

# A multitude of Magnets for HL-LHC, and beyond

or: "Be fruitful and multiply, and fill the Tunnel, and subdue the Bosons" (Genesis, 1:28)

Luca.Bottura@cern.ch for TE-MSC

Superconducting Technologies for Next Generation of Accelerators



CERN - GLOBE of Science and Innovation
4-5 December 2012



#### **Outline**

- Magnet overview for HL-LHC
- Ideas for an implementation
- Other needs for LHC
- Beyond LHC



#### Outline

- Magnet overview for HL-LHC
- Ideas for an implementation
- Other needs for LHC
- Beyond LHC



# Magnet geography for HL-LHC







#### The LHC most affected zone (MAZ)



300 m x 4 +... : about 1.5 km long accelerator, pushed performance in a high radiation environment: 10...100 MGy



#### The MAZ in real life

D1, towards DFBX





#### A catalog of magnet units

| Magnet type        | Name              | Quantity | Peak<br>Field (T) | Coil bore<br>(mm) | Length<br>(m) | Energy<br>(MJ) | Deadline<br>(year) |
|--------------------|-------------------|----------|-------------------|-------------------|---------------|----------------|--------------------|
| Twin Dipole        | DS-MB             | 1020     | 11                | 60                | 11<br>(2×5.5) | 11             | 2017/202           |
| Quadrupole         | Low-β<br>Q1/Q2/Q3 | 16       | 1213              | 150               | 8-10          | 12             | 2020               |
| Dipole             | D1                | 4        | 5                 | 160               | 8             | 6              | 2020               |
| Twin Dipole        | D2                | 4        | 35                | 100 (?)           | 5-10          | ?              | 2019               |
| Twin<br>Quadrupole | Q4                | 4        | 8                 | 8590              | 4.5           | 1.2            | 2019               |
| Twin<br>Quadrupole | Q5                | 4        | 8?                | 70                | 4.5           | 0.6            | 2019               |

#### **NOTE**

Most of the above units must be intended as cryostated cold masses, containing multiple single magnets (e.g. Q2), suitable (TBD) corrector packages (orbit, trims, field errors) and the transitions/interconnections to the next magnet/feedbox



## IR-quadrupoles: MQXC

| Material    |       | NbTi  |
|-------------|-------|-------|
| Aperture    | (mm)  | 120   |
| Gradient    | (T/m) | 118   |
| Current     | (A)   | 12850 |
| Temperature | (K)   | 1.9   |
| Peak field  | (T)   | 8.1   |



- Self-locking collars, porous insulation
- Result of EU-financed SLHC-PP development, R&D approaching completion
- Lengths and quantities:
  - Q1/Q3: 9.5 m magnets (8 magnets + 2 spares)
  - Q2: 2 x 8 m magnets (8 magnets + 2 spares)
  - A total of some 20 magnets to be produced



# Why do we go for Nb<sub>3</sub>Sn?





1 mm, 192 tubes PIT from **Bruker EAS** 



Year

0.7 mm, 108/127 stack RRP from **Oxford OST** 



# DS: collimators & 11 T dipoles



LS2 2017-18: IR-2 (demonstration)

LS3 2020: IR7/8, IR1/5 as part of HL-LHC (TBC)

# CERN

#### DS-MB

| Material    |      | Nb₃Sn |
|-------------|------|-------|
| Aperture    | (mm) | 60    |
| Field       | (T)  | 10.8  |
| Current     | (A)  | 11850 |
| Temperature | (K)  | 1.9   |
| Peak field  | (T)  | 11.3  |



- Twin aperture, collared coils
- R&D in collaboration with Fermi National Laboratory (Chicago, IL)
- Lengths and quantities:
  - LS2: 4 x 2 x 5.5 m magnets (8 magnets + 2 spares)
  - LS3: 16 x 2 x 5.5 m magnets (32 magnets + 3 spares)
  - A total of some 45 magnets to be produced



# 11 T (MBHSP01) test results at FNAL





Quench performance short of the 11 T objective. Some deviations observed between expected and measured field quality

There is work to do



See the talk of M. Karppinen



# IR-quadrupoles: MQXF

| Material    |       | Nb <sub>3</sub> Sn |
|-------------|-------|--------------------|
| Aperture    | (mm)  | 150                |
| Gradient    | (T/m) | 140                |
| Current     | (A)   | 17300              |
| Temperature | (K)   | 1.9                |
| Peak field  | (T)   | 12.2               |



- Bladder-and-key structure
- Common R&D with US to develop model (2014) and prototype (2015)
- Lengths and quantities:
  - $-Q1/Q3: 2 \times 4 \text{ m magnets (16 magnets + 2 spares)}$
  - Q2: 2 x 6.8 m magnets (8 magnets + 2 spares)
  - A total of some 30 magnets to be produced



#### HQ cold test in SM18





#### D1 separation dipole

| Material    |      | NbTi  |
|-------------|------|-------|
| Aperture    | (mm) | 160   |
| Field       | (T)  | 5.2   |
| Current     | (A)  | 11000 |
| Temperature | (K)  | 1.9   |
| Peak field  | (T)  | 6.1   |



- Single layer coil, large iron saturation (stray field), large forces on the coil/structure
- R&D in collaboration with Japan (KEK)
- Lengths and quantities:
  - D1: 7.7 m magnets (4 magnets + 2 spares)
  - A total of 6 magnets to be produced



#### D2 recombination dipole

| Material    |      | NbTi  |
|-------------|------|-------|
| Aperture    | (mm) | 90100 |
| Field       | (T)  | o(4)  |
| Current     | (A)  |       |
| Temperature | (K)  | 1.9   |
| Peak field  | (T)  |       |



- Single layer coil, large iron saturation (stray field), large forces on the coil/structure
- R&D in collaboration with BNL (US)
- Lengths and quantities:
  - D2: o(10) m magnets (4 magnets + 2 spares)
  - A total of 6 magnets to be produced



# MS-quadrupoles: Q4

| Material    |       | NbTi  |
|-------------|-------|-------|
| Aperture    | (mm)  | 90    |
| Gradient    | (T/m) | 120   |
| Current     | (A)   | 16188 |
| Temperature | (K)   | 1.9   |
| Peak field  | (T)   | 5.9   |



- Single layer coil using LHC-type2 cable (spare)
- R&D in collaboration with CEA-Saclay
- Lengths and quantities:
  - Q4: 4.5 m magnets (4 magnets + spares)
  - A total of 6 magnets to be produced



#### Correctors

- At present, the corrector layout for HL-LHC is not finalized, however ...
- ... we have a fairly good idea from the existing LHC, and the Phase-I (SHLC-PP) study:

|                         | Current    | Integrated strength (field) | Coil Aperture |
|-------------------------|------------|-----------------------------|---------------|
| MCXB $(B_1/A_1)$        | +/- 2.4 kA | 1.5 Tm                      | 140 mm        |
| MQXS (A <sub>2</sub> )  | +/- 2.4 kA | 0.55 Tm@40 mm               | 140 mm        |
|                         |            |                             |               |
| $MCXT(B_6)$             | +/- 120A   | 0.075 Tm @ 40 mm            | 140 mm        |
| $MCXO(B_4)$             | +/- 120A   | 0.035 Tm @ 40 mm            | 140 mm        |
| MCXSO (A <sub>4</sub> ) | +/- 120A   | 0.035 Tm @ 40 mm            | 140 mm        |
| MCXSS (A <sub>3</sub> ) | +/- 120A   | 0.055 Tm @ 40 mm            | 140 mm        |
| MCXS (B <sub>3</sub> )  | +/- 120A   | 0.055 Tm @ 40 mm            | 140 mm        |



#### A zoo of correctors





MCXB (single layer): design and winding trials

MCXBH+V (nested): concept





6 units

MCBX with nested high-order correctors

MQSX (single layer): concept

MCXS, MCXSS MCXO, MCXSO: prototype (CIEMAT)

**MCXT** 



#### Outline

- Magnet overview for HL-LHC
- Ideas for an implementation
- Other needs for LHC
- Beyond LHC



#### An industrial action for HL-LHC

- CERN must have all technologies in hand to insure the long-term exploitation of the LHC (includes tooling)...
- However, CERN does not need to build all components that enter in the LHC!
- At present, US is proposing the largest contribution to the HL-LHC construction (o(250 MCHF))...
- However, a large share is not covered!
- CERN is launching an industrial action to attract EU-industries on-site, to develop Nb<sub>3</sub>Sn magnet technology for HL-LHC, and prepare for the magnet construction in the period 2016-2020
- We are convinced that this R&D can have far-reaching consequences on SC magnet technology



#### **Outline**

- Magnet overview for HL-LHC
- Ideas for an implementation
- Other needs for LHC
- Beyond LHC



#### SC links By courtesy of A.Ballarino, CERN

#### HTS tapes

#### Round wires







 $\Phi$ = 75 mm Itot =190 kA @ 25 K (2 imes 95 kA)

 $\Phi$ = 60 mm Itot =100 kA @ 25 K (2 imes 50 kA)



Repositioning the converters in the cavern

See also the talk of A. Ballarino

# Removal of the converters from the cavern





#### Removal/installation

- The LHC-IR region is crowded, limited access, and will be activated by LS3
- Removal of magnets would result in relatively high dose, unless performed using (closely controlled) remote handling tools
- New magnets will have to survive (10 times) harsher conditions and remote handling should be planned from the
  - Design and manufacturing features
  - Associated RH tools and machines





start



#### Other magnet needs



- 15 dipoles and 4 quadrupoles will be exchanged during LS1
- Some 25 magnets to be re-built, a few (10?) to be prepared for installation during LS2
- Irradiation dose of magnets next to collimators (MBW, MQW) is of concern – shielding!
- Spare coils, new spare magnets (4+4) to be built for installation during LS2

# LHC is a living machine



#### Outline

- Magnet overview for HL-LHC
- Ideas for an implementation
- Other needs for LHC
- Beyond LHC



## Is there a physics beyond the LHC?





#### Also on the www: HE-LHC Scope

http://indico.cern.ch/conferenceDisplay.py?confId=97971

- "[...] a 33 TeV centre-of-mass energy proton—proton accelerator in the LHC tunnel [...] and the need for new injectors, possibly with 1 TeV energy". (The High-Energy Large Hadron Collider, CERN—2011—003, also EuCARD—Conf—2011—001)
- Technicolor, Supersymmetry, Extra dimensions: "[...] the need to explore the high energy frontier will remain. We will always be able to make that case, today and tomorrow". (Elements of a Physics Case for a High-Energy LHC, J.D. Wells, pp. 1-5, CERN-2011-003, 2011)
- "A project on the scale and innovation level of the HE-LHC has a long preparation lead time". (CERN Accelerator Strategy, S. Myers, pp. 6, CERN-2011-003, 2011)









#### A really high field dipole

- Engineering extrapolation is difficult, but does not seem impossible
- May require a genetic mutation in the art of SC magnet design an construction







By courtesy of E. Todesco



## Program FP7: EuCARD2 - May 2013

Develop 10 kA class HTS accelerator cable using Bi-2212 and YBCO. Test stability, magnetization, and strain tolerance



Build a 5 T, 40 mm bore HTS

accelerator quality
dipole as a technology
demonstration







# Low-field magnets – a new frontier?

| Injection field   | (T)   | 0.14    |
|-------------------|-------|---------|
| Injection current | (A)   | 500     |
| Flat-top field    | (T)   | 1.8     |
| Flat-top current  | (A)   | 5800    |
| Ramp time         | (s)   | 1.1     |
| Field ramp-rate   | (T/s) | 1.5     |
| Good field region | (mm²) | 42 x 30 |
| AC loss           | (W/m) | < 2     |





New concepts for improved energyefficiency have been tested, with typical parameters range of interest for the CERN injector complex



## Summary

- The physics case for an HL-LHC is strong: it would be utterly unreasonable to scrap the upgrade of a machine that is producing physics at the frontier of our knowledge
- The magnet challenges are many, they are tough, they are motivating, and they open a new window onto large scale applications of superconductivity
- And there is more, beyond magnets for HL-LHC
- This is why we want to make sure you are on board in this new adventure!

