Direct High-Precision Measurement of the g-factor of a Single Antiproton stored in a Cryogenic Penning Trap

Stefan Ulmer

GUTENBERG MAINZ

RIKEN – Initiative Research Unit

K.Blaum, K. Franke, W. Quint, J. Walz, Y. Yamazaki

SPSC Meeting - 2012 / 06 / 26

Motivation

- We propose another test of matter/antimatter symmetry
- Comparison of the magnetic moment of the proton and the antiproton with high precision.

Test of CPT Symmetry

- Standard Model: Conserves
 CPT symmetry
- Cosmological Scale: Large matter/antimatter asymmetry

 (baryonic) universe is made out of matter

CPT Tests

	والنائي والمنابع والمنابع				
	K ⁰ / I	K ^⁰ mass			
	e ⁺ / e ⁻ magnetic moments				
p / p charge to mass ratio					
H / H 1s-2s					
		H / H HFS			
			p/	p magnetic	moments
F-22	1E-18	1E-14	1E-10	1E-6	0.01

10⁻⁶ achieved for proton / at least 10⁻⁹ possible GOAL: Millionfold Improvement

SME – CPT Test Framework $(i\gamma^{\mu}D_{\mu} - m - a_{\mu}\gamma^{\mu} - b_{\mu}\gamma^{5}\gamma^{\mu})\psi = 0$

Model to discuss effects of CPT violation on experimental reality. Idea of CPT violating background field.

Figure of Merit

$$r_{g} = \frac{E_{p} - E_{\bar{p}}}{E_{p}} = \frac{\delta \omega_{a}}{m}$$

In this framework: high sensitivity against CPT violation

The Magnetic Moment

Every spin carrying charged particle behaves as a tiny bar-magnet

The magnetic moment

$$\vec{\mu_p} = g_p \frac{e}{2m_p} \vec{S}$$

characterizes its strength

Do the magnets in the proton and the antiproton have the same strenght ?

Basic Experimental Principle

Spin carrying charged particle in a magnetic field

...reduces to measurement of a simple frequency ratio

The Penning Trap

Superposition of homogeneous magnetic field and electrostatic quadrupolar potential

B

FREQUENCIES

Axial: 700 kHz

Modified Cyclotron: 29 MHz

Magnetron: 8 kHz

$$v_c^2 = v_+^2 + v_-^2 + v_z^2$$

"Brown-Gabrielse Invariance Theorem" makes Penning traps strong

Frequency Measurements in a Penning Trap

Trapped charged particle induces image currents

FIRST DIRECT MEASUREMENT OF THE FREE CYCLOTRON FREQUENCY $(\Delta v_{2}/v_{2} = 5*10^{-9})$

S. Ulmer et al., Phys. Rev. Lett 107, 103002 (2011)

Continuous Stern-Gerlach Effect

Magnetic dipole in B-field

 $\Phi_M = - \left(\vec{\mu_p} \cdot \vec{B} \right)$

Magnetic bottle...

$$B_{z} = B_{0} + B_{2} \left(z^{2} - \frac{\rho^{2}}{2} \right)$$

...adds spin dependent quadratic potential to axial potential...

$$\Delta v_z \sim \frac{\mu_p B_2}{m_p v_z} := \alpha_p \frac{B_2}{v_z} \qquad \frac{\alpha_e}{\alpha_p} > 10^6$$

Magnetic bottle of 300000 T/m² used: 1.5 mm shift \rightarrow 1 T !

Under these extreme conditions: frequency shifts by 190 mHz out of 1 MHz \rightarrow 2*10⁻⁷

The Larmorfrequency

Sharp "cutoff" reflects zero temperature Larmor Frequency

Measure this several hundred times for different drive frequencies

$$ightarrow \mathbf{P}_{\mathsf{SF}}(v_{\mathsf{rf}})$$

Absolute frequency stability below 190 mHz needed

$$\Delta v_{z} = \frac{1}{4 \pi^{2} m_{p} v_{z}} \frac{B_{2}}{B_{0}} E_{\rho} \rightarrow \frac{\Delta v_{z}}{\Delta E_{\rho}} = 1 \frac{Hz}{\mu \, eV}$$

Spin Flip Detection using a statistical method

 \rightarrow Axial frequency jumps add to background frequency fluctuation

$$\Xi_{SF} = \sqrt{\Xi_{ref}^2 + P_{SF} \Delta V_{z,SF}^2}$$

First Proton Spin Flips Ever Observed

We did that for different drive frequencies

First Larmor Resonance Curve

→ would improve antiproton g-factor by factor of ten

Further Improvement

 $v_{L} = \frac{1}{2\pi} g_{p} \frac{e}{2m_{p}} (B_{0} + B_{2}z^{2})$

Temperature reduction by active electronic feedback reduces the line width

→ Larmor frequency measurement with $1.2*10^{-6}$ → With cyclotron frequency measurement $g/2 = 2.792\ 848\ (24)$ $g/2 = 2.792\ 846\ (7)$ C.C Rodegheri et al., NJP 14, 063011 (2012) J. di Sciacca, G. Gabrielse PRL 108 153001 (2012)

Double Penning Trap: Towards 10⁻⁹

- Apply the very same principle but flip spins in homogeneous field of the precision trap.

- Transport particle to analysis trap and look if the spin flipped....

- Higher field homogeneity will lead to better resolution

Required: discrete spin flip resolution

Technical / Administrative

Collaboration

Stefan Ulmer / Yasunori Yamazaki

Christian Smorra (PD)

Klaus Blaum

Kurt Franke (PhD)

Jochen Walz

GUTENBERG MAINZ

Wolfgang Quint

Budget and Positions

- Budget estimate for experiment is about 1.250.000,-
- Stefan Ulmer: RIKEN IRU 1.925.000,- (5 yrs)
- Yasunori Yamazaki/Stefan Ulmer: JSPR grant (5 yrs)
- Klaus Blaum: Max Planck Society and ERC grant (5yrs)

Experiment will be operated by one group leader / two post-docs / two PhD students

Preliminary Design Studies

Milestones and Timeline

- Construction of experiment ready to take beam in 2014.
- Trapping of a single antiproton and transport to magnetic bottle (beamtime 2014).
- Measurement of the magnetic moment of the antiproton at a level of 10⁻⁶ (beamtime 2014/2015).
- ...towards 10⁻⁹

Implementation in AEgIS

 Detailed discussion with AEgIS collaboration going on.

• Possible scenario:

Actively shielded superconducting magnet < 5G/m

AD Noise Reduction

Electronics developed for AD noise reduction

Summary

- First spin flips observed with a single proton → a major step towards new test of matter/antimatter symmetry.
- Proposed to perform this experiment at CERN/AD with a single antiproton.
- Secure funding for experiment
- Design studies and discussion with AEgIS going on.

Funding

!!! Thanks for your attention !!!