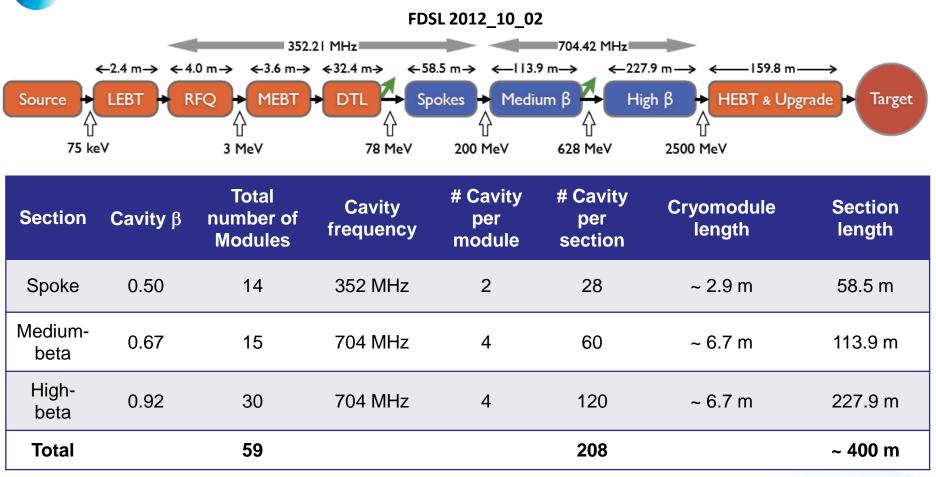


The Superconducting cavities of the European Spallation Source

Sébastien Bousson (CNRS/IN2P3/IPN Orsay) & Pierre Bosland (CEA/IRFU)


On behalf of the CEA/IRFU and CNRS/IPNO teams

SUPERCONDUCTING TECHNOLOGIES Superconducting Technologies Workshop CERN – 4 & 5 December 2012

ESS Linac Layout

S. Bousson - Superconducting Technologies Workshop - CERN – 4 & 5 Dec. 2012

EUROPEAN SPALLATION SOURCE

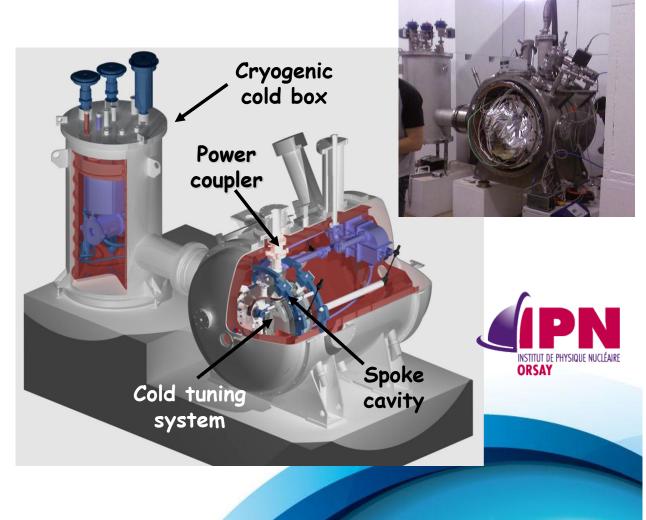
Spoke Cavities

Spoke cavities specifications

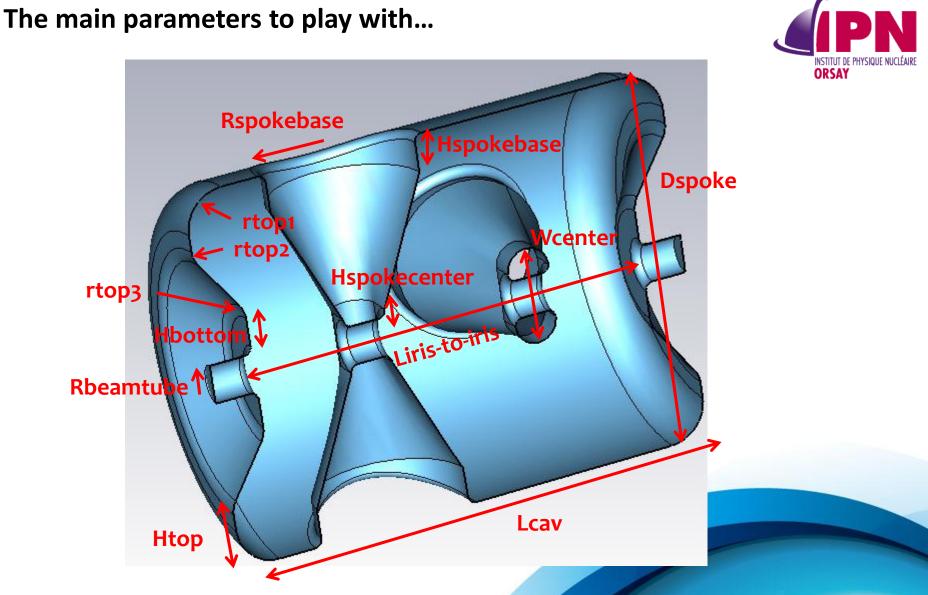
DOUBLE-SPOKE CAVITY SPE		
Beam mode	Pulsed	ORSAY
Dealli moue	(4% duty cycle)	
Frequency [MHz]	352.2	
Beta_optimal	0.50	
Temperature (K)	2	
Delt [mT]	70 (100 011)	
Bpk [mT]	70 (max)	
Epk [MV/m]	35 (max)	
Gradient Eacc [MV/m]	8	
Lacc (=beta optimal x nb of gaps x λ /2) [m]	0.639	
Bpk/Eacc [mT/MV/m]	< 8.75	
Epk/Eacc	< 4.38	Specs from
		beam
Beam tube diameter [mm]	50 (min)	dynamics
P max [kW]	300 (max)	

EUROPEAN SPALLATION SOURCE

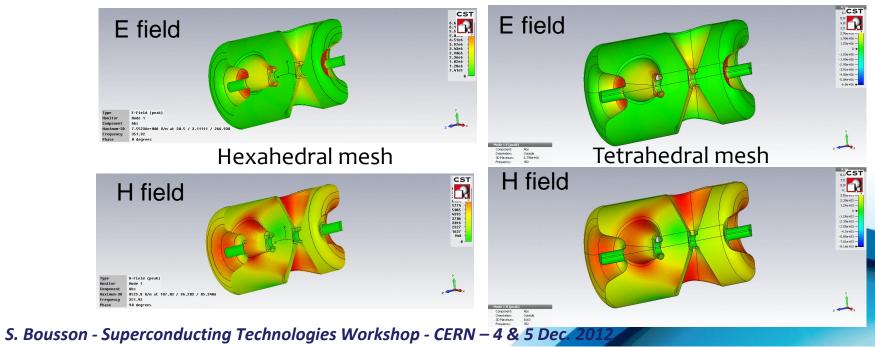
Design based on Eurisol experience


Spoke resonators

Two prototypes @ 352 MHz (β 0.15 and β 0.35) fabricated and tested.

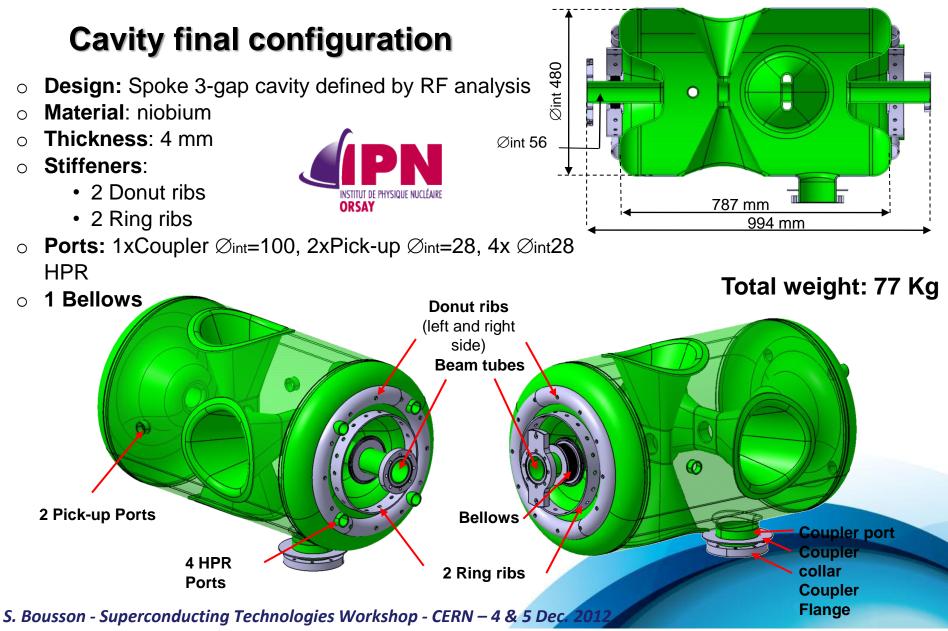

Horizontal cryostat

Adapted to spoke cavities for 4K and 2K tests

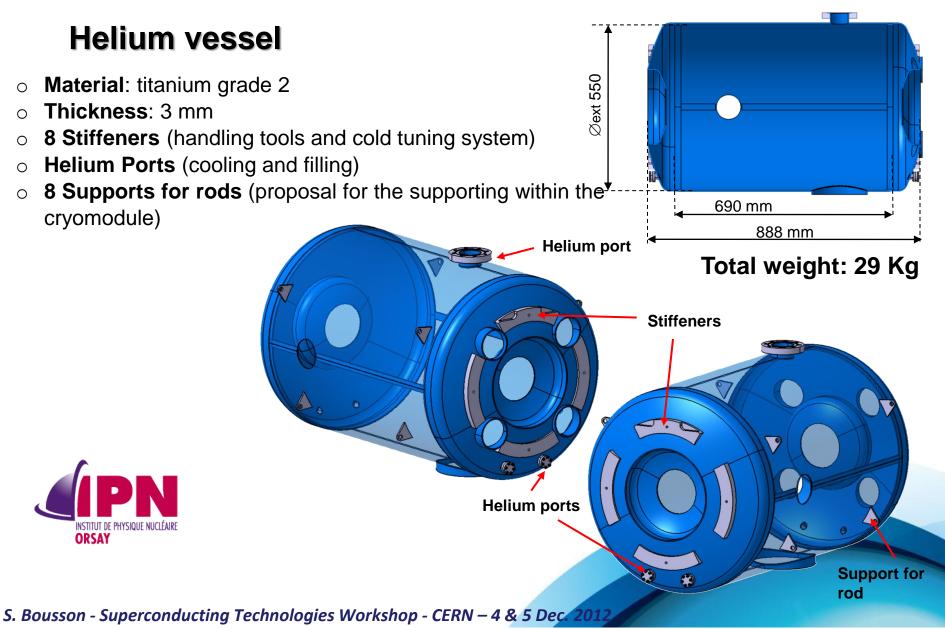

Spoke cavities geometry

Spoke cavities RF Results

Mesh type	Hexahedral (1.2 millions)	Tetrahedral (650000)		
Beta optimal	0.50	0.50	\checkmark	
Epk/Ea	4.96	4.47	×	
Bpk/Ea [mT/MV/m]	7.03	6.74	V	
G [Ohm]	133	133	\checkmark	
r/Q [Ohm]	428	427	\checkmark	

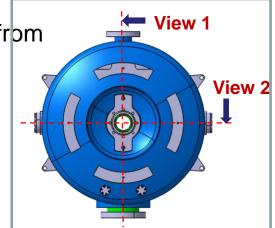


EUROPEAN SPALLATION SOURCE



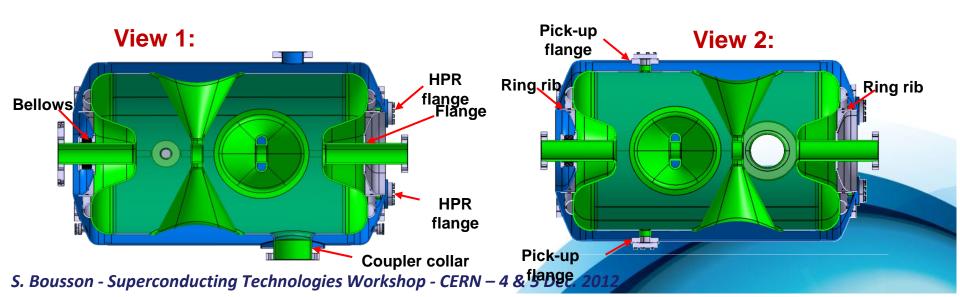
Spoke cavities final geometry

Spoke cavities helium tank


Cavity + He vessel Assembly

As the thermal expansions of the niobium and titanium from 300K to 2K are similar, rigid connections are possible. \Rightarrow Improvement of the stiffness of the cavity

Rigid connections :


- o Ring ribs
- o HPR ports
- Pick-up ports
- Coupler port

Total weight: 109 Kg

 \circ $\,$ Flange between a beam tube and the helium vessel

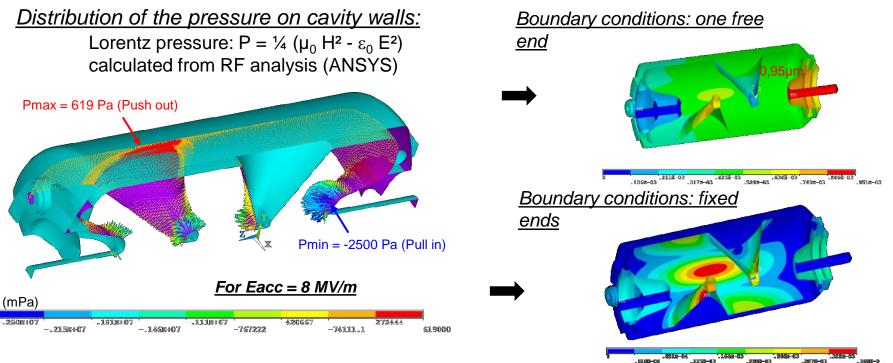
RF sensitivity due to helium pressure fluctuation

Static results of the simplified model (1/4) are verified on the entire model.

One free end: Fixed ends: 0.14217 Max 0.47543 Max 1,12638 0,356 0,11058 0,3115 0,094782 0,267 Entire model 0,078985 0,2225 0,063188 0,178 (Mechanical Ansys) 0,047391 0,1335 0,031594 0.089 0,0445 0 Min 0,015797 O Min (mm) 0.14mn0.48mm 1/4 model (Mechanical APDL -Ansys) (m) 2375-03 **Mechanical characteristics**

Cavity with a part of the end cups of the helium vessel

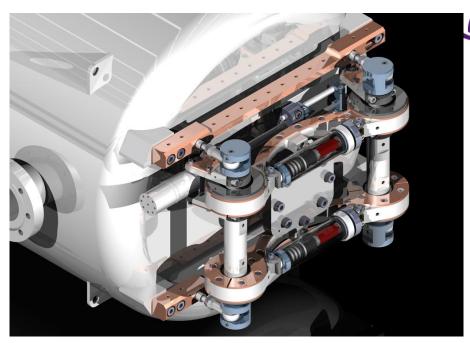
Sensitivity to He pressure K_P [Hz/mbar] (free ends)120.Sensitivity to He pressure K_P [Hz/mbar] (fixed ends)40.


Spoke cavities mechanical properties

RF frequency change due to Lorentz detuning

EUROPEAN SPALLATION SOURCE

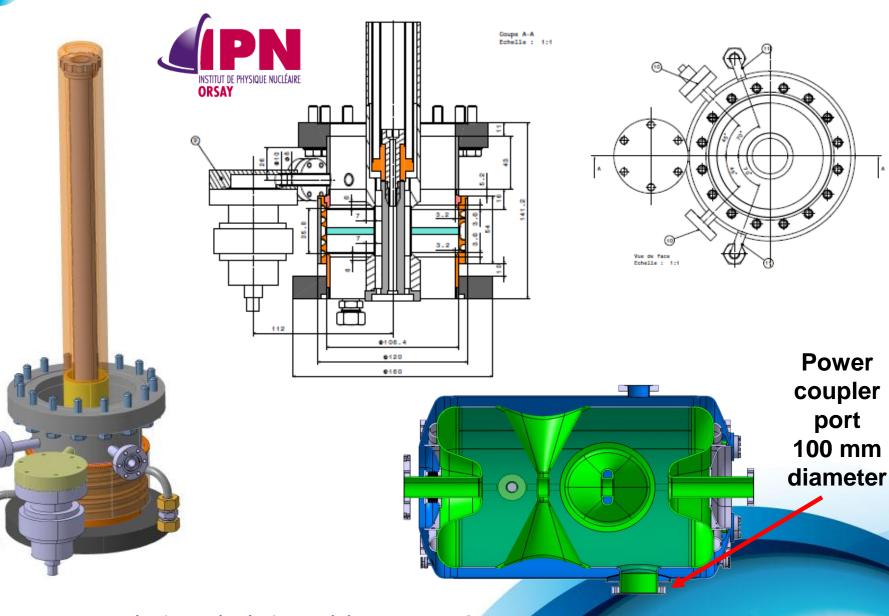
Configuration type cryomodule



Lorentz Factor	:: K _L = ∆f / E²acc		
Cavity with helium vessel		For 8MV/m	Remark.
K_{L} [Hz/(MV/m) ²] (one free end)	K _L =-5.3	∆f = 340 Hz	Bandwith
K_{L} [Hz/(MV/m) ²] (fixed ends)	K _L =-2.8	∆f = 180 Hz	∆f = 1355
			- 7

Spoke cold tuning system

CTS data		
Mechanical resolution (1/20 bandwidth)	68	Hz
Expected Stiffness	200	kN/mm
Cavity sensitivity (CTS stiffness taken in account)	300	kHz/mm
LHe pressure coefficient (CTS stiffness taken in account)	47	Hz/mbar
Lorentz forces coefficient (CTS stiffness taken in account)	3.21	Hz/(MV/m)²
Lorentz forces detuning	205	Hz
CTS stroke	1.25	mm
Max tuning range	375	kHz
Max strength	25	kN


INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY

0

0

Spoke power coupler

EUROPEAN SPALLATION SOURCE

ESS Spoke prototyping strategy

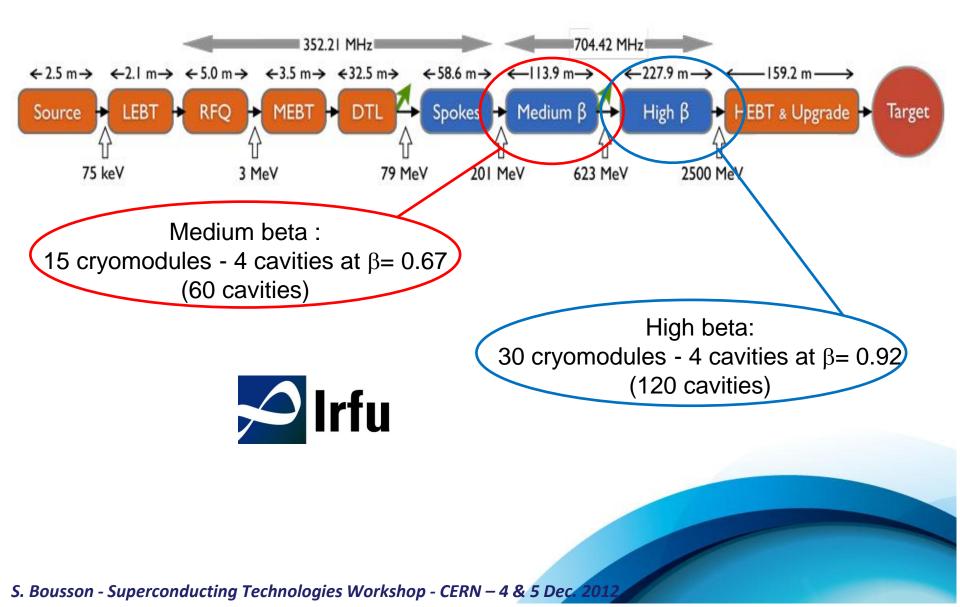
ESS SPOKE PROTOTYPE CRYOMODULE		20	12			20	13			20	14			202	15	
ESS SPORE PROTOTIPE CRIDINODULE	T1	T2	T3	T4	T1	T2	Т3	T4	T1	T2	Т3	T4	T1	T2	Т3	T4
											_					
PRODUCTION																
Spoke Cavity Fabrication													+ -	Tal		`
Nb production for 3 cavities												raero	ea to	o Tok	yo i	Jen
IPNO 3 cavities production										_	• •	r	•	•		
ESS-Bilbao 2 cavities production										>		-		ler re		
											3 w	eeks	s ago) (2+)	1 un	iits)
Ancillaries Fabrication										L						
Power couplers production									<u> </u>		f			1		
Cold tuning systems production													-	lann		
										Feb	ruar	y 20	13 (2	2+2 ι	unit	s)
Cryomodule parts production																
PARTS TESTING																
Vertical Test of the 3 IPNO Cavities																
Vertical Test of the 2 ESS-Bilbao Cavities																
Power coupler conditionning	1															
CTS tests																
CRYOMODULE ASSEMBLY																
										-						-
CRYOMODULE TESTING																
Low power test at IPNO												-				
	1			-												

ESS Spoke series construction planning

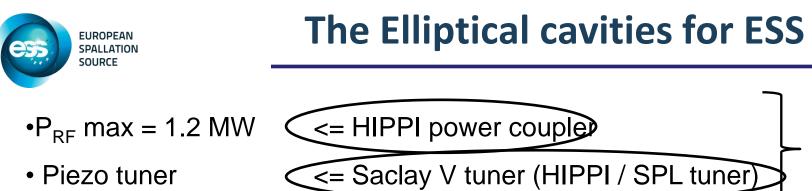
Task Name	Start date	End date
Procurement	1-Nov-15	30-Apr-18
Niobium Procurement	1-Nov-15	30-Dec-16
Spoke cavities procurement	1-Apr-16	30-Apr-18
Power couplers procurement	1-Sep-16	30-Apr-18
Cold tuning systems procurement	1-Sep-16	30-Apr-18
Cryomodules and valves boxes parts procurement	1-Jul-16	28-Feb-18
Cavity packages preparation and testing	1-Mar-17	31-Jul-18
Spoke cavity preparation and VT testing	1-Mar-17	31-Jul-18
Power couplers preparation and conditioning at high power	1-Mar-17	31-Jul-18
Cold tuning systems preparation and test at room T	1-Mar-17	31-Jul-18
Spoke cryomodules assembly	1-May-17	30-Oct-18
Spoke cryomodules tests at high power	1-Aug-17	31-Dec-18

Associated milestones

First cryomodule ready @ ESS Last cryomodule ready @ ESS 01/10/2017 31/12/2018


Elliptical Cavities

The Elliptical cavities for ESS

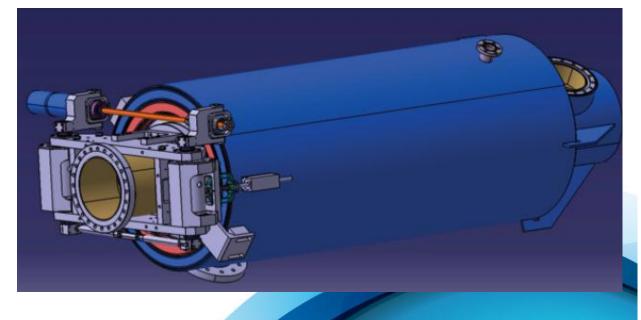

- 5-cell cavities, bulk niobium (Thickness: 3,9mm)
- frequency = 704.42 MHz

(A)

• performance specifications (T = 2 K):

Beta	Eacc VT (MV/m)	Eacc Linac (MV/m)	Qo @ nominal Eacc	
0.67	17	15	5e9	
0.92	20	18	6e9	

- Titanium helium vessel (Thickness: 5 mm)
- Flanges material: NbTi
- Pulsed mode: 14 Hz 2.86 ms



Adapted

to ESS

cavities

Elliptical cavities main parameters

Parameter	\mathbf{Unit}	Value
RF frequency	MHz	704.42
Temperature	Κ	2
MEDIUM-BETA		
Output energy	${ m MeV}$	654
Number of cells per cavity		5
Geometric beta		0.67
Cavity length	m	1.145
Expected gradient, horizontal	MV/m	15
Expected gradient, vertical test	MV/m	17
Cavity Q_0		$6 imes 10^9$
Fundamental mode Q_{ext}		$6.8 imes 10^5$
Fundamental mode R/Q	W	340
Average heat load at nominal gradient	W	5.9
Power coupler power forward power	MW	1.2
Maximum Power transmitted to beam	MW	0.6

Elliptical cavities main parameters

Parameter	Unit	Value
HIGH-BETA		
Output energy	${ m MeV}$	2500
Number of cells per cavity		5
Geometric	beta	0.9
Cavity length	m	1.356
Nominal gradient in the linac	MV/m	18
Expected gradient, vertical test	MV/m	20
Geometric beta prototype		0.86
Optimum beta prototype		0.92
Cavity length prototype	m	1.315
Fundamental mode R/Q prototype	W	477
Fundamental mode Q_{ext} prototype		$7.1 imes 10^5$
Cavity Q_0 at nominal gradient, prototype		$6.0 imes10^9$
Average heat load at nominal gradient, prototype	W	4.5
Power coupler power rating	MW	2
Power coupler forward power	MW	1.2
Maximum power transmitted to beam	MW	0.9
Cell to cell coupling	%	1.8
Epk/Eacc		2.2
Bpk/Eacc	mT/(MV/m)	4.3
Separation between π and $4\pi/5$ modes	MHz	1.2
Iris diameter	mm	120

The prototype cryomodules ECCTD Elliptical Cavity Cryomodule Technical Demonstrator

Beta	0,67	0.86	
Eacc VT (MV/m)	18	20	
Eacc Linac (MV/m)	15	18	
Qo @ nominal Eacc	6 ^e 9	6e9	

2 prototype cavities already ordered – delivery scheduled in june 2013 Cryomodule studies in progress

Call for tender of the components: 2013

Cavities ~ July 2013 and Power Couplers ~march 2013

Assembling in the new clean room at Saclay

RF power tests at Saclay: 2015

	start	end
Medium beta cryomodules	28/10/2015	23/08/2016
Medium beta cavities	19/05/2015	12/07/2016
High beta cryomodules	14/01/2016	06/08/2017
High beta cavities	19/01/2015	11/08/2016

and a little advertisement

Superconducting RF Conference - SRF 2013

MMMSRF2013

16th International conference on RF Superconductivity

September 23-27, 2013 Cité Internationale Universitaire, PARIS

Tutorials : September 19-21, 2013 **GANIL, CAEN (France)**

INTERNATIONAL PROGRAM COMMITTEE

Claire ANTOINE, CEA-Saclay Kexin LIU, Peking University Sébastien BOUSSON, CNRS/IN2P3/IPNO Wolf-Dietrich MOELLER, Desy ROBERT KEPHART, FNAL Jens KNOBLOCH, HZB, IPC Chair Matthias LIEPE, Cornell University Michael KELLY, ANL

Eiji KAKO, KEK Vincenzo PALMIERI, INFN-LNL Charles REECE, JLAB

LOCAL ORGANIZING COMMITTEE

SOLEIL

Sébastien BOUSSON, CNRS/IN2P3/IPNO, Co-Chair François KIRCHER, CEA-Saclay Catherine DESAILLY-GUYARD, CEA-Saclay Robin FERDINAND, GANIL Patrick MARCHAND,
 Valérie FROIS, CNRS/IN2P3/IPNO
 Patrick MARCHAND, SOLEIL

 Yolanda GOMEZ MARTINEZ, LPSC UJF-CNRS/IN2P3/IPNO
 Guillaume MARTINET, CNRS/IN2P3/IPNO

 Walid KABL, CNRS/IN2P3/IAL
 Ketel TURZO, GANIL

Claire ANTOINE, CEA-Saclay, Chair Amélie KALININE, CNRS/IN2P3/IPNO

Photography © Jeremy BAMAS

© Design - Com IPN Orsay/CNRS

Superconducting RF Conference - SRF 2013

