

Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444

Yuri Nosochkov

Y. Cai, Y. Jiao, M-H. Wang (SLAC) S. Fartoukh, M. Giovannozzi, R. de Maria, E. McIntosh (CERN)

> HL-LHC Task 2.3 General Meeting CERN, 20 June 2012

Outline

 Perform scaling of the measured field of the nominal LHC inner triplet (IT) quadrupoles to large aperture IT quadrupoles in the HL-LHC lattice.

• Determine dynamic aperture (DA) sensitivity to the IT field errors in the HL-LHC lattice using long term tracking.

• Specify field error tolerances for large aperture IT quadrupoles based on the DA sensitivities.

Lattice: HL-LHC V3.01, collision option "4444" with β *=15/15 cm at IP1 and IP5, Nb-Ti superconducting IT quadrupoles with 120 mm coil diameter and 120 T/m gradient, 7 TeV beam energy.

Code: SixTrack.

Impact of low- β^*

The HL-LHC V3.01 collision lattice has lower than nominal β^* at IP1 (ATLAS) and IP5 (CMS) crossing points resulting in higher β -functions (~1/ β^*) in the IT quadrupoles. Large aperture IT quadrupoles with coil diameter of 120-150 mm are proposed to accommodate a larger beam size. A dedicated large β -modulation in the adjacent arcs is used for local cancelation of the IT non-linear chromaticity.

Impact: High β -functions in the triplet and adjacent arcs amplify the effects of IT errors and sextupole aberrations causing reduction of dynamic aperture. Crossing angle orbit in the IT quadrupoles further amplifies the field errors. New tolerances on the triplet field errors need to be specified for an acceptable DA in collision.

Beta functions: Nominal LHC versus V3.01 "4444"

Interaction Region: Nominal LHC versus V3.01 "4444"

Achromatic Telescopic System (ATS) for the HL-LHC

High peak beta functions in the IT quadrupoles ($\beta_{max} \sim 1/\beta^*$) result in high IT chromaticity which requires strong correcting sextupoles. A dedicated β -modulation is created in the arcs adjacent to IP1 and IP5 in order to raise beta functions at the sextupoles ($\beta_{sext} \sim 1/\beta^*$) and increase their effect without exceeding their field limit. These sextupoles are arranged in -I pairs to cancel their geometric aberrations, and have a proper phase advance relative to the triplets for a localized correction of non-linear IT chromaticity.

Path to the new IT field error tolerances

• Follow the method described in the "Phase-1" upgrade lattice study ("LHC Project Report 40" by B. Holzer).

• The target minimum DA is **12-13** σ when the IT multipole field correction , arc errors and correction are included. In this case, field errors are not included in the D1, D2 separation dipoles and Q4 quadrupoles (future study).

• Start with the measured multipole field coefficients for the nominal IT quadrupoles.

• Scale the measured field coefficients to the new reference radius ($r_0 = 50 \text{ mm}$) and new IT quadrupole coil diameter ($d_c = 120 \text{ mm}$). Name this table "target3". Verify dynamic aperture (expected to be small due to high IT beta in the HL-LHC V3.01).

• Scale the "target3" coefficients with the peak IT beta function in the HL-LHC V3.01 ($\beta_{max} \sim 21.5 \text{ km}$). This will reduce the coefficients. Name this table "target31".

• If the "target31" minimum DA > 13 σ , then relax the coefficients by scanning them between "target31" and "target3" values.

• Scan the field coefficients individually to determine DA sensitivities.

• Obtain tolerances by scaling all the coefficients according to their individual sensitivities until the target minimum DA is reached.

Multipole field scaling in a SC quadrupole

$$B_{y} + iB_{x} = 10^{-4} B_{2} \times \sum_{n=2}^{\infty} (b_{n} + ia_{n}) (\frac{x + iy}{r_{0}})^{n-1}$$

where n=2 is for a quadrupole, etc. B₂ is the main quadrupole field at r_0

Note: the a_n, b_n coefficients are defined in 10⁻⁴ units.

The a_n and b_n values are split in two components: the "uncertainty" term (deviation from systematic) and the "random" term. Their values in the field error tables represent Gaussian sigmas for generating random errors.

• Scaling with reference radius r_0 does not affect dynamic aperture. Nominal $r_0 = 17$ mm \rightarrow new IT quad $r_0 = 50$ mm.

$$b_n, a_n \propto r_0^{n-2} \to (50/17)^{n-2}$$

• Scaling with coil diameter d_c in a SC quad (B. Bellesia, et al., Phys. Rev. ST-AB 10, 062401 (2007)). Nominal $d_c = 70 \text{ mm} \rightarrow \text{new IT quad } d_c = 120 \text{ mm}$.

$$b_n, a_n \propto 1/d_c^{n-1} \to (70/120)^{n-1}$$

• Scaling with peak IT beta function β_{max} to keep the IT non-linear resonance driving terms constant (S. Fartoukh, SLHC Project Report 0038). Nominal $\beta_{max} = 4.5 \text{ km} \rightarrow \text{new}$ $\beta_{max} = 21.5 \text{ km}.$

$$b_n, a_n \propto 1/\beta_{\max}^{n/2} \to (4.5/21.5)^{n/2}$$

Multipole field correctors in the triplet

β (m), β (m) [*10**(3)]

SixTrack tracking set-up

- 100,000 turns
- 60 random error seeds for final tracking, 20 seeds for multipole coefficient scans
- 30 particle pairs per amplitude step (2 σ)
- 11 angles
- 7 TeV beam energy
- initial $\Delta p/p = 2.7e-4$
- tune = 62.31, 60.32
- normalized emittance = 3.75 μ m-rad

• IT multipole field correctors to compensate a3, b3, a4, b4, b6 terms are included (IT correctors for a5, b5, a6 terms have been added to the latest HL-LHC version, but not included in this study)

- Arc errors and correction are included
- No field errors in D1, D2 separation dipoles and Q4 quadrupoles (future study)

Measured field error table for the nominal IT quadrupole MQXB with $d_c=70$ mm at $r_0=17$ mm

skew	uncertainty	rms	normal	uncertainty	rms
a3	0.5235	0.6354	b3	0.4135	0.7873
a4	0.4432	0.3883	b4	0.1552	0.1563
a5	0.0874	0.1423	b5	0.1142	0.2171
a6	0.2306	0.2637	b6	0.2098	0.3088
a7	0.0254	0.0411	b7	0.0311	0.0374
a8	0.0140	0.0280	b8	0.0060	0.0096
a9	0.0127	0.0078	b9	0.0085	0.0116
a10	0.0094	0.0179	b10	0.0303	0.0086
a11	0.0046	0.0028	b11	0.0084	0.0106

(G.V. Velev et al., IEEE Trans. Appl. Supercond., 17, 1109-1112 (2007))

Field error table "target3" scaled from the measured table to r₀=50 mm and d_c=120 mm

skew	uncertainty	rms	normal	uncertainty	rms
a3	0.5239	0.6359	b3	0.4139	0.7879
a4	0.7611	0.6667	b4	0.2664	0.2683
a5	0.2574	0.4191	b5	0.3365	0.6396
a6	1.1655	1.3328	b 6	1.0603	1.5608
a7	0.2203	0.3564	b7	0.2701	0.3244
a8	0.2087	0.4162	b8	0.0889	0.1423
a9	0.3238	0.2003	b9	0.2165	0.2971
a10	0.4137	0.7838	b10	1.3256	0.3755
a11	0.3457	0.2116	b11	0.6340	0.7965
a12	0.1863	0.1863	b12	0.1863	0.1863
a13	0.1164	0.1164	b13	0.2328	0.1164
a14	0.4366	0.1455	b14	0.5821	0.1455

• These values should be achievable in the magnet design.

• Values for n = 12,13,14 are added from table "ITD1_errortable_v2" (SLHC Project Report 0040).

Dynamic aperture for the field error table "target3"

The line represents the average aperture for 60 seeds and the error bars show the spread between the minimum and maximum aperture for 11 x-y angles

Field error table "target31" scaled from table "target3" to β_{max} = 21.5 km

skew	uncertainty	rms	normal	uncertainty	rms
a3	0.05016	0.06089	b3	0.03963	0.07545
a4	0.03334	0.02920	b4	0.01167	0.01175
a5	0.00516	0.00840	b5	0.00674	0.01281
a6	0.01069	0.01223	b 6	0.00972	0.01431
a7	0.00092	0.00150	b7	0.00113	0.00137
a8	0.00042	0.00080	b8	0.00015	0.00027
a9	0.00029	0.00019	b9	0.00019	0.00024
a10	0.00018	0.00030	b10	0.00054	0.00018
a11	0.00007	0.00007	b11	0.00015	0.00015
a12	0.000016	0.000016	b12	0.000016	0.000016
a13	0.000004	0.000004	b13	0.000009	0.000004
a14	0.000008	0.000003	b14	0.000010	0.000003

Coefficients are significantly reduced (too small for realistic magnet design)

Dynamic aperture for the field error table "target31"

The minimum DA is large (close to DA without IT errors). The coefficients can be relaxed to reduce DA_{min} to 12-13 σ .

Individual scan of a_n "random" coefficients

Each coefficient is scanned between "target31" and "target3" values while all other coefficients are fixed at "target31" values.

The DA is not sensitive to the corrected a3, a4 terms. The strongest effects are from a6, a10 terms.

Individual scan of b_n "random" coefficients

The b3, b4 terms are well corrected, but the b6 still affects the DA. "DA cut" will be used later to set the coefficients for about equal impact on DA.

Individual scan of a_n "uncertainty" coefficients

The a3, a4 terms are well corrected. Overall, a smaller impact on DA compared to effect of "random" a_n .

Individual scan of b_n "uncertainty" coefficients

High order terms are still important.

Final field scaling for the target DA

We construct the tolerances, where the effects of individual coefficients on DA are about equal. This is done by setting to the values corresponding to the same DA in the individual scans using "DA cut". The target DA is reached when the DA cut is 14.8σ .

Tolerance table "target39" at r₀=50 mm

skew	uncertainty	rms	normal	uncertainty	rms
a3	0.28701	0.34839	b3	0.22675	0.43166
a4	0.39722	0.34797	b4	0.13905	0.14002
a5	0.13129	0.02945	b5	0.09018	0.07111
a6	0.41458	0.02698	b6	0.53501	0.38921
a7	0.11063	0.02557	b7	0.01031	0.01215
a8	0.10452	0.00820	b8	0.02766	0.00557
a9	0.15817	0.01044	b9	0.00911	0.00844
a10	0.09435	0.00924	b10	0.01872	0.00674
a11	0.07756	0.00700	b11	0.00820	0.00998
a12	0.05541	0.00354	b12	0.00456	0.00363
a13	0.03679	0.00442	b13	0.00396	0.00268
a14	0.01892	0.00364	b14	0.00611	0.00364

The least sensitive terms could be set to large "target3" values. But in the above table "target39" we intentionally limited them to a mid-value between the "target3" and "target31" settings in order to help relaxing the other tighter terms. As an alternative, we also constructed the table "target36", where the non-sensitive terms are set to "target3" values at the expense of somewhat tighter other tolerances.

Comparison of "target3", "target31" and "target39" tables (normalized to "target3" values)

Dynamic aperture for tolerance table "target39"

Summary

• DA sensitivity to individual multipole field errors in the large aperture IT quadrupoles of the HL-LHC V3.01 lattice (option "4444") have been determined using long-term tracking in SixTrack.

• The setting for the IT field error tolerances have been obtained based on analytical scaling for the new IT coil diameter and peak beta functions, and taking into account the DA sensitivity to individual multipole coefficients.

- The obtained tolerances may be too tight further optimization is needed.
- This work was presented at IPAC'12, paper MOPPC020.

Next steps

Try to relax the tolerances towards the field error estimate presented by E. Todesco (E.T.) at the Hi-Lumi & LARP Collaboration Meeting, 7 June 2012:

- Set the least sensitive coefficients to the E.T. estimate verify DA.
- Assume a5, b5, a6 terms are corrected set to 20% of the E.T. estimate (to simulate the correction without actual correctors in tracking).
- Reduce the target minimum DA to 11σ to loosen the tolerances.

Back-up slides

Field error table from presentation by E. Todesco

	Uncertainty	Random		Uncertainty	Random		
b3	0.890	0.890	a3	0.890	0.890		
b4	0.640	0.640	a4	0.640	0.640		
b5	0.460	0.460	a5	0.460	0.460		
b6	1.800	1.280	аб	1.200	0.330		
b7	0.210	0.210	a7	0.210	0.210		
b8	0.160	0.160	a8	0.160	0.160		
b9	0.080	0.080	a9	0.080	0.080		
b10	0.060	0.060	a10	0.060	0.060		
b11	0.040	0.040	a11	0.040	0.040		
b12	0.026	0.026	a12	0.026	0.026		
b13	0.017	0.017	a13	0.017	0.017		
b14	0.011	0.011	a14	0.011	0.011		
120 mm aperture, Rref=40 mm							

``REVIEW OF ESTIMATES OF RANDOM COMPONENTS IN THE INNER TRIPLET'' E. Todesco, Hi-Lumi and LARP Collaboration Meeting, CERN, June 7, 2012

Tolerance table "target39" scaled to r₀=40 mm

skew	uncertainty	rms	normal	uncertainty	rms
a3	0.22961	0.27871	b3	0.18140	0.34533
a4	0.25422	0.22270	b4	0.08899	0.08961
a5	0.06722	0.01508	b5	0.04617	0.03641
a6	0.16981	0.01105	b6	0.21914	0.15942
a7	0.03625	0.00838	b7	0.00338	0.00398
a8	0.02740	0.00215	b8	0.00725	0.00146
a9	0.03317	0.00219	b9	0.00191	0.00177
a10	0.01583	0.00155	b10	0.00314	0.00113
a11	0.01041	0.00094	b11	0.00110	0.00134
a12	0.00595	0.00038	b12	0.00049	0.00039
a13	0.00316	0.00038	b13	0.00034	0.00023
a14	0.00130	0.00025	b14	0.00042	0.00025

Field error table "target3" scaled to r₀=40 mm

skew	uncertainty	rms	normal	uncertainty	rms
a3	0.4191	0.5087	b3	0.3311	0.6303
a4	0.4871	0.4267	b4	0.1705	0.1717
a5	0.1318	0.2146	b5	0.1723	0.3275
a6	0.4774	0.5459	b6	0.4343	0.6393
a7	0.0722	0.1168	b7	0.0885	0.1063
a8	0.0547	0.1091	b8	0.0233	0.0373
a9	0.0679	0.0420	b9	0.0454	0.0623
a10	0.0694	0.1315	b10	0.2224	0.0630
a11	0.0464	0.0284	b11	0.0851	0.1069
a12	0.0200	0.0200	b12	0.0200	0.0200
a13	0.0100	0.0100	b13	0.0200	0.0100
a14	0.0300	0.0100	b14	0.0400	0.0100