CW OPERATION OF THE SRF LINAC ELBE

Hartmut Büttig for A.Arnold; A.Büchner; F.Gabriel; F.Herbrand; R.Jainsch; D.Janssen; M.Justus; K.Leege; U.Lehnert; P.Michel; D.Pröhl; A.Schamlott; C.Schneider; R.Schurig; G.Staats; J.Teichert J.Voigtländer and the ELBE-Team

FZ-Dresden Rossendorf

CWRF 2008 CERN

Research Center Dresden-Rossendorf Member of the Leibniz Society

Research Programs, Institutes, Research Facilities

- •Ion Beam Physics and Materials Research
- Radiation Physics
- Radiochemistry
- Radiopharmacy
- •Safety Research
- •Dresden High Magnetic Field Laboratory

Structure of Matter Life Sciences, Environment and Safety

- ·Ion Beam Centre
- •ELBE
- Rossendorf Beamline
- •PET Centre
- •TOPFLOW Facility
- High Magnetic Field Laboratory

Forschungszentrum Dresden Rossendorf

USAGE (in 2007)

ELBE LINAC Beam Parameters

	Thermionic Gun	SRF Photo Gun
Maximum Energy	36 MeV (CW)	40 MeV (CW)
Bunch Charge	77 pC	77pc / 2.5 nC
Beam Current	1 mA	1 mA
Bunch Length (rms)	1 – 10 ps	4 / 20 ps
Transv. Emittance	2/10 mm mrad (rms)	0.5 / 2.5 mm mrad
Max. Rep.Rate	260MHz@0.77pC 13 MHz@ 77pC	13 MHz
Energy Spread	35 keV /55 keV	40 keV

Forschungszentrum Dresden Rossendorf

CW-RF (at ELBE: 8.5 kW /Cavity)

Cavities : TESLA DESY
different from DESY:
thicker He-Vessel
other Tuner
fixed RF Power coupler
He: all on 1.8K level

Forschungszentrum Dresden Rossendorf

Rossendorf 3 = Cell SRF Gun - Principle

Generation of high brightness electron beams

 direct production of short pulses:
 laser & photo cathode

2. high acceleration field at cathode: radio frequency field

3. CW operation for high average current: superconducting cavity

Forschungszentrum Dresden Rossendorf

PERFORMANCE OF THE RF-SYSTEM

Cavities: Frequency Bandwidth (3dB) Phase noise related microphonics

1.3 GHz 114 Hz

2...6 deg peak-peak

RF System: Frequency stability < 1 10-9Phase noise < 0.05 deg rms)* *) gradient 10MV/m, no beam Measurements at a gradient of 10 MV/m without beam Phase stability rms /< 1 sec 0.02 deg

Amplitude stability

rms

2 10-4

LHe pressure stability

+/- 0.1 mbar

Klystron

VKL7811St (CPI) 6-klystrons running (3000...9000 hrs)

PS: SMPS 15 kV;2.5A Water: 46 l/min, 6 Bar

Forschungszentrum Dresden Rossendorf

Forschungszentrum Dresden Rossendorf

SMPS FuG-Rosenheim -15kV, 2.5 A Remote control (homebrew using Simatic)

Forschungszentrum Dresden Rossendorf

Remark on Beam Matching for CW Using Macro Pulses

- beam matching at full bunch charge
- results in cw-matchable RF-load
- allows maloperation without damage
- -Beam-ON Time: 0.1ms....36ms -Duty Cycle. 40ms....1s
- "Diagnosemode" enables beam matching at full bunch charge but at an average (cw-comparable) beam current of 10 µA

Forschungszentrum Dresden Rossendorf

All "macropulse-relevant" measurements must be triggert

Some remarks on bad experiences with CW

Be aware that "Murphy" is always present!

or a bit more optimistic

Sometimes "Murphy" helps to find the best diagnostics !

Murphys Attack Nr.1 RF-Waveguide Window Crash 1

Rexolite, WR650 (MEGA)

20.Jan. 2001

Reason: CW (1-st day pwr RF) -without windows diagnosis -bad /unknown vacuum at the warmwindow

Result:

-beamline vacuum not broken
-waveguide window replaced
-window diagnosis added
-since that time ok

Forschungszentrum Dresden Rossendorf

RF-Windows-Diagnostics

Forschungszentrum Dresden Rossendorf

Forschungszentrum Dresden Rossendorf

Murphys Attack Nr.2 RF-Waveguide Window Crash 2

4.Nov.2001

Reason: •self-excitation of a klystron

Result: •RF (1.3GHz) interlock fired •beamline vacuum not broken •waveguide window replaced •circulator added at klystron input,

Murphys Attack Number 3 Vacuum Leak at a Klystron

klystron has shown multipacting earlier, cured
vacuum leak (detected at CPI)
Result:
complete burn out of cathode because: klystron-PS switched to CC-mode (200V, 2.5A),

•ensure switch off at Imax,

Forschungszentrum Dresden Rossendorf

Murphys 4-th "Stroke" with ELBE (First try to operate CW)

Result: - Hole in a bellow flange - 2 cavities polluted

- In between: New diagnostics (BLM, DCM)

 $S_{c} = 20 \text{MeV}$ $I_{e} = 1 \text{mA}$ c = 450 J/Kg K $m = \Delta V \varsigma = 63 \text{mg}$ $(d_{beam} = 1 \text{mm}, r = 10 \text{mm})$ $T_{M} = 1400 \text{ °C}$

20...40 MeV Electrons \Rightarrow Range 1,5..4 cm (St.Steel)

 $\frac{dT}{dt} = \frac{S_c}{I_e}(t) - \lambda(T - T_{RT})$ dt $C \cdot m$

 $t_{crit} \sim 2 ms$

BLM: Beam Loss Monitoring

Ionisation Chambers based on HJ4.5-50 Coax (Andrews)

Z Forschungszentrum Dresden Rossendorf

- 0

- 0

FWKE• Dr.-Ing. H.Büttig • www.fzd.de • Mitglied der Leibniz-Gemeinschaft

0

- 0

DCM: Difference Current Monitoring Based on Beam Profile Monitors (BPM)

Overview MIS - Difference Current Monitors (Release: 26.11.2007)

Observations during CW Operation Gradient drifts

Beam Energy Stabilisation using SIMATIC tools Input: BPM x -Signal (dispersive part of the beamline) Output: changes setting of a gradient

Field Emission and Cavity Training

Cavity Training With Pulsed RF

HOM-Heating at CW								
Cavity C4								
HOM 1 T-Sensor: DT.08	RF-Pick T-Senso Fe-R sor: DT.09	kup r: DT.14 h Thermometer		DUR ^S (
	GRADIENT MV/m	DT.08 K	DT.09 K	DT.14 K	DT.16 K			
CONDITIONS: BEAM OFF		HOM (CPL)	HOM(Tuner)	Pickup	Beamtube			
STEADY STATE (20 min)	ZERO	14.0	11.4	10.6	4.6			
	2	16.4	12.3	10.6	4.6			
	4	36.4	23.7	10.7	4.6			
	6	60.0	43.2	10.9	4.7			
	8	75.5	58.3	11.2	4.8			

HOM Temperature vs. Time

Forschungszentrum Dresden Rossendorf FWKE• Dr.-Ing. H.Büttig • www.fzd.de • Mitglied der Leibniz-Gemeinschaft

Summary

-High Power CW Operation Require:

- proper designed components and systems
- redundancy to make service practicable
- good and highly reliably diagnostics
- Macro puls mode to match the beam
- -Test benches to make components better and to check them independently of the Linac-Op.

(Example: G.Staats: Resonant Ring Presentation , Friday)

Resonant Ring (200 kW with a 10 kW klystron)

Thank you for your attention, enjoy your meal !

