic events/hour</u> collected.
- Increase of the rates in the East half-module below ~ 1 GeV obtained

Triggering on local charge deposition

New algorithm to detect local Region of Interest (ROI) implemented in a new SuperDaedalus chip (FPGA) to trigger charge deposition on TPC wires.

[B.Baibussinov et al., JInst 5:P12006 (2010)].

On each channel a "peak signal" is generated when S(t) is over threshold.

On each 32 wire board a Global-Trigger-Out (GTO) signal is generated if at least one of two 16-channel blocks has reached majority threshold.

> Peak stretching (25÷125 µs) to guarantee high efficiency for inclined tracks

Equipping T600 with SuperDaedalus

- December 2011: 700 SuperDaedalus chip have been installed in the detector, covering all the Collection views (~ 23000 channels)
- Induction 2 view will be equipped within July 2012 (~ 23000 additional channels).
- It has been possible to trigger on the GTO signals with a trigger rate of ~ 150 mHz, well below the DAQ limit
- Data analysis is in progress.
- Preliminary results indicate a promising improvement of the cosmic event trigger efficiency in the 100÷500 MeV energy range (2 examples below).
- Presently SuperDaedalus are embedded in the CNGS trigger (coincidence of one GTO with the CNGS beam early waring gate).

Slide: 10

CNGS neutrino runs – summary

ICARUS T600 fully operational since Oct. 1st 2010

2011: Mar. 19th + Nov. 14th

Detector live-time > 93%

- November 2011 and May 2012: timing measurement with bunched beam.
- 2011 run: expected 1200 CC and 390 NC events (so far, for 2.7 10¹⁹ pot 925 v interactions in 447 t fiducial volume with ~ 3% detector electronic inefficiency - DAQ crate off; 975 interactions expected from MC assuming full detector efficiency).

Progress on data analysis

- The analysis of CNGS neutrino events is ongoing. Results will be presented when final.
- First step on cosmic-ray analysis: automatic reconstruction of deposited energy from c-muons in agreement with expectations
- In parallel, optimization of analysis tools in term of performance, calibrations and event reconstruction:
 - Progresses in 3D reconstruction, leading to better performance especially for horizontal tracks
 - Momentum measurement by M.S. for escaping muons, under refinement
 - Progresses in the Particle Identification Algorithm
 - Progresses in automatic reconstruction: vertex finding, clustering, track finding
 - > Developments on tools for calorimetric reconstruction Inde: 12

Cosmic ray muon spectrum

Particle identification: dE/dx + decay products energy deposit

PId algorithm: neural network approach

MC test of the particle id algorithm: purity as a function of the observed track length before complete stop

> purity and efficiency is above 80% for tracks longer than 6 cm (p, K, π and μ)

> ~ 100% separation of protons and kaons with the use of decay products

dE/dx for stopping particles

dE/dx as a function of residual range for stopping particles, 2011 data sample, quenching correction applied.

3D reconstruction

NEW: Single 3D PLA-fit optimized to all available hits in the 2D wire planes and all identified 3D reference points (vertices, delta rays). 2D hit-to-hit associations are not longer needed -> missing parts in a single view and horizontal tracks are now accepted.

Automation of the event reconstruction

- > A challenging task due to the complexity of high energy CNGS events.
- Algorithm for identification and reconstruction of the promary vertex exploits relative angular distribution of hit positions. Identified 2D vertices are merged together to recontruct 3D vertex.
- Validation with visually identified CNGS vertices. Distributions of the distance between reconstructed and visually identified vertex position.

Obtained, with real CNGS data, algorithm efficiency ~ 97%.

m.i.p. calibration with CNGS muons

dE/dx distribution for real and MC muon tracks from CNGS events

- Tracks reconstructed in 3D. δ rays and showers rejected. Same reconstruction on MC muons with CNGS spectrum.
- Very good agreement (~ 2-3%) residual small difference due to noise patterns and their effects on δ ray.

Calibration with stopping particles: data sample

Data : 320 stopping particle tracks visually selected :

- no decay products
- increasing ionization density at the end
- at least 5 hits in Collection
- clean view in Collection

This sample contains both protons and pions (or even muons): stopping π^- and μ^- can be absorbed by Ar nuclei, with sizeable probability of emitting only photons and neutrons.

The PID: works on the behavior of dE/dx versus residual range

segment length obtained from 3D track reconstruction

• deposited charge evaluated from collection wire signals without corrections for quenching effects

Points from real tracks are compared to the MC predictions for different particle species

Calibration with stopping particles: examples

dE/dx vs range - MC pattern vs real data

Methods for identification of non-stopping particles are under development (including quenching correction)

Slide: 20

Muon momentum by multiple scattering

 Key tool to measure momentum of non-contained μ's: essential for v_u CC event reconstruction.

Two methods under development:

- > 2D track projection in Coll. view is repeatedly segmented at various segment lengths (L_{seg}); deflection angles Θ along the track are extracted by linear fit; to estimate muon momentum the distribution of $\Theta(L_{seg})$ is fitted - the opimization of the track segmentation not needed. (*A.Ferrari, C.Rubbia - ICARUS TN 99*)
- Kalman fit of the segmented track; muon momentum p extracted from deflection angle θ. (ICARUS Coll. - Eur. Phys. J C48 (2006) 667)

6 protons, 1 pion decays at rest

Slide: 22

Example of data: kaon decay in a CNGS event

Slide: 23

π^0 identification / reconstruction in CNGS events (1)

 π^0 showers identified by:

- 2γ conversion separated from primary vertex
- Reconstruction of $\gamma\gamma$ invariant mass
- Ionization in the first segment of showers (1 or 2 mips)

π^0 identification / reconstruction in CNGS events (2)

Mean: 133.8 ± 4.4(stat) ± 4 (syst) MeV/c² σ = 20.5 MeV

dE/dx in the first 2.5 cm of candidate photon shower

Total energy deposition in CNGS n events

- Comparison of the predicted (full MC) and detected deposited energy spectrum from NC and CC events on 2010 statistics and a subset of the 2011 statistics
- Used for the "superluminal" neutrino searches

Search for superluminal v's radiative processes in ICARUS Phys. Lett. B-711 (2012) 270-275

- Cohen and Glashow [Phys. Rev. Lett., 107 (2011) 181803] argued that superluminal v should loose energy mainly via e⁺e⁻ bremsstrahlung, on average 0.78•E_v energy loss/emission
- Full FLUKA simulation of the process kinematics, folded in the CNGS beam, studied as a function of $\delta = (v_v^2 c^2)/c^2$

For δ = 5 10⁻⁵ (OPERA first claim):

- > full v event suppression for E > 30 GeV
- ~10⁷ e⁺e⁻ pairs /10¹⁹ pot/kt
- Effects searched in 6.7 10¹⁸ pot·kt ICARUS exposure (2010/11) to CNGS
 - No spectrum suppression found in both NC , CC data (~ 400 events)
 - No e⁺e⁻ pair bremsstrahlung event candidate found
- The lack of pair in CNGS ICARUS 2010/2011 data, sets the limit:

 $\delta = (v_v^2 - c^2)/c^2 < 2.5 \ 10^{-8} \ 90\% \ CL$

- comparable to the SuperK atm. limit δ < 1.4 10^{-8} , somewhat larger than the lower energy velocity constraint δ < 4 10^{-9} from SN1987A. Slide: 27

Neutrino time of flight with CNGS bunched beam

- 2011 low intensity bunched beam: 4 bunches/spill, 3 ns FWHM, 524 ns separation.
- ICARUS observed 7 beam-associated events, (~2.2 10¹⁶ pot collected): 2 CC v_{μ} events, 1 NC v event, 1 stopping + 3 crossing μ 's from v interaction in upstream rock.
- Arrival time determined using the prompt scintillation light signals (~ns resolution) and the accurate localization of each event w.r.t. PMT position.

Neutrino time of flight: 2011 result Phys. Lett. B 713 (2012) 17-22

- All fixed delays/propagation times calibrated (thanks also to LNGS and CERN)
- Baseline estimation relies on existing available geodesy data (OPERA/ LNGS)
- Variable corrections to GPS from OPERA/CERN recipe
- The average $\delta t = tof_c tof_v$ of the 7 events is + 0.3 ns with an r.m.s. of 10.5 ns; statistical error on the average = 4.9 ns; systematic error ~ 9 ns

Data taking/analysis with 2012 bunched CNGS

- New beam structure: 64 bunches, 3 ns width, 100 ns spacing.
- Beam related events observed in ICARUS (for ~1.8 10¹⁷ pot):

> 16 crossing μ 's (1 stopping) from the upstream rock;

- \succ 7 CC v_{μ} events;
- 2 NC v event.
- Analysis in progress:
 - PRELIMINARY results compatible with 2011 value: 0 to 3 ns depending on timing synchronization path;

 \blacktriangleright distribution r.m.s: ~ 3.7 ns (10.5 in 2011)

Systematics corrections and offset under final evaluation (PMT-DAQ propagation chain, topological corrections, timing delay).

Conclusions

- ICARUS T600 is the first large LAr TPC operated underground.
- The T600 is acquiring data without interruption since mid-2010 @ LNGS with CNGS beam, searching for $v_{\mu} \rightarrow v_{\tau}$ and $v_{\mu} \rightarrow v_{e}$ oscillations as well as for athmospheric v's and proton decay.
- High detection efficiency reached for CNGS events.
- Quality of data as expected.
- Data analysis in progress, results expected on:
 - > Search for $v_{\mu} \rightarrow v_{e}$ oscillations and LNSD effect
 - > Search for $v_{\mu} \rightarrow v_{\tau}$ oscillations
- Contributions to the "superluminal" neutrino problem (published).

