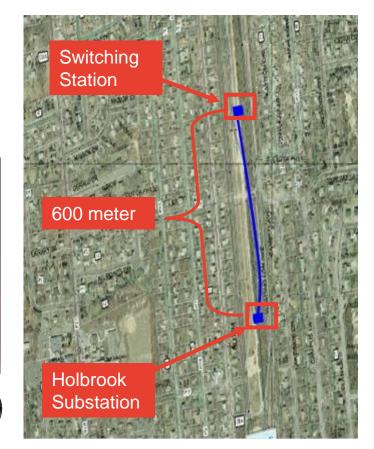


Superconducting cables and links for grids and industrial applications.

C.E.BRUZEK, Nexans France

Tiara meeting, CERN Genève 05 December 2012


AC transmission cable: LIPA1 project Overview

World's first installation of a transmission voltage HTS cable

- Long Island Power Authority Holbrook Substation
- 600 m long cold dielectric cable system
 138kV/2400A ~ 574MVA
- 1G HTS tapes
- Design fault current: 51 kA
 @ 12 line cycles (200ms)
- 600 meter cable pulled in underground HDPE conduit

Mexans

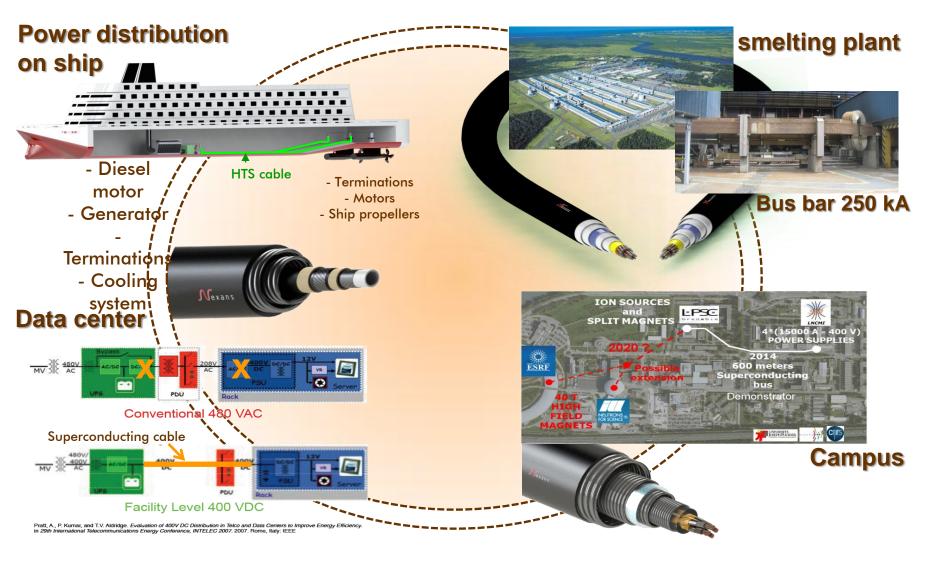
AC transmission cable: LIPA1 project Installation

Cable successfully energized on April 22, 2008

Infrastructures

- Long distance HVDC grids
- HVDC Inter-connections of different regional grids

Energy production


 LVDC et MVDC local grids for renewable energy farms (solar, wind, hydro, ...)

On board distributions and high current level distribution

 Efficiency increase of local LVDC distribution (Ships, Data centers, campus, industries,...)

Applications

NEXANS PROPRIETARY

Superconducting tapes and wires for current transportation Silver matrix • 1st generation: multifilamentary Bi 2223 tapes **Bi-2223 HTs Filaments** 4 x 0,25 mm • 2nd generation : YBCO Coated conductor tapes and wires **Metallic Substrat YBCO** Protective layer **Buffer Jayers** superconducting **YBCO** layers YBCO r Y₂O₃ **buffer layers Metallic** Core **Substrat** MgB₂ wires MgB₂ SC filaments CuNi alloy matrix

Others specific components

Cryogenic envelope: *Thermal insulation*

Accessories: Connections

Terminations

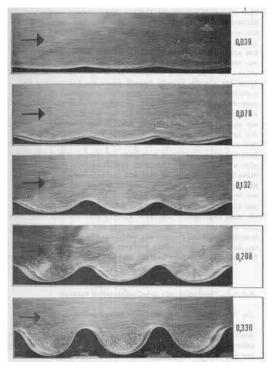
Joints

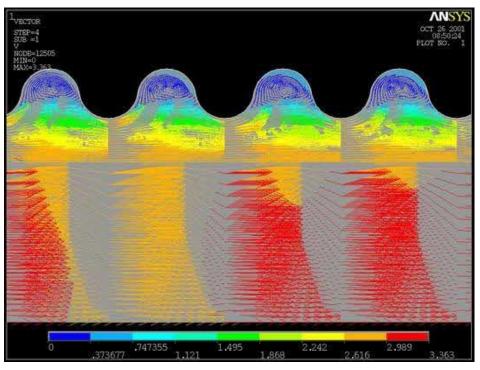
Cryo-cooler: *Generate cold power*

Flexible, coaxial cryogenic envelopes

2-Tube coaxial Transfer Line

- 1. Corrugated inner pipe
- 2. Spacer
- 3. Super insulation
- 4. Vacuum space
- 5. Corrugated outer pipe
- 6. Jacket


4-Tube coaxial Transfer Line:


- flexible
- vacuum insulated
- extremely low heat inleak
- 2 flow channels

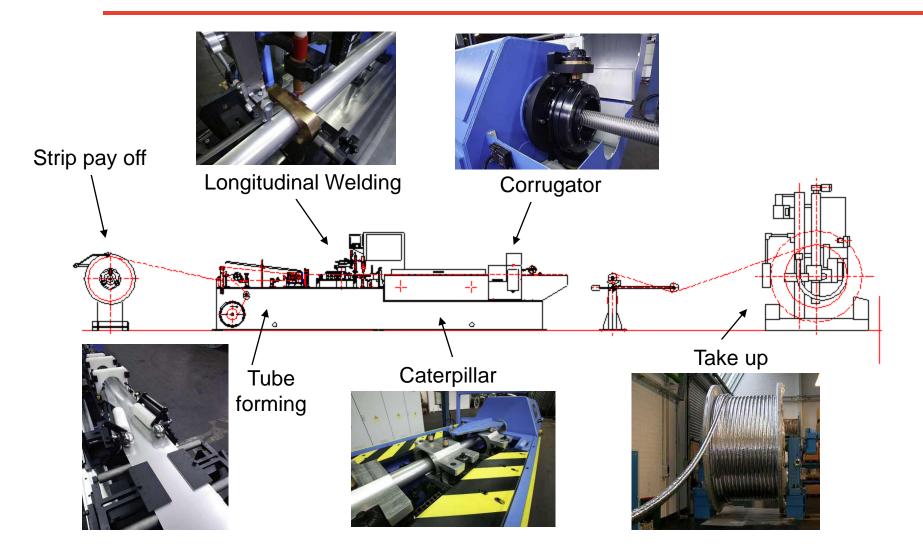
Various corrugated tubes with different diameters and shapes have been examinated.

- optimum design for maximum flow, flexibility and stability
 - certified max. operating pressure: 20bar

Mexans

Manufacturing

Unique manufacturing Process:


- longitudinal welding and corrugation of stainless steel in one step
- Automated winding of several layers of superinsulation and spacer

Automated Tube production

- > no length limitation
- constant quality standard
- cost leading

Layout of Tube Production Line

Superinsulation

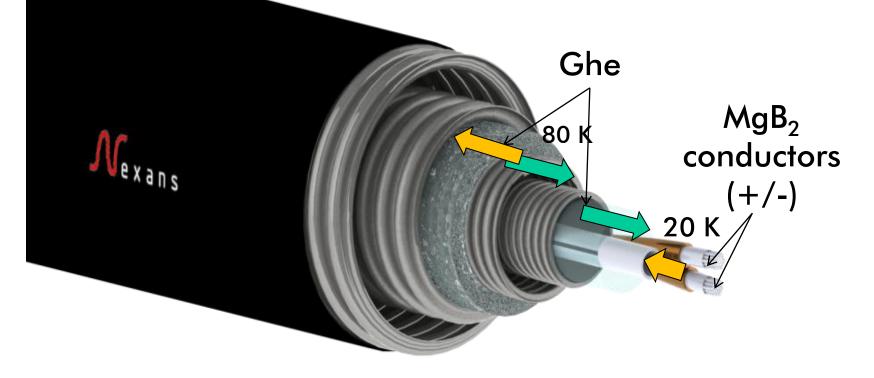
Ultra Sonic Cleaning


Automated winding of Superinsulation and Spacer

Cryoflex Manufacturing

Manufacturing of the outer Tube

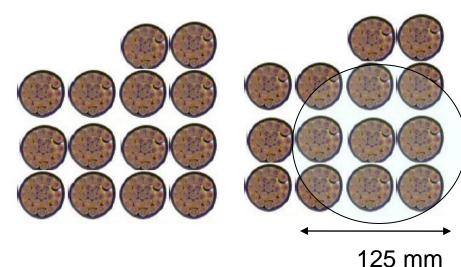
Installation



Cryoflex performances

	2 wall envelopes		4 wall envelopes		
Model	Small envelop e	Medium envelop e	Large envelope	Small envelope	Medium Envelope
Int /Ext Diameters (mm)	21/44	60/115	120/150	21/44/60/11 5	75/125/147/2 20
Bending radius (m) <i>(Several bends)</i>	0,7	1,8	2	2	3
Losses at Top /Shield* (W/m)	0,6	1,2	1,5	0,06 / 1,2*	0,1 / 1,5*
Weight kg / m	0,8	4	6	5	10

- Distribution of high power possible at low voltage (<1000V) and in DC
- 2. Significant reduction of the losses for distributed power P > 5MW
- 3. Current limiting properties simplifying the distribution system



Ex: Superconducting power cables for ships (2)

- 3. No environmental impact *(thermal or electromagnetic)*
- 4. Very compact and light cable
 - D ext = 125 mm for bifilar SC cable 10 kA cable with a few kV (> 10 MW)
 - Cryogenics system footprint between 1 to 5 m²

Ext diameter 125 mm +/-

- 1. DC power distribution and transportation will be more and more used in electrical grids in the next future.
- 2. HTS superconductivity offers a unique possibility to suppress dispensable equipments (transformers, converters...) and can reduce investments in comparison with conventional systems.
- 3. DC superconducting cables and links offer an environment friendly approaches with an improvement of the efficiency of electrical systems.
- 4. For superconducting cable systems, high performance cryogenic envelopes are commercially available in kilometric piece lengths.

Merci pour votre attention !

Cartoon by Thomas Kodenkandath (The Week, 1988)

NEXANS PROPRIETARY