

SciFi FE chip issues

1

H. Chanal, E. Cogneras, P. Perret, A. Comerma, D. Gascón

LPC, Université Blaise-Pascal, Clermont-Ferrand ICC-UB, Universitat de Barcelona

Electronics Upgrade Meeting – CERN– July 26th 2012

I. Introduction:

Foreseen electronic from the detector to the PC farm

Figure: Foreseen readout scheme with 1 GBT/SiPM and 1 GBT ECS / 4 SiPM

The central tracker option

- 2.5 meters scintillating fibres;
- ▶ 250µ*m* fibres;
- ► 4 × 3 layers.

See Herve's talk at last meeting (13th June): https://indico.cern.ch/conferenceDisplay.py?confld=176155

I. Introduction:

The low-Power ASIC for the sCIntillating FIbres traCker (PACIFIC) is a collaboration between the Universitat de Barcelona and the Laboratoire de Physique Corpusculaire de Clermont-Ferrand. Synergies with the ASIC for the TT and VELO strip option are investigated.

- Low power (8mW/channel);
- With built-in test features.

See Herve's talk at last meeting (13th June): https://indico.cern.ch/conferenceDisplay.py?confld=176155

I. Introduction

• Assumptions:

- Fiber decay time is about 3 ns (2.8 ns for SCSF-78MJ)
- SiPM capacitance is low (< 20 pF)
- Low input impedance electronics (< 20 Ohm)
- Factors spoiling signal shape and signal reproducibility:
 - Dependence of the pulse shape on track location
 - Light propagation (reflections)
 - Radiation damage
 - Low photostatistics

• Requirements (assuming ADC solution):

- Double pulse resolution: 25 ns (TBC) → fast peaking time
- ADC synchronization
 - Time arrival dispersion according to the track location *about 10 ns (TBC)*
 - Fast shaping
 - Difficult synchronization
 - Peak detector ?
 - Gated integrator ?
 - Other ideas ? ALTRO technique?

II. Measurements

- Signal shape for few fired cells (only SiPM response, no scintillator):
 - Relatively fast recovery: low SiPM capacitance and low amplifier's Zi
 - Still significant spill over after 25 ns !
 - On top of that: time arrival dispersion and signal shape fluctuation...

Guido's measurement with 50um but 1mm² SiPM Signal terminated at the input of preamp with 50 Ohm

Albert's measurement with Hamamatsu SiPM for SciFi Readout with current preamplifier (Zin=20 Ohm) developped at Barcelona

Measurements for MIP signal at different fibre positions are needed

III. Proposed signal processing

- Clermont/Barcelona meeting on 28th June
- Flat top shaper (25 ns > Flat top > 10 ns) to:
 - Minimize the effect dispersion in time arrival
 - Minimize the effect of signal shape variations
 - Straightforward ADC synchronization
- Main possible drawbacks:
 - Short time left to reset:
 - Maybe dual channel would be needed: more complexity and power consumption
 - Usually differential processing is needed:
 - Complexity and power consumption

IV. Fallback options

SemiGaussian shaper + peak detector

- Well suited for silicon trackers, not really ideal choice here
- Signal shape fluctuation might be an issue
- Still possible if double pulse resolution can be relaxed
- Low pass filtering + digital signal processing (e.g. ALTRO chip)
 - Low pass filtering and 40 MS/s sampling
 - Enough samples to peform digital signal processing
 - Deconvolution
 - Tile supression
 - etc
 - Relatively simple analog electronics and very robust signal processing
 - Drawbacks:
 - Which would be the required resolution (dynamic range) for signal processing ?
 - Quite complex digital processing:
 - Area and power consumption
 - Effect of high occupancy ?